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A model-based design and tuning method for discrete controllers for single-input-single-output
systems is presented in this article. It stresses the possibility of specifying the desired closed-
loop behavior by using a set of time-domain conditions defining the performance that is desirable
in the controlled output. The problem formulation is developed in the time domain since this is
the domain where many important and different design conditions can be visualized and written
in an easy mathematical form, particularly for most continuous chemical processes. This approach
allows shaping the time-domain closed-loop response by one or more constraints representing
the limits of minimum performance desired when specific changes on either the setpoint or the
load disturbance are expected. Model uncertainties caused by slow time-variant or nonlinear
systems can also be accounted for, guaranteeing robust performance and stability of the closed-
loop system.

1. Introduction

The problem of tuning either continuous or discrete
controllers has been widely studied for decades. During
all this time many methods for tuning the classical PID
controller have been applied to very different process
systems, surely the most well-known are the Ziegler-
Nichols25 and Cohen-Coon2 rules. More recently, how-
ever, Rivera et al.19 introduced a H2 design approach
based on internal model control (IMC) that, among
others things, has the advantage of yielding a PI or PID
with only one tuning parameter. Then, the results are
combined with an H∞ adjustment for robust stability
and performance.15

For discrete controllers, Isermann8 indicates two main
alternative approaches for the synthesis: (i) determin-
ing structure-optimized controllers and (ii) determining
parameter-optimized controllers. In the first case both
the controller structure and the parameters are adapted
optimally to the structure and parameters of the process
model; cancellation and state controllers are typical
examples. In the second case the form and the order of
the controller equation are given or arbitrarily adopted,
and the parameter values are adjusted to the process
model using an optimizing criterion. Common param-
eter optimized controllers are P, PI, or PID, where if
small sampling times are used, the settings obtained
for continuous controllers (tuning rules) can be used to
determine the discrete controller parameters, slightly
modified to consider the effective time delay caused by
the zero-order hold.23

Discrete feedback controllers can also be designed
using pole placement in the z domain;6 however, little
is specified in the time domain about the behavior of
the system variables.

We cannot avoid mentioning the remarkable impor-
tance given also to the linear quadratic problem (LQP).9
A consequence of the interest in this approach is that
many of its properties have already been revealed; the
most important is that it yields a linear controller that
stabilizes the closed-loop system. However, when incor-
porating new restrictions in the optimization problem,

most of its properties disappear. Furthermore, the
presence of restrictions makes difficult the stability
analysis for the closed-loop system.13,22

Many discussions about performance specifications
focus on mathematical approaches stemming from space
vector norms and frequency domain, leaving in a second
place very familiar and intuitive time-domain alterna-
tives. In this article we show that it is not only possible
but it also easy to design and adjust a discrete controller
using design conditions that cannot be defined by a
single performance function. The proposed technique
stresses the possibility of specifying the desired closed-
loop behavior by using a set of time-domain conditions
defining limits of minimum performance that are desir-
able in the controlled output.

The problem formulation is developed in the time
domain since this is the domain where many important
and different design conditions can be visualized and
written in an easy mathematical form, particularly for
most continuous chemical processes. This approach
allows shaping the time-domain closed-loop response by
one or more constraints representing the limits of
minimum performance desired when specific changes
on either the setpoint or the load disturbance are
expected. Furthermore, since model uncertainties can
be considered using a multimodel representation, lately
referred to as the polytopic paradigm,5,10 a simple
extension of the method can also guarantee the robust
stability and performance for the closed-loop system.

The organization of this paper is as follows: In section
2, the linear discrete models are recalled and the
extension to multimodels or polytopic models is com-
mented on. Section 3 refers to discrete controllers and
their main structural features. In section 4, the basic
mathematical problem formulation is presented and the
meanings of some design parameters are discussed.
Furthermore, different performance specifications in-
cluding the closed-loop stability condition are analyzed
and comments about the initialization of the optimizing
algorithm are made. Section 5 shows the results ob-
tained from the application of the proposed method to
selected examples, including a nonlinear continuously* To whom correspondence should be addressed.
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stirred tank reactor (CSTR). Finally, the conclusions are
presented in section 6.

2. Discrete Process Modeling

Typically, controllers are adjusted to meet perfor-
mance requirements during setpoint changes or distur-
bance rejection. The adjustment must be made for a
specific process system; i.e., each application requires
a particular design or at least a particular tuning. This
fact turns our attention to the availability or the
development of a model of the involved process to
describe its dynamics and consequently for controller
design or controller adjustment. For the time being,
model-based process control has become an almost
exclusive strategy for a rational approach for controller
designing or controller tuning.

As we restrict ourselves to sampled-data systems, the
possibilities of representing process dynamics are still
important. Difference equations, discrete convolutions,
and discrete state space representations are different
but, most of the times, equivalent forms of representing
discrete linear systems. In this article, we mainly deal
with difference equations of the form

where y and u are the output and input variables,
respectively, and kd stands for the time delay.

The design and tuning method discussed in this
article can be supported by today’s available computa-
tional capabilities and software packages oriented to
general optimization problems. The approach is not
dependent on the process model structure, which is a
very frequent important condition in most design and
adjusting procedures. Linear or nonlinear process rep-
resentations in the form of discrete or continuous
sampled process models might be used for determining
an appropriate controller order and satisfactory param-
eter values. Though the idea can be extended to general
dynamic simulators for representing the process, we do
not address this issue in this article.

If the available model is linear, in any of the possible
representation forms, the formulation of the optimiza-
tion problem is straightforward. If we have to deal with
a nonlinear system, the use of a multiple-model repre-
sentation (see Appendix I) combined with concepts
coming from robust control theory have shown to be
computationally efficient and to yield appropriate solu-
tions for controller adjustment.

3. Controller Structure

Designing a controller implies giving an answer to the
following two questions:8 (i) how to determine the
controller structure and (ii) how to determine the
controller parameter values. One approach to solve the
problem is by optimizing both the structure and param-
eters, simultaneously. This leads, for instance, to state
controllers and to cancellation controllers.11,15

Other alternatives suggest the adoption of the general
input-output structure, in this case, for the discrete
linear controller:

The selection of w and v may follow some practical
criterion like the simple requirement of looking for low-
order implementations, the most typical case being
when adopting PI or PID controllers. In this article we
show a convenient way for defining the number of
parameters to be used and their adjustment to reach a
particular performance objective.

Let us assume for the moment that the process is
represented by (2.1), or equivalently

Then, w ) n, or v ) m + kd, are the lowest order values
that enable the complete placement of the closed-loop
poles (see Appendix II). If these equalities hold, the
coefficients of the closed-loop characteristic equation
give a system of linear equations with a unique solution,
where the controller parameters are the unknown
variables, and all the closed-loop poles can be located
as desired.

Moreover, a default condition is frequently required
for (3.1) to avoid steady-state offsets, i.e.,

If arbitrarily adopting v ) 1, eq 3.3 asks for p1 ) -1,
and (3.1) gives a controller having a single integrating
pole at z ) 1, and w - 1 poles at the origin,

This structure includes the discrete version of the very
familiar controllers PI and PID, which are obtained by
restricting the order w to 1 or 2, respectively, and the
parameters values to the following conditions, for posi-
tive gain:8

However, approaches involving optimization procedures
might give results not necessarily constrained by the

y(k) + ∑
j)1

n

aj y(k - j) ) ∑
i)1

m

biu(k - i - kd) (2.1)

C(z) )
u(z)

e(z)
)

Q(z-1)

P(z-1)
)

∑
i)0

w

qi z-i

1 + ∑
j)1

v

pj z-j

(3.1)

Gp(z) )
y(z)

u(z)
)

B(z-1)

A(z-1)
z-kd )

∑
i)1

m

bi z-i

1 + ∑
j)1

n

aj z-j

z-kd (3.2)

P(1) ) 1 + ∑
j)1

v

pj ) 0 (3.3)

C(z) )
Q(z-1)

(1 - z-1)
)

∑
i)0

w

qiz
-i

(1 - z-1)
(3.4)

-q0 < 0

q1 < -q0

q2 < q0

-(q0 + q1) < q2

(3.5)
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above conditions, thus allowing performances otherwise
unreachable by the PID controller.

4. Design-and-Tuning Problem Formulation

4.1. Basic Case. Our proposal in this article is to
determine the minimum controller orders, w and v, that
are necessary to meet a desired performance, and to
adjust all the parameters in Q(z-1) and P(z-1) by a
pseudo-optimization procedure until a set of time-
domain specifications are met.

Let us assume a discrete model of the system is
available and that there is no model mismatch, for the
moment. There are at least two controller design condi-
tions almost always required: (i) closed-loop stability
and (ii) the minimization of some performance or
objective function J.

The general basic formulation of a discrete-controller
optimization problem could be described by a mixed-
integer-nonlinear problem (MINLP) where the integer
variables to be optimized are the polynomials orders v
and w. However, since these two parameters are deter-
mined among a reduced set of values, a direct search is
recommendable. This approach decomposes the original
problem in few NLPs that can be sequentially solved
until a satisfactory result is obtained. Hence, for each
(v, w) pair, we have the following NLP formulation:

where N is the overall number of sampling instants
being considered.

Rather than defining the final desired performance,
like in more standard tuning methods, in this approach
J(:) stands for any convenient objective function capable
of guiding the parameter adjustment. The desired
closed-loop performance is defined through additional
restrictions as discussed in a following subsection.

The first equation in (4.2) is a general expression of
the discrete process model which remarks that any type
of representation may be used at this point; y and u are
the controlled and the control variables, respectively; ú
and γ implies that historical values might be included,
and the displacement kd is the system time delay.
Besides, d is a disturbance, which may be defined
through an analytical expression or by a time series
representing any practical or realistic change.

The second equation represents a linear controller
with parameters qi, i ∈ [0, w] and pj, j ∈ [1, v], where r
is the setpoint. Finally, an additional constraint is
suggested in this formulation through the third equation

in (4.2), which deserves specific comments in the next
subsection. The initial conditions for y and u complete
the basic formulation.

4.2. Final Control Condition. The third equation
in (4.2) asks for null or negligible control movement at
the end of the time interval being considered. We show
in Appendix III that this condition forces the stability
of the closed loop and that it is equivalent to requiring
both y and u to remain constant after the time instant
k ) N. This constraint may also be used as a design
condition affecting the closed-loop performance: defin-
ing the value of N is an alternative way for determining
the closed-loop settling time. The larger this parameter
value is, the lesser the controller sensitivity will be and
slower the closed-loop dynamics will look.

However, the effect of this constraint on the controller
adjustment is better visualized recalling concepts re-
lated to complete output controllable systems. Any
complete output controllable time-invariant discrete
system, with unbounded input, can be transferred from
any initial output to any final output in a finite number
of steps.17 In particular, if this number of steps is equal
to the dimension of the system and we require both y
and u to remain constant thereafter, then the output
variable exhibits deadbeat response. It also implies that
all the closed-loop poles are at the origin of the unit
circle.

From Appendix III, the final control condition forces
a deadbeat response for the lower bound N ) n + v +
kd, and when this condition is numerically relaxed with
a small ε gap, the closed-loop poles move away from the
origin as N increases. In other words, if N ) n + v + kd
is adopted, a deadbeat type of response is obtained as
long as the control input remains unbounded, and no
other design condition is imposed. As N increases, the
room for combining special design specifications in-
creases too, but still requiring the closed-loop poles to
stay inside the unit circle. Issues related to internal
stability are discussed in the next subsection.

Hence, the final control condition applied at a time
instant larger than the closed-loop system dimension
helps to select feasible solutions with bounded input/
output trajectories and consequently it speeds up the
numerical convergency. Furthermore, it avoids oscilla-
tions or ripples between sampling points, a problem
frequently arising from discrete cancellation controllers,
particularly when applied to high-order systems.

4.3. Internal Stability Condition. Internal stability
is a basic requirement for a practical feedback system
discussed by Morari and Zafiriou15 and lately by Zhou
and Doyle,24 among others. The convenience of consider-
ing concepts associated with internal stability during
the tuning problem formulation is quite obvious. In this
regard, observe that the objective function typically
requires the controlled output, y(k) to follow a bounded
sequence, r(k), or alternatively, a specific design might
ask for the rejection of a bounded disturbance signal,
d(k). Besides, the third constraint forces the control
signal u(k) to also be bounded. However, the resulting
closed-loop will be internally stable only if there is no
cancellation of process poles or zeros located outside the
unit circle. If the process model is given by (3.2), the
possibility of a cancellation like this during the numer-
ical tuning can be easily detected by a preliminary
inspection of A(z) ) 0 and B(z) ) 0.

If A(z) ) 0 shows an unstable root at z ) π and the
above basic tuning formulation is applied for a setpoint

min
qi,pj

J[r(k), y(k), u(k)], ∀ k ∈ [1,N], i ∈ [0, w],

j ∈ [1, v] (4.1)

s.t.

y(k) ) F[y(k - ú), u(k - γ - kd), d(k)],
∀ k ∈ [1, N]

u(k) ) -∑
j)1

v

pju(k - j) + ∑
i)0

w

qi[r(k - i) - y(k - i)],

∀ k ∈ [1, N]

u(N) ) u(N - 1)

y(0) ) 0

u(0) ) 0 (4.2)
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change, the possibility of cancelling this pole with a
controller zero exists. In this case, a small external
disturbance in the control variable u(k) will reveal the
unstable condition, exposing an unbounded y(k). To
prevent this undesired design, we suggest the additional
constraint

where δ is a positive value defining a prohibit zone for
the controller zeros around the location z ) π. Eventu-
ally, the magnitude of δ could be related to the para-
metric uncertainty affecting this particular root.

Similarly, if B(z) ) 0 shows a root z ) ê outside the
unit circle or very close to it, and the above basic tuning
formulation is applied for rejecting a load change on
u(k), the possibility of cancelling the process zero with
a controller pole exists. A small change in the setpoint
will expose the problem, showing an unbounded u(k).
This can be prevented by including the constraint

where δ deserves the same interpretation given above.
Hence, if the process model presents either a zero or

a pole outside the unit circle, then the problem formula-
tion should include the constraint (4.4) or (4.3), respec-
tively, to guarantee internal stability.

4.4. Performance Specification. The choice of the
performance function, for measuring the quality of the
closed-loop response to a given reference change or load
disturbance, has played a central role in controller
design. Very familiar are the definitions of the integral
criteria ISE (integral of the square error), IAE (integral
of the absolute value of the error), and ITAE (integral
of the twice-weighted absolute error), which become sum
criteria for discrete signals. Also, very frequently the
ISE index is extended to include the energy delivered
by the control variable through an arbitrary weight
coefficient. Many resulting tuning formulas presented
in the literature are based on one of these criteria,
assuming a simple process model and a step change in
the setpoint or the load disturbance.20 However, most
of them have shown some limitations for including
explicitly others design conditions like rise time, settling
time, decay ratio, maximum or no overshoot, allowed
undershoot, etc. Notice that using a single performance
index only gives no clear information about the output
response or the controller performance until the system
is simulated or the controller is commissioned.

It is possible and many times desirable that the
system response achieve more than one single require-
ment. To this end, a technique has been presented on
the basis of the use of a single comprehensive index of
performance.7 Though the technique seems to have low
sensitivity to the starting values used for the optimiza-
tion, the final approach includes a sort of trial and error
until the most favorable values are selected. An alterna-
tive as been the use of a multiobjective programming
approach1 aimed at finding Pareto optimal solutions
characterized as a solution set in which any improve-
ment in one performance criterion necessarily implies
the degradation in some other. This last technique has
to also solve a number of optimization problems, in an
iterative fashion, to adjust a controller having a fixed
predetermined structure.

Most of the times the meaning of “good control
performance” in process control involves several desir-
able features different from the absolute minimum of
the integral of some function of the error. From a
practical point of view, the “additional” design conditions
could be more important than reaching the absolute
minimum of the objective function.

Going back to the optimization problem formulated
above, observe that a sort of closed-loop simulation takes
place each time the NLP tries new parameter values,
and therefore, the closed-loop time-domain response is
directly evaluated as well as the evolution of all the
internal variables. Hence, additional design specifica-
tions different from those included in the objective
function can also be included as well as performance
constraints on variables other than the controlled
output. Furthermore, during the numerical adjustment
these constraints are met before finding the minimum
of the objective functionsthe opposite case implies there
is not feasible solution. Then, the NLP optimization may
be stopped once the design conditions are satisfied. This
does not mean to reduce the importance of the global
minimum; it simply provides a practical criterium for
stopping the numerical tuning.

Under this framework we certainly can use the ISE
(or l2) for guiding the tuning process,

Alternatives such as the sum of the absolute error or
the sum of the time multiplied by the absolute error
might result in similar effectiveness. The possibility of
a direct influence for damping the control variable by
adding the quadratic deviation of the manipulated
variable is also well-known. The use of the discrete
version of the infinite norm of the error (l∞),

might be interesting when adjusting the controller to
load disturbances rather than to set point changes.

Less conventionalsbut many times more importants
objective functions can be used as additional constraints
or shaping constraints. These functions are typically
defined to measure certain attributes of the temporal
response such as the rise (tr) and settling time (ts) and
the overshoot (yos) or undershoot (yus) and to account
for a physical control constraint (|u|max); in particular,
for the positive-gain case they can be written as follows:

Similar functions have been suggested in connection
with a multiobjective design,1 l1 optimal design,4 and
pole placement.6,18 In this article we show that they can

|∑
i)0

w

qi(π)w-i| > δ (4.3)

|êv + ∑
j)1

v

pj(ê)v-j| > δ (4.4)

J ) ||e||22 = ∑
k)1

N

e2(k)

J ) ||e||∞ ) sup
k∈[1,N]

|e(k)|

tr ) inf
k

{tk:y(k) g y(N); 1 e k < N}

ts ) inf
k

{tk:|e(l)| e ε; k e l < N; 1 e k e N} (4.5)

yos ) sup
k

{y(k): 1 e k < N} (4.6)

yus ) sup
k

{-y(k): 1 e k < N} (4.7)

|u|max ) sup
k

{|u(k)|: 1 e k < N}
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be used as shaping constraints for reaching the desired
performance in the tuning problem formulation.

However, conflicting conditions could be simulta-
neously required during the controller design. A set of
individually admissible constraints might define an
empty solution space if the final problem formulation
is not consistent with dynamic process limitations,
which means that the process system will admit realistic
performance requirements only.14,21

4.5. Computing Approach. In the introduction to
this section we characterize the general basic formula-
tion as a MINLP since v and w-two integer variabless
are also design parameters to be optimally determined.
Hence, a standard NLP solver is used to find the
controller parameters values for a given pair (v, w),
while a simple direct and guided search is used to
determine the lowest v and w combination that meets
the design conditions. The NLP readjusts the controller
until all the design conditions are simultaneously satis-
fied and stops even though the objective function J (:)
does not achieve the absolute extreme. If any restriction
is violated, the direct search changes the controller
structure, changing v and w by 1 until the minimum
required values are reached or the improvement is
meaningless. In this way, the result gives the lowest
order controller capable to meet the required perfor-
mance. This controller might not be optimum from a
rigorous or more traditional point of view, but it will
certainly satisfy the designer specifications.

Furthermore, something must be said regarding nu-
merical initialization. If the controller is given by (3.1)
and the plant dynamics are represented by (3.2), where
without losing generality we assume n ) m, then the
characteristic equation takes the general form

Since a stable closed-loop solution is desired, the
convenient initial parameter values must locate all the
closed-loop poles into the unitary circle. In particular,
for stable plants, w and v may be lower than n, and the
easiest and safe initialization is pj ) -1/v, ∀ j ∈ [1, v];
qi ) 0, ∀ i ∈ [0, w]. These parameter values locate the
roots of P(z) ) 0 inside the unit circle,3 meet the (3.3)
condition, and locate kd + w - v closed-loop poles at the
origin; the remaining poles are the stable open-loop
process poles. This initialization helps to provide stabil-
ity to the numerical search, which is equivalent to a
sequence of dynamic simulations, and leads to rapid
convergence.

For unstable systems the initial values must be
carefully chosen, since an inadequate selection might
lead to an unfeasible solution space. If we desire the
capability to locate stable closed-loop poles arbitrarily,
the initial controller structure is determined by w ) n
and v ) m + kd. However, stable solutions can be found
for a lower number of controller parameters, mainly due
to the final control condition plus the internal stability
condition discussed above. In any case, we have to
propose an initial stable pole configuration and deter-
mine the first trial coefficients qi and pj by solving the
system of linear equations resulting from (4.8).

5. Applications

The full potential of the tuning method proposed in
this article comes from the possibility of including as
many time-domain design conditions as desired, as long

as they are consistent with the system limitations and
they do not create conflicting requirements. In this
section we show this feature through several application
examples, first by working on simple linear systems and
then controlling the operation of a continuously stirred
tank reactor.

5.1. Linear Systems. To introduce the application
example, let us see a very typical problem where a
discrete linear model of the process (3.2) is available and
a controller like (3.1) is adopted. If the design requires
(i) offset elimination for setpoints changes and (ii)
closed-loop stability assuming there is no model mis-
match, then the basic NLP formulation of an off-line
parameter search guided by the ISE function can be
described as follows:

Though v and w are fixed for this formulation, they
are also unknown variables in the general problem. Note
that w ) n and v ) m + kd are the reasonable values to
be used in the first trial (see Appendix II); however,
there are many cases where lower values meet the
needs.

Example 1. Let us consider a continuous process
showing invese response to input changes and whose
dynamics are represented by the following transfer
function:

The problem is to find a controller such that the
following performance can be achieved: (i) the error be
lower than ∆ ) 0.05 about 30 s after a step change in
setpoint is made; (ii) the overshoot of the system output,
yos, must be null; (iii) its undershoot, yus, must be
smaller than 0.25; and (iv) the final offset must be null.

Since the system has a real right-half plane open-loop
zero at sz ) 0.2 and we require a settling time of Tsett )
30 s, the minimum undershoot that could be expected

P(z)zkd+w-vA(z) + Q(z)B(z) ) 0 (4.8)

min
qi,pj

{∑
k)1

N

[r(k) - y(k)]2}, ∀ k ∈ [1, N], i ∈ [0, w],

j ∈ [1, v] (5.1)

s.t.

y(k) ) - ∑
j)1

u

aj y(k - j) + ∑
i)1

m

biu(k - i - kd) + d(k),

∀ k ∈ [1, N]

u(k) ) -∑
j)1

v

pju(k - j) + ∑
i)0

w

qi[r(k - i) - y(k - i)]

∀ k ∈ [1, N]

u(N) ) u(N - 1) (5.2)

∑
j)1

v

pj ) -1

y(0) ) 0

u(0) ) 0

Gp(s) ) 1 - 5s
(10s + 1)2

(5.3)
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if there is no constraint on the manipulated variable14

is

This value is smaller than 0.25, the maximum under-
shoot specified, which means that the first and the third
design conditions are consistent with the process dy-
namics. As expected, however, the discrete process
transfer function shows a zero outside the unit circle, ê
) 1.22, whose cancellation must be avoided during the
numerical synthesis by including the constraint (4.4).
Hence, the specification for the design can be written
as follows:

which are added to the basic tuning problem (5.1-5.2),
where N0 is the sampling instant at which the setpoint
change is made. The bound 0.1 in the fourth condition
of (5.5) is arbitrary at this point.

For completeness, this problem still requires the
following definitions: (i) the adopted sampling time is
Ts ) 1 s, and assuming a zero-order hold for converting
the transfer function (5.3) to the z domain, the resulting
difference equation has n ) m ) 2, and kd ) 0; (ii) the
time length considered is N ) 180 sampling intervals
(common sense indicates this should be at least as long
as the open-loop process settling time). The input change
is a unit step at N0 ) 20, and no perturbation, d(k) ) 0,
∀ k, is included.

The resulting tuning problem is solved using a gradi-
ent-based optimization algorithm. The structure that
allows a complete closed-loop pole placement (w ) 2, v
) 2) has no difficulty satisfying the required design
conditions. The parameters values obtained for this
controller (3.1) are

However, it becomes instructive exploring the sensi-
tivity of the controller structure, in particular, the
sensitivity to a reduction in the parameter v. The case
v ) 1 yields a PID controller despite the constraints in
(3.5) not being included; this can be readily verified from
the following values:

Figure 1 shows the closed-loop responses obtained
using the above controllers; it is apparent that both
responses satisfy all the required design conditions. The
values of the ISE index for these runs are the same from
a practical point of view (10.93 and 11.01 for (5.6) and
(5.7), respectively.

Besides, the closed-loop response obtained using tun-
ing (5.7) is compared with the response given by a PID
controller adjusted, minimizing the ISE index exclu-
sively, i.e., using the basic formulation (5.1-5.2) and
including as additional conditions those given by (3.5)
only. The shaping effect of the constraints (5.5) is
apparent from the plots in Figure 2. This result is
important to exemplify that an optimal ISE tuning, for
instance, does not necessarily yield the desired output
response.

Example 2. Now, let us consider a continuous process
showing unstable open-loop behavior whose dynamics
are represented by the following transfer function
model:

The problem is to find a discrete stabilizing controller
such that the closed-loop response to a unit step change
in the setpoint satisfies the following characteristics: (i)
the system output overshoot, yos, be lower than 25%;
(ii) the error magnitude be lower than 0.05 just 30 s
after a step change in setpoint is made, and (iii) the
steady-state offset be null.

Figure 1. Closed-loop responses of the linear system (5.3) to a
unit step change in setpoint, showing the effect of changing the
controller parameter v under shaping constraints in (5.5).

Figure 2. Closed-loop responses of the linear system (5.3) to a
setpoint change. Solid: using a PID resulting from conditions
specified in (5.5) with v ) 1. Dashed: using a PID with traditional
ISE adjustment.

yus g
∆

exp(szTsett) - 1
) 0.0024 (5.4)

y(k) g r(k) - 0.05, N0 + 30 e k e N

y(k) e r(k), N0 e k e N

y(k) g -0.25, N0 e k e N0 + 30
(5.5)

|(1.22)v + ∑
j)1

v

pj(1.22)v-j| > 0.1

w ) 2, q0 ) 4.368, q1 ) -7.877, q2 ) 3.548

v ) 2, p0 ) 1, p1 ) -1.451, p2 ) 0.451 (5.6)

w ) 2, q0 ) 5.740, q1 ) -10.021, q2 ) 4.345

v ) 1, p0 ) 1, p1 ) -1 (5.7)

Gp(s) ) 1
(10s - 1)2

(5.8)
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Because the open-loop continuous system has a real
right-half-plane pole at sp ) 0.1 and the discrete
implementation introduces a time delay of one sampling
interval (Ts ) 1 s), the system response must have an
overshoot. Middleton14 shows that the overshoot ex-
pected using a stable unity feedback satisfies

which is lower than the maximum specified (yos e 0.25).
Furthermore, the discrete process transfer function

shows in this case an unstable pole at π ) 1.10. Thus,
the convenience of preventing a possible cancellation is
apparent, and this is done by including the constraint
(4.3). Hence, the additional design conditions are written
as follows:

For this case N, N0, and d(k) have the same values as
those adopted for Example 1.

Since n ) m ) 2, then w ) v ) 2 defines the first-
trial structure for the controller. Again, using a gradi-
ent-based optimization algorithm to solve the problem
formulated above, a feasible solution space is found and
the ISE index is minimized to 1.11.

Though these parameter values yield a closed-loop
response satisfying all the constraints defined by the
design conditions, undesired oscillations are observed
as a consequence of excessive movements in the control
variable. Since minimum ISE is not a main feature
required to the adjustment, an additional condition is
included to limit the control energy,

In this case the parameter values obtained are

and the ISE index goes up to 1.33. Figure 3 shows the
output variable in the upper part of the response to the
setpoint change and Figure 4 shows the correspondent
manipulated movements obtained using controllers
(5.11) and (5.13).

An additional comment in regard to the control
variable is that if neither the final control condition nor

(5.12) are included in the formulation, then the result
gives

i.e., the controller shows a rippling pole at π ) -1.0.
5.2. An Approach for Nonlinear Systems. The

effectiveness of the method and philosophy being pro-
posed for designing and tuning discrete controllers is
quite clear from the above results. However, the always
existing model-mismatch problem was not considered
so far. This problem is certainly present any time the
process has nonlinear characteristics and we attempt
to use a linear representation. Assuming that a family
of linear transfer functions is capable to capture a
moderate nonlinearity and if a global multiplicative
uncertainty function is used, the perturbation d in the
basic formulation (5.1-5.2) can be determined by d(z)
) lm(z)G̃p(z)u(z) + d̃(z), where G̃p(z) is the nominal
model and d̃(z) is the load disturbance to be rejected. If
this additional information is used, the resulting con-
troller would provide robustness to the required closed-
loop performance.15 Alternatively and more simply, a
set of models determined in the neighborhood of the
nominal operating point can be directly used.

Figure 3. Closed-loop responses of the open-loop unstable linear
system (5.8) to a unit step change in setpoint showing the effect
of using an energy constraint on the control variable under shaping
const5raints in (5.10).

Figure 4. Control variable correspondent to the closed-loop
responses shown in Figure 3.

w ) 2, q0 ) 240.1, q1 ) -438.4, q2 ) 200.1

v ) 2, p0 ) 1.0, p1 ) 0.0, p2 ) -1.0 (5.14)

yos g spTs ) 0.1 (5.9)

y(k) e 1.25, N0 e k e N

y(k) g r(k) - 0.05, N0 + 30 e k e N

y(k) e r(k) + 0.05, N0 + 30 e k e N
(5.10)

|∑
i)0

w

qi(1.10)w-i| > 0.1

w ) 2, q0 ) 236.39, q1 ) -432.98, q2 ) 197.88

v ) 2, p0 ) 1.0, p1 ) -0.025, p2 ) -0.975 (5.11)

∑
k)1

N

∆u2(k) e 250 (5.12)

w ) 2, q0 ) 110.95, q1 ) -206.42, q2 ) 96.18

v ) 2, p0 ) 1.0, p1 ) -0.536, p2 ) -0.464 (5.13)
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Let us include model uncertainty in the basic formu-
lation of section 5.1, for the case in which the process
system is not linear. Suppose the uncertainty set Ω is
defined by a polytope (see Appendix I) made of a set of
difference equations. The basic problem formulation is
now written as follows:

where l ∈ [1, M] stands for a vertex model and M is the
number of models being considered.

The above problem consists of the original restrictions
(4.1) and (4.2) for each model, so that the mathematical
program has M (3N - K) + 1 restrictions in which the
controller parameters are the independent variables to
optimize. In this case, the resulting controller stabilizes
the closed loop and gives the best possible performance,
satisfying all the models simultaneously, which is
equivalent to saying that the solution to this problem
gives a controller that provides robust performance to
the closed-loop system.5

Example 3. Let us consider the problem of controlling
a continuously stirred tank reactor (CSTR) in which an
irreversible exothermic reaction is carried out at con-
stant volume (see Appendix III). This is a nonlinear
system previously used by Morningred et al.16 for testing
predictive control algorithms. Figure 5 shows the dy-
namic responses to the following sequence of changes
in the manipulated variable qc: +10, -10, -10, and +10
L min-1, where the nonlinear nature of the system is
apparent.

Four continuous linear models are determined using
least-squared procedures to adjust the composition
responses to the above four step changes in the ma-
nipulated variable. Notice that those changes imply
three different operating points corresponding to the
following stationary manipulated flow rates: 100, 110,
and 90 L min-1. Table 1 shows the four process transfer
functions obtained:

They define the polytopic model associated with the
nonlinear behavior in the operating region being con-
sidered. This representation should be associated with
the M vertex models in the above problem formulation.

Like in Morningred’s work, the sampling time period
was fixed in 0.1 min, which gives about four sampled-
data points in the dominant time constant when the
reactor is operating in the high-concentration region.
Then, four fourth-order discrete linear models are used
for representing the nonlinear reactor using the polytope
idea. These models are obtained by z-transforming the
continuous transfer functions and assuming a zero-
order-hold device is included.

The discrete controller adjusted in this case is (3.4),
i.e., v ) 1 is arbitrarily adopted and since the zero-offset
condition is included in the controller structure from the
beginning (p0 ) 1, p1 ) -1), the fourth constraint in
(5.16) becomes redundant. Since n ) 4 and m ) 3 in all
the vertex models, an independent one-to-one closed-
loop pole location cannot be made for them, but this is
not mandatory from a practical point of view. In this
application we stress the fact that the reactor operation
becomes very sensitive once the manipulated variable
exceeds 113 L min-1. Hence, assuming a hard constraint
is physically used on the coolant flow rate at 110 L
min-1, an additional restriction for the more sensitive
model (model 1 in Table 1) must be considered for the
deviation variable u(k):

This assumes that the nominal absolute value for the
manipulated variable is around 100 L min-1 and that
the operation is kept inside the polytope whose vertices
are defined by the linear models. The constraint (5.17)
is then included in (5.16).

Notice in this case that it is the polytope or convex
hull that must be shaped along the time being consid-
ered. Hence, the objective function necessary for driving
the adjustment must consider all the linear models
simultaneously. At a given time instant and operating
point, there is not clear information about which model
is the convenient one for representing the process. This
is because it depends not only on the operating point
but also on which direction the manipulated variable
is going to move. The simpler way to solve the problem

Figure 5. Open-loop responses of the CSTR concentration to step
changes in the coolant flow rate qc.

u1(k) e 10 (5.17)

min
qi,pj

f[r(k), yl(k), ul(k)] ∀ k ∈ [1, N], i ∈ [0, w],

j ∈ [1, v] (5.15)

s.t.

yl(k) ) -∑
j)1

n

ajl yl(k - j) + ∑
i)1

m

bilul(k - i - kdl) + d(k),

∀ k ∈ [1, N]

ul(k) ) -∑
j)1

v

pjul(k - j) + ∑
i)1

w

qi[r(k - i) - yl(k - i)],

∀ k ∈ [1, N]

ul(N) ) ul(N - 1)

∑
j)1

v

pj ) -1

yl(0) ) 0

ul(0) ) 0 (5.16)

CA(s)

qc(s)
) GPl(s), l ) 1-4
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is by proposing the general form

where the γl > 0 are arbitrary weights and fl is the
individual discrete ISE function for linear model l.
Observe that coefficients γl allow the user to emphasize
or not the approach to the most sensitive model, for
instance. Since in this application we found no reason
to differentiate the models, we adopt γi ) 1, ∀ i ∈ [1,
M]. Hence, the objective function for the convex hull in
this case becomes

where the time span is defined by N ) 100.
The problem described to this point has a rapid

numerical solution using an algorithm based on the
gradient method. Four q parameters (w ) 3) are needed
basically to satisfy the combined design requirement
expressed by (5.17), the no-offset condition and that sort
of settling time imposed by the final control condition.
The controller parameters obtained using the polytopic
model in the basic-formulation problem are the follow-
ing:

Morningred et al.16 have previously worked with this
reactor model for testing different alternatives of pre-
dictive controllers and confronted the results with the
responses obtained using a PI controller whose param-
eters were adjusted by the ITAE criterion; thus, we used
the same settings: the gain value, 52 L2 mol-1 min-1

and the integration time constant, 0.46 min. The
simulation tests are also similar to Morningred’s work
and consist of a sequence of step changes in the
reference value and a sequence of load changes in the
feed stream concentration and the refrigerant inlet
temperature.

Figure 6 shows the results obtained when comparing
the discrete controller with the mentioned PI. The
setpoint was changed in intervals of 10 min from 0.09
mol L-1 to 0.125, returns to 0.09, then steps to 0.055,

and returns to 0.09 mol L-1. The superior performance
of the discrete controller is obtained through a vigorous
initial movement in the manipulated variable, which
however does not overcome the 110 L min-1 limit as
shown in Figure 7.

Figures 8 and 9 show the results obtained when
comparing the discrete controller with the mentioned
PI under load changes. For testing the disturbance

Table 1. Vertices of the Polytope Model

step change model obtained

model 1

qc ) 100, ∆qc ) 10 GP1
(s) ) -0.0008s3 + 0.033s2 - 0.018s + 0.67

s4 + 1.92s3 + 30.35s2 + 21.49s + 153.7
e-0.5s

model 2

qc ) 110, ∆qc ) -10 GP2
(s) )

(-1.3 × 10-5)s3 + 0.0065s2 + 0.354s + 3.35

s4 + 10.5s3 + 101.37s2 + 334.89s + 834.6
e-0.5s

model 3

qc ) 100, ∆qc ) -10 GP3
(s) )

(6.7 × 10-6)s3 - 0.0055s2 + 0.652s + 9.35

s4 + 28.45s3 + 324.67s2 + 1737.15s + 3718.6
e-0.5s

model 4

qc ) 90, ∆qc ) 10 GP4
(s) )

(-1.07 × 10-4)s3 + 0.0256s2 + 0.143s + 0.457

s4 + 9.58s3 + 49.69s2 + 128.05s + 178.4
e-0.5s

Figure 6. Closed-loop responses of the CSTR concentration to a
sequence of step changes in the setpoint using a discrete controller
with a one-side constraint in the manipulated movements and a
PI controller adjusted with ITAE.

Figure 7. Manipulated movements corresponding to the re-
sponses in Figure 6.

f ) ∑
l)1

M

γl fl (5.18)

f ) ∑
l)1

M

∑
k)1

N

[r(k) - yl(k)]2 (5.19)

q0 ) 272.98, q1 ) -494.05, q2 ) 222.94,
q3 ) 17.09 (5.20)

Ind. Eng. Chem. Res., Vol. 38, No. 12, 1999 4785

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
 &

 J
. M

ar
ch

et
ti;

 "
Sh

ap
in

g 
tim

e-
do

m
ai

n 
re

sp
on

se
 w

ith
 d

is
cr

et
e 

co
nt

ro
lle

r"
In

du
sr

tia
l &

 E
ng

in
ee

ri
ng

 C
he

m
ic

al
 R

es
ea

rc
h.

 V
ol

. 3
8,

 p
p.

 4
77

7-
-4

77
89

, 1
99

9.



rejection the following sequence of changes are made:
first the feed stream concentration changes from 1 to
1.05 mol L-1 and 10 min later the refrigerant temper-
ature goes down 10 °C; then, the feed concentration and
refrigerant temperature returns to the original value,
with a 10 min difference between them. A better
disturbance rejection capability is observed in the
discrete controller, adjusted accordingly to the procedure
suggested in this paper.

6. Conclusions

An efficient method for designing and tuning discrete
controllers for case-specific design conditions is pre-
sented in this article. It basically consists of formulating
an optimization problem where the closed-loop desired
behavior is represented by time-domain characteristics
that are mathematically translated into limiting con-
straints. The design philosophy emphasizes the impor-
tance of performance characteristics different from those
traditionally specified by objective functions like ISE,
and consequently suboptimal solutions are accepted if
those characteristicssspecified by constraint equationss
are satisfied. The basic formulation assures closed-loop
stability for open-loop stable and minimal phase sys-
tems; those cases presenting an unstable pole or a zero
outside the unit circle need an extra constraint to
guarantee internal stability.

The full potential of this tuning method comes form
the possibility of including as many controller design
conditions as desired, as long as they do not create
conflicting requirements. Furthermore, if modeling
uncertainties due to slow time-variant or nonlinear
systems can be described, a natural extension of the
method allows the controller to be adjusted for providing
robust closed-loop performance. The use of polytopic
representations to deal with uncertainties have been
preferred in this work.

The results obtained by simulating simple linear
systems and a continuously stirred tank reactor (CSTR)
with important nonlinearities show the effectiveness of
the proposed design and tuning method.

Appendix I. Multiple Models for Bounding
Nonlinear Systems

Different ways of describing the uncertainty associ-
ated with modeling real dynamic systems are being
explored in robust control theory. A very frequent
approach consists of defining this uncertainty in the
frequency domain based on a family of linear time-
invariant (LTI) models.15 An alternative time-domain
realization for this paradigm consists of determining a
set of linear time-invariant models in different operating
points for a nonlinear system, or at different times for
varying linear systems. These multimodels have re-
ceived the name of polytopic models5,10 and permit the
approximation of a nonlinear or varying system through
a combined linear representation. For instance, in the
case of a discrete state variable representation where
u(k) ∈ R is the control input, x(k) ∈ Rn is the state of
the plant and y(k) ∈ R is the plant output,

such that

where Ω is the set,

and where “Co” refers to the convex hull defined by the
linear models [Ai, Bi], i ) 1, 2, ..., M. In other words, if
[A, B] ∈ Ω, then for some nonnegative values of λ1, λ2,
..., λM, summing to 1, we can write

It is possible to demonstrate that any trajectory of the
original nonlinear system is also a trajectory of (6.1) for
some linear time-invariant representation belonging to
Ω.12 Therefore, it is reasonable to assume that any
analysis and design method applied to the polytopic
representation can be applied to the real system.

Since a complete equivalence exists among discrete
state-space representations and difference equations,8

Figure 8. Closed-looip responses of the CSTR concentration to a
sequence of load changes using the same controllers as that in
Figure 6.

Figure 9. Manipulated movements corresponding to the re-
sponses in Figure 8.

x(k + 1)) A(k)x(k) + B(k)u(k),

y(k)) Cx(k) (6.1)

[A(k), B(k)] ∈ Ω (6.2)

Ω ) Co{[A1, B1], [A2, B2], ..., [AM, BM]} (6.3)

[A(k), B(k)] ) ∑
i)1

M

λi(k)[Ai, Bi] (6.4)
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the above multimodel can also be written as follows:

where l ) 1, 2, ..., M identifies the vertices of the
polytope.

Appendix II. About the Number of Controller
Parameters

Let us assume the discrete model of the process is
represented by (3.2) and the discrete controller is given
by (3.1). Then, the closed-loop characteristic equation
for the system is

where h is the degree of the closed-loop characteristic
equation. Employing the formula of polynomials prod-
uct, we have

where the degree h is given by

and Ri and âi are given by the Cauchy formula:

Replacing (6.7) and (6.8) in (6.6), we obtain the full
expression of the closed-loop characteristic equation.
The coefficients gi determine a system of linear equa-
tions where there are w + v + 1 unknownssthe
controller parameterssand if the no-offset condition
(3.3) is included, there are h + 1 equations. Since the
system equation matrix is made up by two Toeplitz
submatrixes (one for the qi and the other for the pi), the
rank F is given by

Therefore, the equations system has a solution if and
only if w + v g h. If h ) n + v, it requires w g n and v
g m + kd. If h ) w + m + kd, the same result is obtained.
In any case, the equality means that the controller
provides just enough degrees of freedom as to arbitrarily
locate all the closed-loop poles. Greater values than
those indicated by the equalities might be necessary to
achieve demanding performances.

Appendix III. Analysis of the Final Control
Condition

The discrete controller in (3.1) may be equivalently
written using the general state-space representation,

i.e.,

where xc ∈ Rv, e ∈ R, and u ∈ R.
Assuming load change d(k) ) 0 for ∀ k, and the time

delay kd ) 0 for simplicity, the process model can also
be written as

where x ∈ Rn is the state of the plant and y ∈ R.
The expressions (6.9) and (6.10) may be combined

after substituting e(k) by

and rearranged such that the whole closed-loop system
is written in the form

where

Notice that the system stability is dominated by the
eigenvalues of the system matrix AS. Now, let us
consider a change in the control variable at the time
instant k + 1:

From (6.12) we can write

Substituting X(k + 1) and rearranging

Given the initial condition X(0) and the input r(i), ∀
i ∈ [0, k], the solution to the first equation in (6.12) is

xc(k + 1) ) Acx
c(k) + Bce(k)

u(k) ) Ccx
c(k) + Dce(k)

(6.9)

x(k + 1) ) Ax(k + 1) + Bu(k)

y(k) ) Cx(k)
(6.10)

e(k) ) r(k) - y(k)

) r(k) - Cx(k)
(6.11)

X(k + 1) ) ASX(k) + BSr(k)

y(k) ) CYX(k) (6.12)

u(k) ) CUX(k) + DUr(k)

X(k) ) [x(k)
xc(k) ], AS ) [A-BDcC BCc

-BcC Ac ], BS ) [BDc
Bc ]

CY ) [C 0], CU ) [-DcC Cc], and DU ) [Dc]

∆u(k + 1) ) u(k + 1) - u(k) (6.13)

∆u(k + 1) ) CU[X(k + 1) - X(k)] +
DU[r(k + 1) - r(k)] (6.14)

∆u(k + 1) ) CU[(AS - I)X(k) + BSr(k)] +
DU[r(k + 1) - r(k)] (6.15)

X(k) ) AS
k X(0) + ∑

i)1

k

AS
i-1BSr(k - i) (6.16)

yl(k) ) -∑
j)1

n

ajl yl(k - j) + ∑
i)1

m

bilul(k - i - kdl) (6.5)

{1 + ∑
j)1

n

aj z-j}{1 + ∑
j)1

v

pj z-j} + z-kd∑
i)0

w

qiz
-i∑

i)1

m

biz
-i )

∑
i)0

h

giz
-i ) 0

1 + ∑
i)1

n+v

Riz
-i + z-kd ∑

i)1

w+m

âiz
-i ) 1 + ∑

i)1

h

giz
-i (6.6)

h ) max(n + v, w + m + kd)

Ri ) ∑
j)1

i

ai-j pj, i - j e n, j e v (6.7)

âi ) ∑
j)0

i

bi-j qj, i - j e m, j e w (6.8)

F ) min(h + 1, w + v + 1)
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Hence, the control increment in (6.15) can be written
now as

Assuming a setpoint change from 0 to rj at the time
instant k ) 0, and X(0) ) 0 for simplicity, the last
expression becomes

Recalling a property of geometric progressions, now we
can write

Substituting (6.19) into (6.18) and rearranging gives

Now, the constraint ∆u(k + 1) ) 0 included in the
proposed tuning problem formulation may be analyzed
considering an arbitrary accuracy ε , 1, such that it is
satisfied if

For a better visualization of the effect of (6.21) on the
location of closed-loop characteristic values, let us take
a conservative condition using a property of the 2-norm,
i.e.,

or, since CU, BS, and rj are different from zero

where M is a positive quantity. Observe that if (6.23a)
is satisfied for the sampling instant k, it will also verify
for all subsequent sampling instants. This also implies

Because ε is of an order lower than 10-6 in most
optimization software packages, it is most probable that
Mε < 1 for most practical cases. Hence, the roots are
enclosed by a circle whose diameter increases asymp-
totically up to 1 when k f ∞. Figure 10 shows the effect
of k on the closed-loop pole locations for the case given
in Example 1.

Furthermore, because AS is R(n+v)(n+v), assuming ε )
0 requires AS to be at least nilpotent of order k ) (n +
v) and from (6.24), it also means

This gives the lower bound n + v for parameter N,
where n + v is the dimension of the process-plus-

controller system without pole-zero cancellation (we
assume time delay kd ) 0 in this appendix).

Appendix IV. The Nonlinear Reactor Model

The model of a continuous reactor where an irrevers-
ible exothermic reaction takes place has been selected
for testing the proposed design and tuning method.

The reaction is

and occurs in a constant volume reactor cooled by a
single coolant stream. The operation is modeled by the
following equations:

The nominal parameter values for this model appear
in Table 2. The objective is to control the measured
concentration of reactive A at the outlet stream, CA, by

∆u(k + 1) ) CU[(AS - I)AS
kX(0) +

(AS - I)∑
i)1

k

AS
i-1BS r(k - i) + BS r(k)] +

DU[r(k + 1) - r(k)] (6.17)

∆u(k + 1) ) CU[(AS - I)∑
i)1

k

AS
i-1BSrj + BSrj] (6.18)

∑
i)1

k

AS
i-1BSrj ) (I - AS)-1(I - AS

k)BSrj, AS * I (6.19)

∆u(k + 1) ) CUAS
kBSrj (6.20)

|∆u(k + 1)| e ε (6.21)

|CUAS
kBS| e ||CU|| ||AS||k||BS|| e

1
|rj|ε (6.22)

||AS||k e Mε (6.23a)

max
i

|λi(AS)| e ||AS|| e (Mε)1/k (6.24)

λi(AS) ) 0, ∀ i ∈ [1, n + v] (6.25)

Figure 10. Effect of the parameter Nsof the final control
conditionson the closed-loop pole locations.

Table 2. Nominal CSTR Parameters Values

parameter nomenclature value

measured CA 0.1 mol L-1

concentration
reactor temperature T 438.5 K
coolant flow rate qc 103.41 L min-1

process flow rate q 100 L min-1

feed concentration CA0 1 mol L-1

feed temperature T0 350 K
inlet coolant Tc0 350 K

temperature
CSTR volume V 100 L
heat-transfer term hA 7.0 × 105 cal min-1 K-1

reaction rate k0 7.2 × 1010 min-1

constant
activation energy E/R 1.0 × 104 K-1

heat of reaction ∆H -2.0 × 105 cal mol-1

liquid densities F, Fc 1.0 × 103 g L-1

specific heats Cp, Cpc 1.0 cal g K-1

A f B

dCA(t + kd)
dt

)
q(t)
V

[CA
0(t) - CA(t + kd)] -

k0CA(t + kd) exp[ -E
RT(t)]

dT(t)
dt

)
q(t)
V

[T0(t) - T(t)] -
k0∆H

Fcp
CA(t + kd) ×

exp[ -E
RT(t)] +

Fccpc

FcpV
qc(t){1 - exp[ -hA

qc(t)Fccpc]} ×
[Tco(t) - T(t)]

4788 Ind. Eng. Chem. Res., Vol. 38, No. 12, 1999

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
 &

 J
. M

ar
ch

et
ti;

 "
Sh

ap
in

g 
tim

e-
do

m
ai

n 
re

sp
on

se
 w

ith
 d

is
cr

et
e 

co
nt

ro
lle

r"
In

du
sr

tia
l &

 E
ng

in
ee

ri
ng

 C
he

m
ic

al
 R

es
ea

rc
h.

 V
ol

. 3
8,

 p
p.

 4
77

7-
-4

77
89

, 1
99

9.



manipulating the coolant flow rate qc. The concentration
has a measured time delay of kd ) 0.5 min. The
nonlinear characteristics are clearly appreciated in
Figure 5 where the responses to equal amplitude step
changes are shown.
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