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Abstract − In this work a new method for designing predictive 
controllers for linear SISO systems is presented. It uses only one 
prediction of the process output J time intervals ahead to 
compute the correspondent future error. The predictive 
feedback controller is defined by introducing a filter that 
weights the last w-predicted errors. In this way, the resulting 
control action is computed by observing the system future 
behavior and also by weighting present and past errors. This 
last feature improves the closed-loop performance to 
disturbance rejection as shown through simulation results. 
 

1. INTRODUCTION 
The use of different kinds of linear models to predict the 

future behavior of the process output has stimulated the 
development of a wide group of control. One of the most 
relevant is the model predictive control (MPC). The predictive 
control concepts can be thought as an extension of the one–step 
ahead approach of optimal l 2 control theory, which calls for one–
step ahead inversion of the input–output model to produce the 
control action. This simple inversion approach is not suitable for 
non–minimum phase system, which will cause the control input 
to grow unbounded while the controlled output remains 
bounded. By introducing a proper dynamic into the controller 
structure, this problem can be overcome. 

In this work a new control algorithm is presented. The 
approach is based on the use of one prediction of the process 
output J time intervals ahead to compute the corresponding 
future error. The proposed controller called predictive feedback, 
uses the past predicted errors instead of using plain feedback 
errors as in classical feedback controllers. Hence, the resulting 
control action is computed by observing the system future 
behavior and also by weighting present and past errors. This 
control strategy combines the predictive capacity, which results 
in good performance for set-point changes and time-delay 
systems, with the classical use of feedback information, which 
improves the closed-loop performance. Depending on the value 
of J, different control algorithms naturally emerge from the 
proposed controller. Robust stability and closed-loop 
performance issues have been analyzed to find some criteria to 
choose the parameters of the controller. 

The paper is organized as follow: in Section 2, the 
expressions for a general J-step ahead output prediction is 
presented. In Section 3 the basic formulation of predictive 
feedback controller design is derived. Besides, the relationship 
between the proposed controller and other control algorithms is 
established. The closed-loop stability and performance of the 
resulting controller are analyzed in Section 4. In Section 5 we 
show the results obtained from the application of the proposed 
algorithm to a nonlinear continuous stirred tank reactor. Finally, 
the conclusions are presented in Section 6. 

2. SINGLE-STEP OUTPUT PREDICTOR 
Consider a SISO system described by the ARMAX model 
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where the load disturbance dm(k) and the non-measurable 
disturbance d(k) are deterministic. Defining the following 
variables 
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the system output y(k) can be written as follow 
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By shifting a time step, we obtain the one-step ahead prediction 
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where the first index stands the number of step ahead samples 
that the system output is computed (k+1) and the second one is 
the time when the prediction is computed (k). Replacing (4) into 
(5) yields 
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where the coefficients of the predictor are given 
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The system output at time k+1, in absence of the output 

measurement at time k, can be expressed as a linear combination 
of past input and output data. In this notation, the current output 
ŷ(k) is given by ŷ(0,k) with the coefficients given by 
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Applying the same procedure J times we may express the 

system output, at time k+J, through  
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where the coefficients J
j

J
j βα ~
,~  and jJ

j ∀δ~  are given by  
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Observation of equations (9) shows that jJ
j

J
j

J
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linear combination of its past p parameters weighted by the 
parameters lα~  l=1, 2,…, p, and the coefficients 0~

jβ  and 0~
jδ are 

the j th of the impulse response coefficients ( jh
~

 and m
jh
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and dG~  respectively [6]. Defining the predictors 
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the J-step ahead prediction (8) can be written as follow 
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Since future control actions are unknown, this prediction is not 
realisable. To turn it realisable a statement must be made about 
how the input variables are going to move in the future. For 
example, the simplest rule is to assume that all the inputs will not 
move in future 
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which implies that the future changes are equal to zero. Then, 
the prediction (11) becomes 
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where the upper script 0 recalls the condition ∆u(k+j)=0 
j=0,1,…,J is included and, ã J and ã J

m are the J th coefficients of 
step responses of pG

~  and dG
~  respectively. The disturbance 

term d(k) is computed from the output measurement y(k) and the 
system model through 
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This term lumps together possible unmeasured disturbance and 
inaccuracies, due to plant-model mismatch. Replacing this term 
in (13) and rearranging we obtain the corrected open-loop 
prediction is given by 
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3. PREDICTIVE FEEDBACK CONTROL 
The predictive control concepts can be thought as an 

extension of the one–step ahead approach of optimal l 2 control 
theory, which calls for one–step ahead inversion of the input–
output model to produce the control action]. This simple 
inversion approach is not suitable for non-minimum phase 
system, which will cause the control input to grow unbounded 
while the controlled output remains bounded. 

Revising the assumption used to go from (11) to (13), observe 
that if the control movement ∆u(k)≠0, then 
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Fig. 1 General MPC and predictive feedback set-ups 

Subtracting this prediction from the reference variable r(k+J), 
we obtain the predicted error 
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The control action can be computed in the similar way as 
standard predictive controllers, minimising the following 
performance measure  
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where W(q - 1)=Wn (q - 1) /Wd (q - 1)  and R(q - 1)=Rn (q - 1) /Rd (q - 1)  
are stable weighting functions. Then, the control action that 
minimises this performance index is given by 
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Since (19) and (20) uses only one prediction, the delay operator 
q - j is applied to the time instant at which the prediction is 
calculated (see figure 1). Hence, the control action u(k) is given 
by  
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where ê 0 (J,k-j) is the open-loop predicted error at time  
k-j+J based on measurement until time k-j, u (k-j) is the past 
control action at time k-j, and γj j=0,1,…,w and φj j=0,1,…,v 
are the coefficients of the polynomials Γ(z) and Φ(z). 

The predictive feedback control law can be derived from the 
last equation, replacing the open-loop error ê 0 (J,k–j) with their 
components we obtain the predictive feedback control law 
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whose structure is shown in figure 2. This figure shows a block 
diagram of how the control action is computed. It is apparent 
that it uses the plant model to estimate the output at the present 
time ŷ(0,k). This value is then compared with the actual 
measurement y(k) to detect modelling errors and external 
disturbances. Then, the prediction of the disturbance d 0(J,k ) is 
added to estimate d (J,k ). In other words, given all input changes 
until the instant k the controller observes the value that would be 
reached by the system output ŷ 0(J,k–j) as if no future 
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Fig. 2 Structure of the predictive feedback control law 

control action is taken, then u(k) is computed such that the 
performance index (18) is minimised. The parameters of Γ(z) 
and Φ(z) add additional degrees of freedom to improve the 
closed-loop performance. 
3A.Relationship with other Control Algorithms 

The predictive feedback controller consists of a filter, F(z), 
with the open-loop predictor and the system model in the 
feedback path. This structure is similar to the Internal Model 
Control (IMC) parametrization [8]. The only difference is the 
simultaneous presence of the predictor and the model. The filter 
could be rewritten using the Youla parametrization as 
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~
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where Q(z) is Youla parameter. In case of stable system, Q(z) is 
the open-loop controller [8]. So, the predictive feedback 
controller is a generalisation of the IMC parametrization of the 
feedback controllers. Depending on the value of the prediction 
time J and the parameters of the controller, different controllers 
that have been studied in the specialise literature emerge. 

When J=0 the open-loop predictor becomes the system 
model, and the predictive feedback controller becomes the 
classical feedback controller. For any prediction time greater or 
equal to the time delay J ≥ t d / t S we can obtain the different 
predictive controllers. 

When J t S = t d  the open-loop predictor is the system model 
without time delay, and the predictive feedback controller 
becomes equivalent to a Smith predictor. 

When J tS > t d  and the parameters of the predictive 
feedback controller are w=1, φ1=–1, v=0 and γ0=1/aJ, the 
resulting controller is the single-prediction controller [5], 
which is a generalisation of the minimum variance controller. 
For the particular choice of the prediction time J = N, we can 
derived a family of predictive controllers whose main 
characteristic is to obtain a closed-loop response that is at 
least as good as the normalised open-loop response [1][7]. 
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Fig. 3 Structure of the predictive feedback controller 
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Fig. 4 Geometrical interpretation of equation (24) 

ALGORITHM PROPERTIES 

Stability Analysis 
Now, the stability of the resulting closed-loop is studied. 

Firstly, we substitute the predictive feedback controller (22) in 
the characteristic closed-loop equation, and combining with (15), 
the characteristic equation T(z) can be written as follow 
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The stability of the closed-loop system depends on both: the 
prediction time J and the parameters of the filters Φ(z) and Γ(z). 
So, it may be tested by any traditional stability criteria. 

Theorem 1: Given a system controlled by a predictive 
feedback controller, the closed-loop system will be robustly 
stable if 
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Proof. See Appendix A. 
This equation means that the robust stability region} is the 

circle of radius 1- la, so the stability condition (24) guarantees 
that all of poles of closed-loop system are inside of this region. 
The terms involved in this condition, ordered from left to right, 
are: a) the contribution of the nominal model, and b) the effect 
of parametric uncertainty. From a geometrical point of view, this 
condition can be visualised as a reduction of the stability region 
in a size of la (see figure 5) 
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Definition 1 Given the polynomial t (z )=Σp
j=1 t j z -j, the system 

associate to t(z ) is superstable if the polynomial  
T(z )=1+ t(z ) verifies [10] 

0)(1)( 1 >−≥ ztzT . (26) 
The stability criterion (24) guarantees the super stability of 

the closed-loop system, and they impose a high lower bound for 
selecting J. Therefore, always there are different prediction times 
than that one provided by stability condition (24) which leads to 
stable closed-loop system. They can be found through a direct 
search in the bounded1 

{ }NJJJ Td ≤≤∧∈= NS , 

                                                           
1 Since we can only use this control law with stable system, the control gain 
verifies that Kv = Kv+1 ∀ v≥N, where N tS is the open loop settling time. 
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where JTd is the number of samples that represent the time delay td. 
When J=1 the open-loop predictor becomes the system 

model and the predictive feedback becomes into the classical 
feedback controller. Under this design criterion, the stability 
condition (24) is the Dabke condition for system with parametric 
uncertainties. 

In the case of v=1 and φ1 =-1, the stability condition (24) 
becomes 
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It means that J and the parameters of the filter can be 
independently selected such that both parameters, J and γj 
∀ j = 0,1,…,w, independently guarantee the closed-loop stability. 
This fact means that the prediction time J should be selected like 
the single-prediction controller, and the filter must be tuned as 
there is no time delay in the system, because the predictor has 
compensated it. 
Remark 1 The property of the independent selection of the 
prediction time and parameters of the controllers is held for any 
controller that verifies  

,11 =∑ =
v
j jφ  (28)

and the equation (24) becomes (27). 
Under this condition, J can be varied such that the closed-

loop performance is improved. Varying J we modify the closed-
loop settling time, accelerating or de-accelerating the system 
response. So, if we have to control a non-linear system we can 
choose a different J for each operating region such that we 
obtain a similar closed-loop response for each one of them. 
Then, during the operation, we vary J according with the 
operating region controlled at each sample. 
Remark 2 Given a controller that simultaneously satisfy (24) 
and (28), the closed-loop response of the time-varying system 
that results from varying the prediction time J has bounded 
responses. 

Proof. See lemma 2 [10]. 
Performance analysis 

The discrete-time superstable systems enjoy numerous 
important properties. The main one is that they admit simple 
non-asymptotic estimates for arbitrary initials conditions. 
Lemma 1 Given the closed-loop system described by 
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m
j j jkwnjkypky 11 )()()( , (29)

with initial conditions  y ( - j )≤µ  j=1,2,…,m and bounded 
disturbances  w (k )≤ 1 ∀ k. Then, the closed-loop system 
responses is bounded by 

{ } 0,0max)( 1

1 ≥∀−+≤ + kpky ηµη , (30)

where 11 1/ pp −=η . 
Proof. See lemma 1 [10] 
Hence, the output of system controlled by a predictive 

feedback controller that satisfies the stability criteria (24) or (27) 
and (28) can be estimated for all time steps, not only its 
asymptotic values. Moreover, for any c>1 a k 0 can be found 
such that  y (k )≤ cη  ∀ k > k0. 

In contrast, for stable systems we can guarantee the 
asymptotic estimates for the output, while the effect of non-zero 
initial conditions may be very large. These results can be easily 

extended to time-varying system by analysing the behaviour of 
the frozen systems. 

Finally, we give a heuristic analysis of the closed-loop 
performance achieved by the generalised predictive feedback 
controller and then, we compare it with those one provided by a 
classical feedback controller and a standard MPC controller. To 
carry out this analysis the resulting control action can be 
compared for all controllers. 
The control actions generated by the predictive feedback control 
law (21) are obtained by replacing the open-loop error ê 0 (J ,k-
j), the result is  
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Note that the two first terms of this equation, ordered from 
left, are the time implementation of a discrete controller, while 
the last one is a weighing contribution of the future open-loop 
deviations at time 

w,,,jjky~jk,Jŷjk,Jŷ K10)()()( 00 =−−−=−∆ . 
They only depend on the past control actions and the system 

model, therefore the last term of (31) states the effect of the past 
control actions on the future behaviour of the system. These 
facts imply that it has significative influence on the closed-loop 
performance when we have to track setpoint changes, but a 
negligible one when we have to reject a disturbance because this 
term has little information about it. So, the two first terms of (31) 
command the system behaviour during the disturbance rejection, 
because the measured errors have all the information the 
information at time k. 
Comparing the control action generated by a predictive feedback 
controller with that produced by a classical feedback controller 
of the same orders 

∑∑ == −−−= v
j j

w
j j jkejkeku 00 )()()( φγ , (32) 

we can see that they only differ in the last term: the contributions 
of the future open-loop deviations ∆ŷ 0 (J ,k- j). So, the predictive 
feedback controller will have a better closed-loop performance 
for setpoint tracking, especially when the system has a large time 
delay. However, both controllers will have a similar performance 
in disturbance rejection task. 

Now, we compare the performance achieved by a predictive 
feedback with that one obtained by a standard MPC controller. 
The control action generated by a MPC controller is [3] 
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PP  (33) 

where V is the prediction horizon and k j j=1,2,…,V is the j th 
element of the gain vector. In this equation we can see that MPC 
controllers only use the last measured error and the two first 
terms, ordered from the left, are a discrete PI controller. Like the 
predictive feedback controller, the last term is a weighing 
contribution of the future open-loop deviations at time (k+j ) t S. 

From equations (31) and (33) we can see that both predictive 
controllers have a similar structure, they only differ in the 
number of terms employed by each one. However, we can also 
see that the predictive feedback controller uses more feedback 
information than MPC controllers to compute the control 
actions. Therefore, the predictive feedback controller reduces the 
effect of disturbances more aggressively than any standard MPC 

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
 &

 G
. G

ri
m

bl
e;

 "
Pr

ed
ic

tiv
e 

Fe
ed

ba
ck

 C
on

tr
ol

"
42

 I
E

E
E

 C
on

tr
ol

 a
nd

 D
ec

is
io

n 
C

on
fe

re
nc

e.
 d

ec
, 2

00
3.



controller, and has better performance than MPC, especially for 
disturbance rejection problem. 

SIMULATIONS AND RESULTS 
Consider the problem of controlling a continuously stirred 

tank reactor (CSTR) in which an irreversible exothermic reaction 
is carried out at constant volume. This is a nonlinear system 
originally used by [9] for testing predictive controls algorithms. 
The objective is controlling the output concentration Ca(t) using 
the coolant flow rate qC(t) as the manipulated variable. The 
output concentration has a measured time delay of t d =0.5 min 

The nonlinear nature of the system is showed in figures 5. 
Four continuous linear models are determined from the 
composition responses showed in this figure using subspace 
identification technique [11]. Notice that these changes imply 
three different operating points corresponding to the following 
stationary manipulated flow-rates: 100 ltmin-1, 110 ltmin-1, and 
90 ltmin-1. 

The controller must be able to follow the reference, so we 
need to guarantee its controllability in the whole operational 
region. Hence, assuming a hard constraint is physically used on 
the coolant flow rate at 110 ltmin-1, an additional restriction for 
the more sensitive model (model 1) must be considered for the 
deviation variable 

10)(1 ≤ku . (34)
Besides, a zero-offset steady-state response is demanded, and 
then the following constraints must be included 

11 −=∑ =
v
j jφ . (35)

This assumes that the nominal absolute value for the 
manipulated is around 110 ltmin-1 and that the operation is kept 
inside the polytope whose vertices are defined by the linear 
models. The constraints (34) and (35) are then included in tuning 
problem. 

Now, we define the parameters of the predictive feedback 
controller to tune the filter parameters using the method 
proposed by [4]. The orders of the controller's polynomials are 
arbitrarily adopted such that the resulting controllers include the 
predictive version of popular PID controller (v=1 and w=2). 
The predictor of the controller is built using the model 
corresponding to the more sensitive region (model 1). 

Since we demand an integral action in the controller, the 
prediction time J and the parameters of the controller can be 
independently fixed (separability condition (28)). So, the 
prediction time J was chosen such that we obtain the better 
closed-loop performance in each operational region. The 
resultant prediction times are summarised in Table 1. During the 
operation of the system the predictive horizon J is adjusted at 
each sample according with the operational point, which is 
defined by the final values of the reference. 

Notice in this case that it is the polytope that must be shaped 
along the time being considered. Hence, the objective function 
necessary for driving the adjustment must consider all the linear 
models simultaneously. At a given time instant and operating  
 

Table 1: Prediction time J for each model 

 Model 1 Model 2 Model 3 Model 4 
J 12 11 10 11 
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Fig. 5 Open-loop responses to step changes in coolant flow rate 

point, there is no clear information about which model is the 
convenient one for representing the process. This is because it 
depends not only on the operating point but also on which 
direction the manipulated variable is going to move. The simpler 
way to solve this problem is by proposing the following 
objective function  

[ ]∑∑ == += N
k llll

M
l kukekL 0

22
1 )()()( λθ , (36) 

where the time span is defined by N=200 and M=4. The control 
weight λl was fixed in a value such that the control energy has a 
similar effect than errors in the tuning process (λl =0.01). Since 
in this application we found no reason to differentiate the 
models, we adopt θl =1 ∀  l=1,2,3,4 

The problem described to this point has a rapid numerical 
solution using an algorithm based on sequential quadratic 
program method. The parameters obtained are the following 

1;1043.0;1553.0;1655.0 1210 −==−== φγγγ . (37) 
In [9], the authors have previously worked with this reactor 

model for testing different alternatives of predictive controllers. 
They confronted the results with the responses obtained using a 
PI controller whose parameters were adjusted by the ITAE 
criterion; thus, we used the same settings: the gain value, 
52 lt 2 mol - 1 min - 1  and the integration time constant, 0.46 min. 
The simulation test is also similar to Morningred's work and 
consists of a sequence of step changes in the reference value. 
Figure 6 shows the results obtained when comparing the discrete 
controller with the mentioned PI. The set point was changed in 
intervals of 10 min. from 0.09 to 0.125, returns to 0.09, then 
steps to 0.055 and returns to 0.09. The superior performance of 
the predictive feedback controller is obtained through a vigorous 
initial movement in the manipulated variable, which however 
does not overcome the 110 ltmin-1 limit as shown in Figure 7, 
but shows more movements than the PI. This fact happens due to 
the open-loop dynamic of the reactor. 
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Fig. 6 Concentration-response 
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Fig. 7 Manipulated movements 

The problem can be solved increasing the control weight λ in 
the objective function (36) or varying the closed-loop settling 
time through a greater prediction time J (the other option is 
easier to implement because we do not need to retune the 
parameters of the controller). These facts have the same effect: 
reduce the control energy by degrading the closed-loop 
performance. 

CONCLUSIONS 
A new method of designing discrete controllers, for linear 

SISO systems, has been presented in this work. It uses only one 
prediction of the system output J time intervals ahead to 
compute the corresponding future error. Then, the predictive 
feedback controller is defined by introducing a filter that weights 
the last predicted errors. In this way, the resulting control action 
is computed by observing the system future behaviour and the 
present and past errors. These features enable the predictive 
feedback controller to combine the capacity of predictive control 
algorithm, for good setpoint tracking and time delay 
compensation, with the classical use of the feedback information 
to improve disturbance rejection. 

The character of this controller is governed by one parameter: 
the prediction time, which defines the closed-loop settling time. 
Some simple criteria for its selection are provided: they 
guarantee the robust stability of the closed-loop system. The 
controller can use the parameters of the filter to enhance the 
closed-loop performance and to shape the closed-loop time-
domain response. 
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APPENDIX A 
The characteristic closed-loop equation T(z) for the predictive 
feedback control (22) is given by  

[ ]{ }
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 (38)

Recalling 
),0()(),0(1)( zPzN;zPzD uy =−= , 

and combining this expression with (15), the characteristic 
equation becomes 
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(39)

The stability of the closed-loop system depends on the prediction 
time J and may be tested by any usual stability criteria. First, the 
following lemma is introduced. 
Lemma 2 If the polynomial T(z)=t0+Σ p

i=1tiz -i has the property  
0)(

1
>

>
zTinf

z
, 

then the related closed-loop system will be asymptotically stable [2]. 
Hence, applying the lemma 1 to (39) results 

)10()10( )10()10()1()1(
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Γ

Φ , (40)

where KP is the system gain given by )10(1)10( ,P/,PK yuP −= . 
Finally, combining this expression with (10) the stability 
condition for the predictive feedback controller is obtained 
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