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Abstract - It is well known that most laryngeal
diseases and vocal fold pathologies cause significant
changes in speech. Different procedures of clinical
application for laryngeal examination exist, being all
of them of invasive nature.

In the evaluation of quality of speech,
acoustic analysis of normal and pathological voices
have become increasingly interesting to researchers
in laryngology and speech pathologies because of its
nonintrusive nature and its potential for providing
quantitative data with reasonable analysis time.

In this article, the implementation of a system
for automatic detection of laryngeal pathologies
using acoustic analysis of speech in the frequency
domain is described. Different processing techniques
of speech signal are applied: cepstrum, mel-
cepstrum, delta cepstrum and delta mel-cepstrum,
and FFT. The obtained data feed to neural networks,
which classify the voice patterns. Two types of
neural network were examined: a system trained to
‘distinguish between normal and pathological voices
(no matter the pathology); and a more complex
system, trained to classify normal, bicyclic and
rough voice.

High percentages of recognition are obtained,
being the cepstral analysis the processing technique
that achieves the highest actings. This indicates that
this analysis type provides a characterization of the
voice in pathological condition in a direct and
noninvasive way. The obtained results make
promissory the application of this alternative as a
support tool for the diagnosis of pathologies of the
vocal system.

Keywords - acoustic analysis, laryngeal pathologies,
neural networks, speech

I. INTRODUCTION

It is well known that the presence of pathologies in
the vocal folds causes significant changes in the normal
vibratory patterns of they, that which impacts in the
resulting quality of the voice production.

The problems in the production of the voice can
arise from [1,2]: 1) functional disorder (due to the abuse
or wrong use of the anatomical and physiologically
intact vocal system), which are corrected by means of
voice therapy; or 2) laryngeal pathologies (nodules of
vocal folds, polyps, ulcers, carcinomas and paralysis of
the laryngeal nerve), which can be corrected by means
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of voice therapy, surgery and, in some cases,
radiotherapy.

Diverse routine procedures exist for examination
of the larynx with clinical or investigation purposes,
which include flexible and rigid fiberscopic
laryngoscopy  (examination with a fiber-optic
instrument), video stroboscopy (strobe illumination of
the larynx, useful for the visualization of movements),
electromyography  (indirect observation of the
functional state of the larynx) and videofluoroscopy
(radiographic technique in which the patient ingests

- mouthfuls of a radio-opaque substance to assess the

swallowing function).

In the last years the interest for the acoustic
analysis of normal and pathological voices as alternative
method of diagnosis has grown. This type of analysis
demonstrates advantages on the methods of current
examination due to its noninvasive nature and to its
potential to provide quantitative data about the clinical
state of the functions of the larynx and the vocal tract,
with appropriate times of analysis. -

In the field of the Automatic Recognition of
Pathologies of the Vocal System diverse architectures of
artificial neural networks (ANNSs) have been used, as
likewise mathematical models of the vocal tract and the
larynx [3,5].

The ANN is excellent classification system and it
specialize in working with noisy, incomplete,
overlapped data, etc. The recognition of patterns of
pathological voices is a classification task of data that
has all these characteristics, making the ANN an
attractive alternative to the described approach [6].

II. MATERIALS AND METHODS

The patterns for training the ANNs were obtained
from recordings of people’s voices with normal fonation
and patients with pathologies of the vocal system. Each
signal is a recording of the sustained phonation of a
vowel or a vocalic phoneme. The use of a vocal type
stimulus has certain advantages. First, the isolated
vowels are used in the routine of clinical practice for
evaluation of the quality of pathological voices. Second,
the objective measures are relatively direct, compared
with the continuous speech. Also, they allow an easy
and effective separation among normal and pathological
voices [3]. The study of the continuous speech is a
superior objective and an evident next step. However,
first valid results are required based on stimuli of
smaller complexity.
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The speech signals of normal voice were obtained
from the TIMIT continuous speech corpus [7]. From the
sentence SA1.WAYV, of the original group of sentences
of training, the signal portions were extracted that
contain the phoneme /aa/. When creating the different
sets of patterns, the speakers were selected at random
among the dialectical regions DR1 at DR8, in such a
way of having represented a wide variety of dialects and
not to repeat the patterns for the training of different
nets.

Signals of pathological voice were obtained from a
library of recordings of voices taken in VA Hospital
(West L.A.) by investigators of the Speech Processing
and Auditory Perception Laboratory (SPAPL), UCLA.
The signals were recorded with a miniature microphone
mounted on the head AKG C410, placed to 4 cm of the
patient’s lips. The signals were gone by a lowpass filter
of 8 Khz, digitized directly to 20 Khz and sampled to 10
Khz. A segment of 1 second was extracted of the half
portion of each recording [8].

For the purpose of this work, the signals were
resampled to 16 Khz, to obtain the same temporal
reference that the signals of TIMIT.

The classification of the signals was carried out by
the mentioned investigation team, being contained in the
following categories: rough and rough-breathy: 11 files,
bicyclic (also well-known as diplophony): 8, rough-
bicyclic: 1, strained-breathy: 2, and strained-rough: 2.

For the extraction of patterns, a mobile window of
256 samples was used, with overlap of 128 samples. A
window of Hamming was applied in each segment, and
then the patterns were obtained extracting the first 16
cepstral coefficients [4]. Each pattern was completed

with the information of 1 and 0 as it was the activation .

in the desired outputs of the ANN.

Other used processings were: Cepstra in Mel scale
(16 coefficients), Delta Cesptra [4] and Delta Mel
Cepstra: (both of 32 coefficients) and FFT (128
coefficients extracted).

In figure 1 a segment of signal of normal voice and
pathological voice is shown, where the temporal
differences of both waves can be appreciated, while in
figure 2 the spectra of the same ones are observed. A
difference that is appreciated at first sight is the
appearance of components of high frequency in the
pathological case.

Although the patterns to classify are dynamic, they
have stationary nature because the samples were taken
of vocalic phonemes pronounced in sustained form, like
it was mentioned previously. This makes unnecessary
the use of neuronal networks with temporal delays
(TDNN) [9,10,11), for what in this work a Multilayer
Perceptron (MLP) of one hidden layer is used. To train
the MLP the backpropagation algorithm was used [9].
The inputs were normalized for the pattern’s dimension
in an independent form. The training stopped in the
generalization pick measured with regard to the.test file.

For each classifier with a given signal processing,
the optimal quantity of neurons is looked for in the
hidden layer; this is, the architecture of the network that
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obtains the best results in classification and be not
excessively big. This quantity is deduced based on two
parameters: 1) patterns percentage not well classified in
test, in function of training epoch; and 2) learning index
for trained nets: average of successes for each class,
among speaking masculine and feminine.

Figure I: temporal signals corresponding to the vocalic phoneme
/aa/. Up: normal voice. Below: paihological voice.

Figure 2:magnitude spectra corresponding to the temporal
segments of Figure 1.

For the experiments with Cepstra and Mel Cepstra,
the number of neurons in the hidden layer was fixed in
50 after carrying out a serie of experiments which
results are shown in the figure 3. In the figure 4 it is
shown, by an example of the learning index, the resuits
of the calculation of this index for nets of two classes
trained with patterns of Cepstra. For the ANNs trained
with patterns that have the delta attached, the number of
neurons in the hidden layer was fixed in 80. Because the
patterns obtained by means of FFT possess dimension
128, the nets used for their classification possessed
different quantity of neurons in the hidden layer that
was fixed in 100 for a similar method.

Two types of different ANN were worked: one
trained to distinguish among normal and pathological
voice (without caring the pathology); and another to
distinguish among normal, bicyclic and rough voice.

Once chosen the ideal architecture, each ANN was
trained three times with the same patterns, changing the
seed of aleatory initialization, being reported the best in
the results.

III. RESULTS

In the tables 1 and 2, the results of the
experiments carried out for the nets of two and three

2370




classes respectively are presented. The percentage of
well classified frames for the file of training (TRN) and
test (TST) is shown.
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Figure 4: learning index for ANNs of two classes trained with cepstral
patterns.

TABLE 1: RESULTS FOR THE TWO CLASSES ANNS

% WELL CLASSIFIED FRAMES
TRN TST
CEPSTRA 96.30 91.30
MEL CEPSTRA 87.05 83.84
FOURIER 61.00 63.50

TABLE 2: RESULTS FOR THE THREE CLASSES ANNS

% WELL CLASSIFIED FRAMES

TRN TST

CEPSTRA 91.43 81.91

MEL CEPSTRA 81.74 78.45
DELTA CEPSTRA 92.46 87.73
DELTA MEL CEPSTRA 80.87 77.41
FOURIER 48.37 46.86
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In [12] they worked with patterns constituted
by parameters obtained from the cepstra (jitter, shimmer
and a new parameter designed by the investigators,
HNRR -harmonics to noise ratio from residuals-), and
two neuronal networks of two classes as the
classification system. The first network carry out the
classification among normal and pathological voice, and
then the pathological patterns are passed through
another network that classifies the voice according to
the pathology. The results obtained in that work indicate
a percentage of correct classification of 90%. They also
say it was not possible to distinguish the three classes at
such high correctness using a single neural network.

In [3], the investigators use a set of acoustic
parameters to screening laryngeal diseases by means of
modified SOM classifiers [13]. The overall
classification accuracy was 93.5%.
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To understand the classification task that was
carried out by the neuronal networks, it was realized an
analysis of the first 3 formants of the speech signals
used in the experiments with ANN of 3 classes. This
analysis want to explain the learning facility for nets
with minimum architecture (3 to 5 neurons in the hidden
layer), and the good results obtained in classification.
These values were obtained of the spectral picks of the
20 poles LPC (Linear Predictive Coding), preprocessed
with a Hamming window of 1024 samples. The
obtained results will be discussed in the next section.

The averages of speakers of both sexes were
calculated to emulate the task that it is executed by
neural nets, which classify input patterns only for the
quality of the voice, without making distinction of the
speaker's sex. The following figures show these values

in the usual form of representation: the formants planes.
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Figure 6: FI-F2 plane for a:r‘a';e formants of masculine and
feminine voice of each output class.
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4. DISCUSSION AND CONCLUSIONS

In this paper an alternative for the automatic
diagnosis of laryngeal pathologies is presented, based
on the extraction of acoustic characteristics of speech
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signals and the classification of these patterns by means
of static neural networks.

As it can be appreciated of the tables 1 and 2,
the cepstral analysis is the processing that achieves the
highest performance. This is due to that the information
that allows to carry out the distinction among
pathologies is in the envelope of the magnitude
spectrum of the signals, which is contained in the first
cepstral coefficients.

In the case of Mel Cepstra, the integration per
bands can affect this information, while in the case of
Fourier the increase in the quantity of dimensions of the
patterns makes more difficult the task of training the
nets and possibly prone to fall in local minima. The
delta of each dimension of the patterns calculated by
means, of cepstra and mel cepstra, did not report
improvements as for percentages of successes in
classification for networks with the same number of
neurons. in the hidden layer. This is owed partly, to the
fact that the input patterns have double longitude than
the initial ones; while, on the other hand, it should be
considered that being the input patterns belonging to
sustained vocalic sounds, practically static patterns are
obtained'in the course of time, what subtracts influence
to the information from the delta to the classification
task. However, this parameter should be taken in
consideration when the patterns are calculated for
continuous speech.

The separation task of the input patterns into
three classes gave as a result a smaller- performance due
to a bigger difficulty of this task. However, the
possibility of training different nets for each pathology
exists, what would allow to increase the total number of
classes without losing too much precision, and to add
pathologies without re-training the system as well.

The diagrams of formant spaces reveal that, for
the analyzed parameters, a great separation of the
formant averages exists, which is translated into a
bigger facility of the neural networks to divide the space
of solutions. These results confirm the exposed
argument about the easiness of division of the input
patterns space with relatively few neurons in the hidden
layer, which are those in charge of adding the limits of
decision.

It seemed also possible to use only three
parameters as input to the classifiers (F1, F2 and F3).
Nevertheless, it should be noticed the complexity of the
diagrams as for the maximum deviations for speakers of
the same class. This complexity increases when adding
pathologies to the system, reason why it is justified the
use . of cepstral patterns that represent the whole
spectrum of the speech signal in a small number of
coefficients.

The results obtained in classification makes
promissory the application of this alternative as a
support tool for the diagnosis of pathologies of the vocal
system. In addition, it is possible for each medical
professional to make his own database with pathologies
that are of his interest or whose incidence is bigger in its
influence area.
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Among the applications to be explored with
this tool is the possibility to not only carry out a
diagnosis or qualitative analysis, but also a quantitative
analysis based on the percentage of well classified
frames for a set of patterns of unique class. This would
allow, for example, to follow the evolution of some
rehabilitation therapy or medication.

A natural step to advance in the study and
application of this technique is the use of continuous
speech as input to the classification system, instead of
sustained vocalic phonemes. This would allow the
patient to have more naturalness to record the speech
signal, since the continuous speech allows to vary the
pitch of the emitted sounds, making more flexible the
study. In the classification systems for continuous
speech, the architectures of dynamic neuronal networks
are involved.
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