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Abstract: In the paper the problem of detecting and isolating multiple faults for 

nonlinear systems is considered. A strategy of state filtering is derived in order to  detect 

and isolate multiple faults which appear simultaneously or sequentially in a discrete 

time nonlinear systems with unknown inputs. For the considered system for which a 

fault isolation condition is fulfilled the proposed method can isolate p simultaneous 

faults with at least p+q output measurements, where q is the number of unknown inputs 

or disturbances. A reduced output residual vector of dimension p+q is generated and the 

elements of this vector are decoupled in a way that each element of the vector is 

associated with only one fault or unmeasured input. Copyright © 2003 IFAC 

 
Keywords: analytical redundancy, dynamic observers, directional residuals, unbiased 

estimation, state-dependent models. 

 
 
 
 

 

1. INTRODUCTION 
 

The model-based approach to fault detection and 

isolation has been subject of intensive research 

during the last two decades. The procedure of using 

model information to generate additional signals 

which are compared with the plant measurements is 

known as analytical redundancy. Several survey 

papers on fault detection theory based on analytical 

redundancy were written by Frank (1990, 1991), 

Gertler (1988, 1991, 1995) and Patton and Chen 

(1991). 
 

To enhance the isolability of the faults, the 

directional properties of the residuals in response to a 

particular fault has been used. The fault detection 

filter, a special dynamic observer that generates 

directional residuals, was first developed at the 

beginning of the seventies (Beard, 1971; Jones, 1973). 

After that the problem was studied by several authors 

employing different approaches (Massoumnia, 1986; 

White and Speyer, 1987; Park and Rizzoni, 1994.a 

and Liu and Si, 1997). 
 

Park and Rizzoni (1994.b) extended this approach to 

stochastic linear systems. After an eigenstructure 

assignment, the remaining degrees of freedom in the 

design of the filter’s gain are used to minimise the 

effect of noises on the output residuals. The obtained 

fault detection filter can be viewed as a special 

structure of the Kalman filter with an additional 

constraint of directionality on the output residuals. 

The problem of multiple faults was not studied in this 

work. Later, Keller (1999) developed a fault isolation 

filter for the linear stochastic systems with multiple 

faults and unknown inputs. This filter is a particular 

form of the Kalman filter that can isolate q faults 

given at least q output measurements. 
 

This paper extends the approach proposed by Liu and Si 

(1997) to non-linear systems with unmeasured inputs 

and multiple faults using state-dependent coefficient 

parametrization. This methodology transfers the 

nonlinear system into a quasi linear structure. Then, the 

columns of the fault detectability matrix are assigned as 

an eigenvectors of the filter’s transition matrix and the 

remaining freedom of design is used to fix the dynamics 

of the filter. If there is noise, they are used to minimise 

its effect on the generated residuals. The proposed 

strategy can also be applied in the presence of unknown 

inputs or disturbances robustifying the detection and 

isolation of multiple faults. The obtained fault isolation 

filter is very similar to the predictor-corrector structure 

of the filters for nonlinear systems. 

 

The resulting filter is based on the design of three gains: 

two to isolate the fault and the remaining one for the 

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
 &

 A
. D

ut
ka

; "
Fi

lte
r 

fo
r 

D
et

ec
tin

g 
an

d 
Is

ol
at

in
g 

Fa
ul

ts
 f

or
 a

 n
on

lin
ea

r 
sy

st
em

"
Sa

fe
 P

ro
ce

ss
es

 2
00

3.
 ju

l, 
20

03
.



estimator dynamic. The isolation gains are designed 

such that one gain is orthogonal to the fault detectability 

matrix, such that the effect of faults is decoupled, and 

the other is designed to assign the effect of each fault to 

only one residual.  
 

The paper is organized as follows. Section 2 

introduces the state-dependent model, which will be 

used to develop the detection and isolation filter. In 

Section 3 the fault isolation and estimation problem 

is presented. After that, the observer design is 

addressed in Section 4. Section 5 gives a numerical 

example. The results obtained by the proposed 

estimator is compared with different techniques 

previously analyzed in the literature. In Section 6 

conclusions indications of future research are given. 
 

 

2. STATE DEPENDENT COEFFICIENT FORM 
 

A wide class of non-linear systems can be 

represented by the following non-linear state space 

model: 
 

( ) ( )
( )

( 1) ( ) ( ) ( ),

( ) ( ) .

x k f x k g x k u k

y k h x k

+ = +

=
 (1) 

 

This non-linear state space model can be re-written 

into the following State Dependent Coefficient 

(SDC) form with the state dependent matrices: 
 

( ) ( )
( )

( 1) ( ) ( ) ( ) ( ),

( ) ( ) ( ).

x k A x k x k B x k u k

y k C x k x k

+ = +

=
 (2) 

 

The state dependent matrices in (2) can be 

formulated in an infinite number of ways (Yun et al., 

1996). The choice of the proper form of state space 

matrices depends on a particular case and this may be 

optimised for the considered model of the non-linear 

system. As stated in Mracek et al (1996), SDC 

parametrization may be used to enhance the filter’s 

performance, avoid singularities or loss of 

observability. The choice of the state dependent 

representation should therefore guarantee 

observability of the system (2) in linear sense. That 

is, the following condition should be fulfilled: 

( ) ( ){ }( ) , ( )( ) C x k A x kx k∀  is pointwise observable (Mracek 

et al, 1998). 
 

For simplicity of the notation, the following notation 

is introduced for the state-dependent matrices: 
 

( ) ( ) ( ), , ,( ) , ( ) , ( ) .x k x k x kA A x k B B x k C C x k= = =  

 
 

3. PROBLEM FORMULATION 
 

To consider the model–based approach, a mathemati-

cal model is developed using a SDC parameterization 

of the non-linear system. For fault diagnosis and 

control purposes three separated functional blocks 

describe the plant: system, actuator and sensor 

dynamics (see Fig. 1). Faults are represented by addi-

tive signals. 
 

 

u(t) 

fA( t) 

y( t) 

fS( t) 

Actuator 

uP(t) yR(t) 

Plant 

Dynamics 

d(t) 

Sensor 

 

Fig. 1. System description. 

 

In this work it is assumed that the dynamics of the 

system may be non-linear and modelled by the state 

space model in the SDC form: 
 

   
, , ,

,

( 1) ( ) ( ) ( ),

( ) ( ),

A A A

A x k A x k x k A

A

R x k A

x k A x k B u k F f k

u k C x k

+ = + +

=
 (3.a) 

, , ,

,

( 1) ( ) ( ) ( ),

( ) ( ),

PP P

x k P x k P D x k

P

R x k P

x k A x t B u k B d k

y k C x k

+ = + +

=
 (3.b) 

   
, , ,

,

( 1) ( ) ( ) ( ),

( ) ( ).

S S S

S x k S x k S x k S

S

x k S

x k A x k B y k F f k

y k C x k

+ = + +

=
 (3.c) 

 

The augmented overall system dynamics are given by 

the following state space model: 
 

),()(

),()()()1(

,

,,,

kXCky

kfFkuBkXAkX

kX

kXkXkX

=

++=+
 (4) 

 

where ( ) ( ) ( ) ( )
T

T T T n

A P SX k x k x k x k R = ∈   is the augmen-

ted state vector, ( ) my k R∈  is the system output 

vector, uRku ∈)(  is the control vector, 

( ) ( ) ( ) ( )
T

T T T p

A Sf k f k d k f k R = ∈   is  the vector of 

disturbances (unmeasured inputs) and fault magnitu-

des, and 
, 1 , ,

n p

X k p qX k X k
F R ×

+
 = ∈ f f�  is the fault / 

disturbances distribution matrix. The system matrices 

are defined by 
 

,

, , , ,

, , ,

,,

, , ,

,

, ,

0 0

0 ,

0

0 0

0 , 0 0 ,

0 0 0

0 0 .

A

x k

P A P

X k x k x k x k

S P S

x k x k x k

AA
x kx k

P

X k X k Dx k

S

x k

S

X k x k

A

A B C A

B C A

FB

B F B

F

C C

 
 

=  
 
 

  
  

= =   
  

    

 =  

 

(5) 

 

In the rest of the paper it is assumed: 
 

,

,

( ) ,

( ) .

X k

X k

rank C m

rank F p q

=

= +
 (6)
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The above assumption must be fulfilled for the 

considered operating state space. This assumption is 

fulfilled in most of chemical processes, mechanical 

and aerospace systems. 
 

Now, we extend the definitions of fault detectability 

index and matrix given by Liu and Si (1997). 
 

Definition 1: The state-depend system (4) has fault 

detectability indexes ρX,k = {ρ1 X,k ,… ,ρp X,k} at the 

current state X(k) if 
 

1

, ,, ,
1

min : 0 1,2,
o

i X k X k l iX k X k o
l

o C A oρ
−

− −
=

 
= ≠ = 

 
∏ f …  

 

where 
 

, , 1 ,

,

,

.

m
X k X k X k m

X k l

l

A A A l m
A

I l m

− −
−

≤
= 

>
∏

…
 

 

Assuming that the system (4) has finite detectability 

indexes, the fault detectability matrix X,kD  is defined as 

, ,X,k X,k X kD C= Ξ  (7)

 

where 

1

1

11

, , 1 ,, ,
1 1

.
p

p
X k X k l X k l pX k X k

l l

A A

ρρ

ρ ρ

−−

− +− −
= =

 
Ξ =  

  
∏ ∏f f�

 

(8) 

 

Now, grouping and ordering the columns of  ΞX,k and 

the elements of f(k) by the detectability index, the 

detectability matrix can be written as follows 
 

1

1 ,1

1

1

,

( 1) ( 1) ( ) ,

s

X,k X k l sX,k X,k s
l

T T

S

A

k k k sφ φ

−

−− −
=

 
Ξ =  

 

 Φ − = − − 

∏F F�

�

 (9)

 

where 
 

{ }

[ ]
, , ,

max 1, 2, , ,

: , 1 2 ...,

( ) ( ) ( ) .

l l l

i

l m n m nX k X k X k

T

l m n

s i p

m n, ρ ρ l , , s

k l f k l f k l

ρ ρ ρ

ρ

φ

− − −

= =

= ≠ = =

− = − −

  F f f

…

�

�

 

 

Due to the additive effects of faults occurring at time 

instant r (with k > r+s), the system output )(ky can 

be computed from the last state )1( −kX and past 

inputs (control actions, disturbances and faults) as 

follows 
 

, , , ,

, ,

( ) ( 1) ( 1)

( 1).

X k X k X k X k

X k X k

y k C A X k C B u k

C F f k

= − + −

+ −
 (10)

 

By defining the state )(
~

kX  without the effect of the 

last disturbance which can be seen on the output may 

be written as follows 
 

),1()1()(
~

,,
−+−= kuBkXAkX

kXukX
 

 

the system output is given by 
 

, , ,( ) ( ) ( 1)X k X k X ky k C X k C k= + Ξ Φ −�  (12)

 

Observe that the first term is the current state, ),(
~
kX  

without the effect of the faults and disturbances. Note 

the fact that the effect of disturbances and faults from 

the states is isolated here. In the future this result will 

be used to build an observer that can detect and 

isolate the effect of faults and disturbances from the 

outputs. 
 

 

4. THE FAULT ISOLATION FILTER DESIGN 
 

Consider the dynamic observer given by the 

following equation: 
 

)(ˆ)(ˆ

),()()(ˆ)1(ˆ

,

,,,

kXCky

kqKkuBkXAkX

kX

kXkXkX

=

++=+
 (11)

 

where )(ˆ kX  and )(ˆ ky  are the state and output 

estimate vectors. Employing the equation, the output 

residual q(k) is given by 
 

, , ,

ˆ( ) ( ) ( ),

( ) ( 1),X k X k X k

q k y k y k

C e k C k

= −

= + Ξ Φ −
 (12)

 

where e(k) is the estimation error  
 

ˆ( ) ( ) ( ).e k X k X k= −�  

 

Observe that the residual q(k) has two components: i) 

the estimation error due to state errors e(k), without 

the effect of disturbances and faults, and ii) the effect 

of the past disturbances and faults over the system 

outputs. The effect of this term is that the estimation 

is biased in a way that could lead to the divergence of 

the estimated states. To solve this problem we 

introduce two matrix coefficients ΤX,k and ΣX,k 

(Kitanidis, 1987; Nagpal et al., 1987). Then, the 

residual is represented using two variables, which are 

given by the following expression 
 

( ).
)1(ˆ

)(ˆ

,

,
kq

k

kq

kX

kX










Τ

Σ
=







−δ

 (13)

 

Replacing the residual q(k), the previous equation 

could be rewritten as 
 

, , , , ,

, , , , ,

ˆ( ) ( ) ( 1),

ˆ( 1) ( ) ( 1).

X k X k X k X k X k

X k X k X k X k X k

q k C e k C k

k C e k C kδ

= Σ + Σ Ξ Φ −

− = Τ +Τ Ξ Φ −
 

where qpRk +∈− )1(δ̂ are the residuals associated to 

faults and )()(ˆ qpmRkq +−∈ are the residuals decoupled 

from the faults and disturbances. To obtain an 
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unbiased estimation we have to remove the effect of 

the disturbances and faults from the estimation error. 

Thus, the matrices ΤX , k  and ΣX , k  must satisfy 
 

( )

, , ,

, , ,

0 ,

.

m p q

X k X k X k

p q p q

X k X k X k

C R

C I R

− +

+ × +

Σ Ξ = ∈

Τ Ξ = ∈
 (14)

 

The matrices ΤX , k  and ΣX , k  are given by 
 

( )
( )

, , ,

, , , ,

,

,

X k X k X k

X k m X k X k X k

C

I Cυ

+
Τ = Ξ

Σ = − Ξ Τ
 

 

where  υ is a vector that guarantees that the first m-
(p+q) elements are full rank. Under this design 

condition, the components of the residual q(k) are 

given by 
 

).1()()1(ˆ

),()(ˆ

,,

,,

−+Τ=−

Σ=

kkeCk

keCkq

kXkX

kXkX

δδ
 (15)

 

Then, the fault isolation filter is given by 
 

[ ] ,

, , , ,

,

,

,

ˆ ˆ( 1) ( ) ( ) ( ),

ˆˆ( ) ( ),

ˆ( 1) ( ).

X k

X k X k X k X k

X k

X k

X k

X k A X k B u k K W q k

y k C X k

k q kδ

Σ
+ = + +

Τ

=

− = Τ

 
 
 

 

 

(16) 

 

where ,X kK is the filter gain and 
X,kW is the matrix 

that propagates the effect of disturbances and faults 
 

.X,k X,k X,kW A= Ξ  (17)

 

Note that the feedback action is only applied to )(ˆ kq , 

while )1(ˆ −kδ  is updated in a feedforward way 

through X,kW . Therefore, if there is any mismatch the 

estimation of the faults )1(ˆ −kδ  will exhibit an offset 

error. 
 

The fault isolation filter (16) can be re-written as 

follows 
 

, ,

,

,

ˆ ˆ( 1) ( ) ( ) ( ),

ˆˆ( ) ( ),

ˆ( 1) ( ),

X k X,k X k

X k

X k

X k A X k B u k K y k

y k C X k

k q kη

+ = + +

=

− = Τ

�

 (18)

 

where 
 

, ,

,

X,k X,k X,k X,k X,k X k X,k X,k

X,k X,k X,k X,k X,k

A A W C K C

K K W

= − Τ − Τ

= Σ + Τ

�

 (19) 

 

The next step to design the filter is to compute the 

filter gain
kX

K
,
. If the signal/noise ratio is high 

(SNR>>1), 
kX

K
,
 can be designed by pole placement. 

First, the eigenvalues of the observer are 

placed
0

~~
AA

X,k
=  then using (19) 

kX
K

,
is given by 

( ) ( ) kCWAACK
X,kX,kX,kX,kX,kX,kkX

∀Τ−−Τ= −

0

1

,

~
. 

The proposed filter can be easily extended to the 

stochastic case. In this case, the filter gain 
kX

K
,
must 

be calculated like in the stochastic case (Mracek et al., 

1996). Therefore, the gain 
X,k

K  is obtained from the 

solution of the Ricatti equation 
 

( ) ( )

( )

1 , , , , , , , ,

, , , ,

1

, , , , , , , , , ,

,

.

T

k X k X k X k X k k X k X k X k X k

T T

X k X k X k X k

T T T

X k X k K X k X k X k X k k X k X k X k X k

P A K C P A K C

K Q K R

K A P C C P C Q

+

−

= − Σ − Σ

+ Σ Σ +

= Σ Σ Σ +Σ Σ

 

 

 

5. SIMULATIONS 

 

As the numerical example the following discrete-

time system is considered: 

2,

,

4,

0.1 0 0 0

0.9 0.2 0.1 0 0

0 0.2 0.2 0

0.3 0 0 0.3 sin( )

k

X k

k

x
A

x

 
 + =
 
 

⋅  

 

, , ,

1 1 0.4
0 0 0 1

0 0 0
, 0 0 0.1 0 ,

0 0 1
0 0.8 0 0

0 0 0

X k X k X kB C F

   
    
    = = =    
     

   

 

 

The input signal is given as: 

 

( ) 1 0.4sin
100

k
u k

π⋅ = +  
 

 

 

The fault magnitudes are: 

 

1

0 50
( )

0.1 50

for k
f k

for k

<
= 

≥
 

2 ( ) 0.05 sin
10

k
f k

 = ⋅  
 

 

 

The state-dependent matrix 
,X kA  is updated using the 

state estimate obtained from the filter. In Fig. 2 the 

directional residuals obtained using presented filter 

are plotted. 
 

In Fig. 3 the innovation ˆ( )q k  of the non-linear fault 

detection filter is shown. The state estimate obtained 

from the filter, which is used for the model update, 

may be influenced by the faults and the estimation 

time delay. It may be noticed that accuracy of 

estimation is limited by the model mismatch which 

results from the inaccuracy of the state estimation. In 

some cases the non-linearity of the system depends 

on the state which may be measured directly. This 
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would remove the model mismatch and lead to a very 

accurate result. 

0 50 100 150 200 250 300 350 400
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 
Fig. 2: Directional residuals δ̂  - non-linear filter 
fault detection filter 

0 50 100 150 200 250 300 350 400
-0.005

0

0.005

0.01

0.015

0.02

0.025

 
Fig. 3 Innovation ˆ( )q k  of the non-linear fault 

detection filter 

 

The results for non-linear filter may be compared 

with those obtained from the linear filter. The A  

matrix for such filter is calculated using the steady 

state of the non-linear system without faults and with 

( ) 1u k =  which is the average value of control signal. 

The results are shown in Fig. 4. 

0 50 100 150 200 250 300 350 400
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 

Fig. 4: Directional residuals δ̂  - linear fault 
detection filter 
 

The superiority of the non-linear filter may be 

noticed here and the main reason for that is the fact 

that more accurate model was used. The model 

mismatch present in the non-linear filter due to state 

estimation bias is not as high as in case, when the 

fixed linear model is used for estimation with non-

linear object. Finally the innovation sequences of 

standard State-Dependent non-linear filter (Mracek 

et. al. 1996) are plotted in Fig. 5  

0 50 100 150 200 250 300 350 400
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 
Fig. 5: Innovation sequence of the non-linear 

Kalman filter 

 

 
6. CONCLUSIONS 

 

This paper has presented a new fault isolation filter 

for discrete-time non-linear systems. The filter is 

based on the parametrization of the nonlinear system 

which transfers the problem to a linear structure with 

state-dependent coefficients. The accuracy of the 

estimation is limited by the model mismatch which 

results from the state estimation errors. For some 

systems the non-linearity depends on the state which 

may be measured directly and the model mismatch 

may be removed and accurate result obtained. The 

more accurate state estimation techniques minimising 

the effect of model mismatch will be subject of 

further research. 

 

The fault isolation filter can isolate p faults and q 

unmeasured inputs/disturbances with at least p+q 

output measurements. Each element of the residuals 

vector of dimension p+q is decoupled from other 

faults (or disturbances). This component may be 

associated with only one fault and statistical tests may 

be used for detection, isolation and estimation of 

multiple faults appearing simultaneously or 

sequentially in the system. 
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