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Abstract: A new method of designing predictive controllers for SISO systems is 

presented. The controller selects the model used in the design of the control law from a 

given set of models according to a switching rule based on output prediction errors. The 

goal is to design, at each sample instant, a feedback control law that ensures robust 

stability of the closed–loop system and gives better performance for the current operating 

point. The overall multiple model predictive control scheme quickly identifies the closest 

linear model to the dynamics of the current operating point, and carries out an automatic 

reconfiguration of the control system to achieve a better performance. The results are 

illustrated with simulations of a continuous stirred tank reactor.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

Model predictive control (MPC) refers to the class of 

algorithms that uses a model of the system to predict 

the future behaviour of the controlled system and 

compute the control action so that a measure of 

performance is minimised whilst guaranteeing the 

fulfilment of all constraints. Predictions are handled 

according to the so called receding horizon optimal 

control philosophy: a sequence of future control 

actions is chosen, by predicting the future evolution 

of the system and these are applied to the plant until 

new measurements are available. Then, a new 

sequence is calculated so as to replace the previous 

one. 

Schemes developed for a deterministic framework 

often lead to either intolerable constraint violations 

or over conservative control action. In order to 

guarantee constraint fulfilment for every possible 

realisation of the system within a certain set, the 

control action has to be chosen safe enough to cope 

with the effect of the worst realisation, (Gilbert and 

Tan, 1991). This effect may be shown by predicting 

the open-loop evolution of the system driven by such 

a worst-case system model. As pointed out by Lee 

and Yu (1997) this situation inevitably leads to over 

conservative control schemes. They suggested it is 

possible to exploit the control moves to mitigate the 

effect of uncertainties and disturbances. This is 

achieved by performing closed-loop predictions, 

which leads to a computationally demanding control 

scheme. 

In the following a new predictive feedback controller  
 

based on a Multiple Models, Switching and Tuning 

framework. The proposed formulation of the problem 

introduces feedback in the optimization of the control 

law, which is carried out at each sample. The 

multiple model approach used in this work is based 

on a decomposition of the system's operating range. 

Each operating regime of the system is modelled 

with a simple local linear model. Then, the closest 

model to the current plant dynamics is used in the 

algorithm to control the system. 

The organisation of the paper is as follow. In section 

2 the formulation of the predictive feedback control 

is presented. The meanings of the design parameters 

are discussed and the objective function is analysed 

from the multiobjective point of view. In Section 3 

the multiple models, switching and tuning control 

approach is suggested by modifying the objective 

function and the constraints employed by the 

predictive feedback controller. Section 4 shows the 

results obtained from the application of the proposed 

algorithm to a nonlinear continuous stirred tank 

reactor. Finally, the conclusions are presented in 

section 5. 

2. PREDICTIVE FEEDBACK 

MPC is an optimal approach involving the direct use 

of the system model and on–line optimization 

technique to compute the control actions such that a 

measure of the closed–loop performance is 

minimised and all the constraints are fulfilled (Figure 

1.a). The basic formulation implies a control 

philosophy similar to an optimal open–loop. This can 

include, in a simple and efficient way, the  
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Fig. 1: MPC and Predictive Control Feedback set-ups 

constraints present in the system. However, as 

pointed out by Lee and Yu (1997) this formulation 

can give poor closed-loop performance, especially 

when uncertainties are assumed to be time–invariant 

in the formulation. This is true even when the 

underlying system is time–invariant. When the 

uncertainty is allowed to vary from one time step to 

the next in the prediction, the open loop formulation 

gives robust, but cautious, control. To solve this 

problem, the authors suggested the exploitation of 

control movements to mitigate the effects of 

uncertainties and disturbances on the closed-loop 

performance. This is achieved by using the closed-

loop prediction and solving a rigorous min-max 

optimization problem. The resultant control scheme 

is computationally demanding, so it can only apply 

to small systems with a short prediction horizon. To 

overcome this problem, Bemporad (1998) developed 

a predictive control scheme that also used closed-

loop predictive action, but was limited to include a 

constant feedback gain. 

Following the idea proposed by Bemporad (1998), 

Giovanini (2003) introduce a direct feedback action 

into the predictive controller. The resulting 

controller, called predictive feedback, used only one 

prediction of the process output J time intervals 

ahead and a filter, such that the control movements 

computed employed the last v predicted errors (see 

Figure 1.b). Thus, the predictive control law given by 

∑∑ = += −−−= w

j vj
v

j j jkuqjk,Jêqku
00

0 )()()( , (1) 

where q j j=0,1,…,v+w are the controller's 

parameters and ê
0
(J ,k- j) is the open-loop predicted 

error at time k+J-j given by  

,v,jjkuq,Jjkejk,Jê …0,1)()()( 10 )( =∀−−−=− −
P . 

P ( J , q
- 1
) is the open–loop predictor given by 
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where N is the convolution length and ãJ is the J–th 

coefficient of the system's step response and 
~

h j is the 

j–th coefficient of the system's impulse response. In 

his work, Giovanini (2003) showed that: 

• the predictive feedback controller (1) provided 

better performance than a MPC controller, specially 

for disturbance rejection, and 

• the parameters of the controller and the prediction 

time, J, could be chosen independently if, 

1
1

=∑ = +
w

j vjq . 

The last fact is quite important because it makes the 

tuning procedure easy, since we use a stability 

criterion derived in the original paper (Giovanini, 

2003) for choosing J and then tuning the filter using 

any technique. 

In this framework, the problem of handling the 

system’s constraints is solved tuning the parameters 

of the controller. This solution is not efficient 

because it is only valid for the operating conditions 

considered at the time of tuning. Therefore, any 

change in the operational conditions leads to a loss 

of optimality and violation of the constraint. The 

only way to guarantee the constraints fulfilment is to 

optimise the control law (1) for every change that 

happens in the system. Following this idea, the 

original predictive feedback controller is modified 

by including an optimization problem into the 

controller so that the parameters of the controller are 

recomputed in each sample. The structure of the 

resulting controller is shown in figure 2. 

Remark 1. The control action u(k), is computed 

using the past prediction errors and control 

movements, whereas the vector of parameters –

Q(k)– is optimised over the future closed-loop 

system behavior. Therefore, the resulting control law 

minimises the performance measure and guarantees 

the fulfilment of all the constraints over the 

prediction horizon. 

After augmenting the controller, we allow the 

control law (1) to vary in time 

∑
∑

= +

=

−+−

≥∀−++=+
w

j vj

v

j j

jkuikq

,ijik,Jêikqiku
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This fact gives us enough degrees of freedom to 

handle the constraints present in the system. It is 

well known that the optimal result is obtained when 

the control law is time varying. However, from 

experience with predictive control, many authors 

have pointed out that only a few control actions at 

time near have a strong effect on the closed-loop 

performance. So, we modify the control law such 

that the control law is time-varying in the first U 

samples and it is time invariant for the remaining 

samples 

∑
∑
∑
∑

= +

=

= +

=

−+++

≥∀−++=+

−+++

<≤−++=+

w

j vj

v

j j

w

j vj

v

j j

jikuUkq

.Uijik,JêUkqiku
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(3.a) 

 

 

(3.b) 

Under this design condition, in each sample a set of 

parameters q j(k+i ) j=0,1 ,…,v+w i=0,1 ,…,U is  
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Fig. 2: Structure of the predictive feedback controller 
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computed such that the future closed-loop response 

would fulfil the constraints and would be optimal. 

Then, only the first elements of the solution vector, 
q j (k ) j=0 ,1 ,…,v+w, is applied and the remaining 

ones are used as initial conditions for the next 

sample. The optimization is repeated until a 

criterion, based over the error and/or manipulated 

variable, is satisfied. When the criterion is fulfilled 

the last element, q j(k+U ) j=0,1 ,…,v+w, is 

applied and the iterations stop. Usually, this criterion 

is selected such that the change in the control law 

would be produced without a bump in the closed-

loop response. 

Note that the design of the predictive feedback 

controller (3) implies the selection of orders, the 

prediction time and the parameters of the controller. 

In the next section we introduce the optimization 

problem employed to compute the parameters of the 

controller. In order to obtain a stabilising control law 

i) the control law (3.b) must lead to an output 

admissible set, called Ξ, and ii) the control law (3.b) 

must be feasible everywhere in Ξ. In others word, Ξ 

must be a positive invariant set (Gilbert and Tan, 

1991). Therefore, this problem includes an end 

constraint over the control action, called contractive 

constraint, that guarantees the closed-loop stability 

by selecting feasible solutions with bounded 

input/output trajectories. 

In this framework the controller's parameters q j  and 

the integers v, w and J should be computed instead 

of input movements u ( k+ i ). Therefore, the control 

problem is reduced to a parametric–mixed–integer 

optimization problem. Since this kind of problem is 

computational expensive, it should be changed into a 

real one by fixing v, w and J. 

Assuming that a set of M models W can capture a 

moderate non-linearity in the neighbourhood of the 

nominal operating point, the parameters of the 

predictive feedback control law (3) can be found 

solving the following nonlinear minimisation 

problem 
 

ŷ( J , k ), which is used to measure the performance of 

the system. It uses all the information available at 

time k+i . The third equation is the control law (4). 

Finally, the last constraint is included in this 

formulation to ensure closed–loop stability. It asks 

for null or negligible control movement at the end of 

the prediction horizon. Giovanini and Marchetti 

(1999) showed that this condition forces the 

exponential stability of the closed–loop system, for a 

step change in the setpoint. It is equivalent to 

requiring both y and u remain constant after the time 

instant k+V. It therefore ensures the internal stability 

of all open–loop stable system. It also helps to select 

feasible solutions with bounded input / output 

trajectories and consequently it speeds up the 

numerical convergence. Furthermore, it avoids 

oscillations and ripples between sampling points. 

The tuning problem (4) consists of a set of constraints 

for each model of the set W , with control actions 

u(k-j) j=1,…,w and past errors e(k- j) j=1,…,v as 
common initial conditions and the parameters of the 

controller as common variables. The tuning problem 

readjusts the predictive feedback controller (4) until 

all the design conditions are simultaneously satisfied, 

by a numerical search through a sequence of dynamic 

simulations. The key element of this controller is to 

find a control law implicitly satisfying the terminal 

condition. This reduces the computational burden in 

the minimization of the performance measure. 

Furthermore it replaces the open–loop prediction by 

a stable closed–loop prediction thereby avoiding the 

ill–conditioning problems. 

Figure 2 reveals the structure of the resulting 

predictive controller. Observe that the actual control 

action u(k), is computed from the past predicted 

errors and control movements, whereas the vector 
parameters Q(k ) is optimised over the future closed–

loop system behaviour. The resulting vector 

minimises the performance measure and guarantees 

the fulfilment of all constraints over the prediction 

horizon V. 
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where V is the overall number of samples instants 

considered, l ∈ [1,M] stands for a vertex model and 

M is the number of models being considered. 

The objective function F ( :) in (4) is a measure of the 

future closed–loop performance of the system. It 

considers all the models used to represent the 

controlled system. The first constraint is the 

corrected open–loop prediction ŷ̂0( J , k ) which is 

employed to compute the control action u( i ,k). It 

only uses the information available until time k+i . 

The second constraint is the closed–loop prediction  
 

In control scenarios, it is natural that inputs and 

outputs have limits (such us actuator rate limits). The 

particular numerical issues discussed in this paper are 

the same whether such constraints are included or 

not. 

2.1. The objective function 

Notice that the polytope W  that must be shaped 

along the prediction horizon V. Hence, the objective 

function should consider all the linear models in 

simultaneous form. At this point, there is no clear 
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information about which model is the appropriate 

one to represent the system. A simple way of solving 

this problem is using a general index 

∑ == M
l ll fF 1 ):():( γ , (5) 

where γ l ≥ 0 are arbitrary weights and f l is the 

performance index for model l measured by any 

weighting norm 

∞≤≤=+= p,V,,ik,iuRk,iê:f
pp

l
10)()()( … . 

The coefficients γ l  allow us to assign a different 
weight to each index corresponding to model l, 

emphasising or not the influence of a certain model 

in the control law. 

In general, the solution obtained by the problem (4), 

with objective function given by (5), produces a 

decrease in someone of the components of F , say 

fn n∈[1,M], and the increase of the remaining, fm  
m ≠ n, m∈[1,M]. The minimisation of the general 

index F  depends on the effect of each one of the 

component f l  over the index. Thus, the best solution 

doesn’t necessarily coincide with one of the optimal 

singular values. It is necessary a trade off among the 

different components of the general index F. 

The problem (4) with the objective function (5), 

corresponds to a hybrid characterization of the 

multiobjective problem (Chankong and Aimes, 

1983), where the performance is measured through a 

weighted-norm objective function (5) and the design 

constraints are considered through the additional 

restrictions. In this framework, the performance 

index (5) can be seen as the distance between the 

ideal solution, which results from the minimum of 

each component, and the real solution (Figure 3). So, 

the solutions given by the problem (4) would 

minimise the distance between the ideal and the 

feasible solutions, approaching them as closely as the 

design constraints and the system dynamics will 

allow. 

Remark 2. If only one of the weights is not null, said 

γm m∈[1 ,M], the resulting control law will obtain 

the best possible performance for the selected model 

and will guarantee the closed-loop stability for the 

remaining models. 

In this case, the closed-loop performance achieved 
by the model m will be constrained by stability 

requirements of the remaining models. Therefore, it 

is possible that the performance obtained by the 

model m differs from the optimal singular value. 

This formulation of the optimization problem enjoys 

an interesting property that is summarised in the 

following theorem: 

Theorem 1. Given the optimization problem (4) with 

the objective function (5), the norm employed to 

measure the performance is different to the worst 

case (p≠∝) and γ l>0 l=1,… ,M, then any feasible 

solution is at least a local non-inferior solution. 

Proof: See Theorems 4.14, 4.15 and 4.16 of 

Chankong and Aimes (1983). 

The main implication of this theorem is the fact that 

any feasible solution provided by the problem (4) 

with the objective function (5) will be the best 

possible and it will provide an equal or a better  
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Fig. 3: Solutions sets in the controller objective space for 

several measures of performance for M=2. 

closed-loop performance than the worst case model 

formulations of predictive controllers. 

3. MULTIPLE MODELS, SWITCHING and 

TUNING CONTROL 

In almost all-industrial applications the design of a 

controller assumes that the plant is approximately 

linear. In practice this is too strong a simplification. 

The resulting controller often leads to either 

intolerable constraint violations or over conservative 

control action. In order to guarantee constraint 

fulfilment for every possible realisation of the system 

within a certain set W , it is enough to cope with the 

effect of the worst realisation (Gilbert and Tan, 

1991). 

To get a good performance on a wider-constrained 

operating range, it is necessary to use the closest 

model of W  to the current plant dynamic. This idea 

implies the use of Multiple Model, Switching and 

Tuning Control (MMST) schemes (Goodwin et al., 

2001). It is based on the idea of describing the 

dynamics of the system using different models for 

different operating regimes, and to devise a suitable 

strategy for finding the model that is closest (in some 

sense) to the current plant dynamics (Figure 4). This 

model is used to generate the control actions that 

achieve the desired control objective. The main 

feature of this approach is that for linear time 

invariant systems, under relatively mild conditions, it 

results in a stable overall system in which asymptotic 

convergence of the output error to zero is guaranteed 

(Frommer et al., 1998). 

Generally, the switching algorithm is implemented 

by first computing the performance indices 

]1[)()()(
0

0 2

2

2

1
M,lkeckeckI

k

ki l

ki

ll
∈ρ+= ∑ =

−  (6) 

where c1>0 , c2>0,  ρ∈[0,1], k 0  is the sampling 

when the change happens and 

,M,,lkykyke ll …21)()(ˆ)( =−=  

The scheme is now implemented by calculating and 

comparing the above indices every sampling instant, 

generating the switching variables Sl(k ) from 

( ) 





 −=

∈
)()(min)(

],1[
kIkIHkS ll

Ml
l , (7) 

where H(x) is the Heaviside unit step function given by 
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

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Fig. 4: Geometrical interpretation of index (7). 

The objective function (5) - employed in problem 

(3) -  is modified by replacing the weight γ l by the 

switching variables Sl (k ), which are computed 

outside the controller, for each model by including 

them in the design constrains. The objective function 

(4) and the design constraints are given by 

( )
( )
( ) ,k,ikukSg

,k,ikykSg

,V,,iikuikyikrfkS:F

llu

lly

M

l
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(9) 

(10) 

Let us observe that the predictive feedback controller 

(3) is designed, by problem (4) with objective 

function (9) and constraints (10), only employing the 

closest model to the current plant dynamic, which is 

used to measure the performance and evaluate the 

constraints. Then, a better closed–loop performance 

is obtained because a less conservative model is used 

to design the controller. However, note that the 

stability of the nonlinear system is guaranteed 

because the predictive feedback controller satisfies 

the stability condition for all model of W . Thus, the 

resulting control law will stabilise the system in the 

whole-operating region and will obtain the best 

performance for the current operating point. 

The structure of the predictive feedback controller 

must be modified by including the switching 

variables Sl (k) as external inputs of the optimiser. 

4. SIMULATION AND RESULTS 

Now, let us consider the problem of controlling a 

continuous stirred tank reactor (CSTR) in which an 

irreversible exothermic reaction is carried out at 

constant volume. This is a nonlinear system 

previously used by Giovanini (1993) to test discrete 

control algorithms. Figure 5 shows the dynamic 

responses to the following sequence of changes in 

the manipulated variable qC +10 lt min
-1, -10 lt min-1, 

-10 lt min
-1
 and +10 lt min

-1
, where the nonlinear 

nature of the system is apparent. 

Four discrete linear models were determined using 

subspace identification technique (Van Oversheet 

and De Moore, 1995) to adjust the composition 

responses to the above four step changes in the 

manipulated variable (Table 1). Notice that those 

changes imply three different operating points 

corresponding to the following stationary 

manipulated flow-rates: 100 lt min -1, 110 lt min -1 

and 90 lt min
-1
. They define the polytope operating 

region being considered and it should be associated 
to the M vertex models in the above problem 

formulation (4) with objective function (9). 
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Fig. 5: Open loop responses of the CSTR concentration. 

Like in the previous work, the sampling time period 

was fixed in 0.1 min., which gives about four 

sampled-data points in the dominant time constant 

when the reactor is operating in the high 

concentration region. The open–loop predictor of the 

controller, P (J ,q -1 ), and the open–loop predictors of 

optimization problem, 
l
P (J ,q -1 ) l=1,2 ,3 ,4 , are 

built using a convolutional model of 200 terms. It is 

obtained from the model 1 (Table1), because the 

CSTR is more sensitive in this operation region. 

Finally, the parameters v and w were adopted such 

the resulting controller the resulting controllers 
include the predictive version of popular PI 

controller (v=2 and w=1), the prediction time J was 

fixed such that it guarantee the closed-loop stability, 

J= 9 (Giovanini, 2003) and U=7. 

In this application we stress the fact that the reactor 

operation becomes uncontrollable once the 
manipulated exceeds 113 lt min-1. Hence, assuming a 

hard constraint was physically used on the coolant 

flow rate at 110 lt min
-1
, an additional restriction for 

the more sensitive model (Model 1 in Table 1) must 

be considered for the deviation variable u (k ), 

kku ∀≤ 10)(
1

. (11) 

In addition, a zero–offset steady–state response and a 

settling time of 5 min are demanded (the error must 

be lower than 10
-3
 mol lt

-1
). Thus we include the 

following constraints 

,Nkke

,kkr.ky

O
5010)(

)(031)(
3 +≥∀−≤

∀≤
 

(12.a) 

(12.b) 

where NO is the time instant when the setpoint 

change happens. This assumes that the nominal 

absolute value for the manipulated is around 100 

lt min
-1
 and that the operation is kept inside the 

polytope whose vertices are defined by the linear 

models. Constraints (11) and (12) are then included 
 

Table 1 Vertices of the Polytope Model 

Step Change Model Obtained 

Model 1 

QC = 100, ∆qC = 10 9406089351

1018590

2

53

.z.z

z.

+−

−−

 

Model 2 

QC= 110, ∆qC = -10 7793072721

1021560

2

53

.z.z

z.

+−

−−

 

Model 3 

qC= 100, ∆qC = -10 7547071041

1011530

2

53

.z.z

z.

+−

−−

 

Model 4 

QC= 90, ∆qC = 10 8241079221

1083050

2

54

.z.z

z.

+−

−−
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in (4). Furthermore, the objective function adopted 

for each model in this example is the same used by 

Giovanini (2003) 

∑ = +∆λ++= V

ll
ikuikê:f

0i

2 )()()(  (13) 

where the time span is defined by V=200. 

To analyse the effect of a switching scheme on the 

closed–loop performance a predictive feedback 

controller without the MMST scheme was 

developed. The only differences between them are 

the parameters v and w. They were fixed to v=4 and 

w=4, such that the closed-loop poles could be 

arbitrarily located. 

Giovanini and Marchetti (1999) previously used with 

this reactor model for testing different predictive 

controllers and confronted the results with the 

responses obtained using a PI controller. The 

parameters of the PI parameters were adjusted by the 

ITAE criterion; thus we used the same settings: the 
gain value, 52 lt

2
mol

-1
min

-1
 and the integration time 

constant, 0,46 min. The simulation tests consist of a 

sequence of step changes in the reference value. 

Figure 6 shows the results obtained when comparing 

both predictive controllers for same changes in the 

setpoint. The controller with MMST scheme gives a 

superior performance. The improvement of the 

closed–loop performance is obtained through better 

exploitation of manipulated constraint (Figure 7), 

due to the retuning of the control law. For those 

regions with similar behavior (Models 2, 3 and 4), 

the proposed controller provides symmetric 

responses and satisfied constraints (11) and (12), 

despite of the uncertainties. 

As was anticipated, the predictive controller without 

MMST showed a poorer performance. It only failed 
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Fig. 6: Closed–loop response of the CSTR concentration to 

a sequence of step changes in setpoint. 
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Fig. 7: Manipulated movements corresponding to the 

responses in Fig. 6. 

to fulfil the amplitude constraint (12.a) (see Figure 6). 

This predictive controller needed to violate this 

constraint in order to fulfil the remained ones. For 

those regions with similar behavior (Models 2, 3 and 

4), this controller also provided symmetric responses. 

5. CONCLUSIONS 

A simple framework for the design of a robust 

predictive feedback controller with multiple models 

was presented. The approach was to relate control 

law performance to the prediction of performance. 

The resulting controller identifies, at each sample, 

the closest linear model to the actual operational 

point of the controlled system, and reconfigures the 

control law such that it ensures robust stability of the 

closed–loop system. The reconfiguration of the 

controller is carried out by switching the function 

used to measure the closed–loop performance and the 

constraints. 

The results obtained by simulating a continuously 

stirred tank reactor with significant non-linearities 

show the effectiveness of the proposed controller. 
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