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Abstract

In this work a new method for designing predictive

controllers for linear single-input/single-output systems is

presented. It uses only one prediction of the process odtfiote intervals ahead to compute the correspondent future
error. Then, the predictive feedback controller is defined by introducing a filter which weights the pedicted

errors. In this way, the resulting control action is computed by observing the system future behavior and also by
weighting present and past errors. This last feature improves the closed-loop performance to disturbance rejection as
shown through simulations of two linear systems and a nonlinear continuous stirred tank reactor. © 2003 ISA—The

Instrumentation, Systems, and Automation Society.
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1. Introduction

The use of different kinds of linear models to
predict the future behavior of the process output

control sequengeand(c) the first movement of the
control sequence is applied. These operations are
repeated at timé&+ 1.

The main advantage of MPC is its ability to ad-

has stimulated the development of a wide group of dress(a) long time delay(b) inverse responséc)

control methods known as model predictive con-
trol (MPC). Many MPC approaches have been
proposed along the past three decadeseralized
predictive control[1], dynamic matrix controf2],
model algorithmic control[3]), most of them

significant nonlinearities(d) multivariable inter-
actions, and(e) constraints. The widespread use
and success of MPC applications described in the
literature[4] attest to the improved performance of
MPC compared to the classical control algorithm

based on a receding-horizon strategy, i.e., at eachfor control of difficult process dynamics. How-

sampling instank the following actions are taken:
(a) the plant model is used to predict the output
response to a hypothetical set of future control sig-
nals, (b) a function including the cost of future
control actions and future deviations from a refer-
ence trajectory is optimized to give thest future

*Tel.: 54-353-4537500; fax: 54-353-453549B-mail
address Igiovani@fichl.unl.edu.ar.

ever, alternative algorithms have been developed
to address the same problefasalytical predictor
algorithm[5] (APA), predictor controllef6] (PO),
simplified predictive contro[7], variable horizon
predictor[8] (VHP)] because MPC implementa-
tions require sophisticated tools that do not allow
us to apply predictive control at all levels of con-
trol systems. All of these algorithms employ, in
different ways, only one prediction of the future
error to compensate time delay and interactions.
For example, simplified predictive control and PC

0019-0578/2003/$ - see front matter © 2003 ISA—The Instrumentation, Systems, and Automation Society.
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predict the system output at its steady-state value 2. Single-step output predictor

(prediction time is set equal to the convolution

length and then develop the controller structure. In many predictive control techniques, the
On the other hand, APA predicts the controlled model more frequently used to develop the predic-
variable on dead time plus one sample and thentor is the discrete convolution truncatedNderms
uses the predicted error as input into the controller. [4,9]. The reason is twofold(a) the convolution
Finally, VHP uses the predicted error as the input summation gives the model output explicitly and
into the controller, like APA, but the prediction (b) the main impulse response coefficients are
can be freely chosen from the hole prediction ho- 'elatively easy to obtain. In particular, for single-
rizon and it does not impose any constraint on the INPUt/single-outputSISO systems

controller that can be used. N
In this work a new method for designing a 9(3,k)=> huk+J—i), JI<N, (1)
predictive is presented. The approach is based on i=1

the use of only one prediction of the system out-
put, instead of the complete trajectory: it uses a
prediction of the process outpul time inter- . ) ) ~
vals ahead to compute the correspondent future =Kts (ts is the sampling interval h;, i

error. The proposed controller, callgmtedictive ~ — 1,2 - - N are the impulse response coefficients,

feedback controller uses the lasw predicted ~ andu(k+J—i), i=1,2,..,N is the sequence of
errors instead of using plain feedback errors, as INPUtS t0 be considered. However, most frequently

in classical feedback controllers. Hence the re- ;’(J’k) IS ng_’;_czlculated QIreiﬂytfrorT qu)tr?m
sulting control action is computed by observ- J%?Oﬁ frgrothlelecurerzmiﬁp(no k)a Iégcr:?hissnot?cgre-
ing the system future behavior and also by AR :

weiahting present and past errors. So. this control that Eq.(1) can also be written as a function of the
ghting pres P T . predicted value for the previous sampling tihe

strategy combines the predictive capacity, which

results in good performance for set-point

predicts the output valug sampling intervals
ahead,k represents the current time instant

changes and time delay systems, with the classical N

use of the feedback information which imp- 9(J,k)=§/(J—1,k)+_E hjAu(k+J—1),

roves the system performance for disturbance =1 5

rejection. @)
The organization of the paper is as follow: in where Au(k+J—i)=u(k+J—i)—u(k+J—i

Section 2 the expressions for a genedastep  —1). Then, successive substitutions Gf(J

ahead output prediction are presented. In Section 3—1 k) by previous predictions gives

the basic formulation for the single-prediction 5N

controller design is derived. Furthermore, a rela- R ~ - .

tionship between the controller parameter and the y(J,k)=y(O,k)+|Zl 2‘1 hiAu(k+1-1).
settling time of closed-loop response is estab- (3)
lished. In Section 4 the closed-loop stability and

performance of the single-prediction controller are This equation defines d-step ahead predictor
ana|yzed' In Sectio 5 a direct feedback mode is which includes future control actions. Since future
introduced in order to improve the overall system control actions are unknown, the predict@® is
performance. Besides, the relationship between not realizable. To turn it realizable a sta_temer_ﬂ
the proposed controller and other predictive con- MUst be made about how the control variable is
trol algorithms is established. The closed-loop sta- 90INg to move in the future. For example, the sim-
bility and performance of the resulting controller Plest rule is to set all of them equal to zero,

are analyzed in _Section 6. In Secti(_)n 7 we show Au(k+j)=0, Vj=0.1,....J, (4)
the results obtained from the application of the

proposed algorithm to a nonlinear continuous which implies that the control variable will not
stirred tank reactor. Finally, the conclusions are move in future sampling instants. Then, ES)
presented in Section 8. becomes
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No 3. Single-prediction control
}IZ hiAu(k+1—1),
i=T+1

5

where the superscript 0 recalls that condit{dhis
included. The new expressidb) defines a realiz-
able open-loopJ-step ahead predictowhose Z
transform is given bysee Appendix A

J
523,k =90k + >

=1 Although the idea of using only one prediction
of the system output for controlling the system is
not new[5-8], all the authors did not use the pre-
diction time J as a tuning parameter. This is the
case ofsingle-prediction controllerwhose deriva-
tion procedure is quite straightforward from the
open-loop predictor. Revising the assumption used
to go from Eq.(3) to Eq. (5) observe that if just

/0 —
¥°(J.2)=P(J,2)u(2), ) the control movemenAu(k) #0, then

whereP(J,z) is the transfer function of the open- 9(3,k)=9°(3,k) +3a;Au(k). (9)
loop predictor given by
This prediction can be substracted from a refer-

N _ ence variable (k+J) to obtain the predicted error
PJ,z)=3,z7 '+ > hz'7,
i=J+1

&(J,k)=8%J,k) —a;Au(k). (10
andd; is the Jth coefficient of step response. The control action can be computed in the similar
The predictiony®(J,k) is updated by adding way as standard predictive controllers, minimizing
the following performance measure,
d3.2)=y(3.2-9(J.2). Y f(k)=82(3,k) +pAUZ(K), p=0. (11)

This term lumps together possible unmeasured Then, the control action that minimizes this per-
disturbance and inaccuracies due to plant-model formance index is given by

mismatch. Since the future value @fJ,z) is not
available, an estimate is used. In the absence of

any additional knowledge af(J,z), the predicted
disturbance is assumed to be equal to that esti-

mated at the current timé(z). A more accurate

estimate ofd(J,z) is possible if the disturbance
output model and a measure of load disturbance p

1
Au(k) = (- &J.K), (12)

where &°(J,k)=r(k+J)—9°(J,k) and K;=3a,
+ pld;, and the cost of controlling the system is

~Nn2
are available. So, we use a similar equation to Eq. f(k)= 21, e9°(3,k).
(6) to predict the future disturbance. The impor- J
tance of the form of Eq(5) comes also from the At this point of the work we are interested on

fact that the predictio§®(J,k) can be updated by  understanding the meaning of prediction tirde
the current output measuremeytk). Thisis done  and its relationship with the closed-loop response.
by substitutingy(0,k) by y(k), or equivalently the  To do it, we replace\u(k) andK in the closed-

correction is implemented bﬁ(z) adding to Eq. loop predicted errofEq. (10)], so we can write it
(6), in any case we obtain as function of@°(J,k) andp,
§°(3,2)=y(2) +[P(3,2)-Gp(2)]u(2), (® é(J,k)zazi 20(J.K).
JTPp

where Gp(z) is the plant model. This equation
defines a realizable correctdestep ahead predic-
tor. Hence there are two type of predictors: one is &(J,k)=al%J k), |a<i,

the open-loop predictor that only depends on the

values of the past inputs onljEg. (6)] and the  where « is the remaining error after the control
other is the corrected predict@®) which receives  action Au(k) is applied, the control cosi is re-

a correction through the feedback measurement. lated with « through

Then, definingg(J,k) as a fraction o°(J,k),
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QO(J,k) P Au(k)
e(k) — Ky u(k)
P(J,2)
$°0U.5)
- Gp(z)
y(k)

Fig. 1. Structure of the single-prediction controller.

a
— ~2
P

This equation means that the closed-loop error
will be bounded byle(ky+J)|<a|&%(J,ko)|, Vt
>Kko+J, wherek, is time instant where the set-
point changes. Therefore the prediction tirde
could be seen as thdosed-loop settling timéor

an errora|e(ky)|. When the control cosp is set

to 0, which is equivalent tee= 0, the performance
measure(1l) and the predicted closed-loop error
e(J,k) becomes zero, and the control change is
given by

Au(k)= i‘eo(\],k). (13
ay

On the other hand, whep is set toc (which is
equivalent toa=1) no control action is taken and
&(J3,k)=2%J,ko) =e(ky), Vk>k,.

Using Z transform on Eq(12) shows that the
single predictive control algorithm is basically an
integral action applied on the predicted error

1
u(z)=— 29(J,2). (14)

Kyl—z1

Combining Eqs(14) and(8) the result is the con-
troller,

1

(1-z HK;+P(J,2)—Gp(2) '
(15

Fig. 1 shows a block diagram @(z), where it is

C(2)=

Leonardo L. Giovanini/ ISA Transactions 42 (2003) 2026

then assumed constant from every sampling in-
stantk into the future. In other words, given all the
input changes accounted for until the instlanthe
single-prediction controlleobserveshe value that
would be reached by the system output if no future
control action is taken and ther(k) is computed
such to the performance indé€x1) is minimized.

Hence ifd(z) actually remains constant after the
instantk and p=0, then the output reaches the
reference valugd sampling intervals later.
Note that controllef15) is realizable if and only
if @;#0. Then, the prediction tim& should be
chosen such that
Y
J=int| —|+1,
ts
wheret, is the process time delay. This fact means
that the open-loop predictd?(J,z) compensates
the process time delay. In the following sections
we assume thga=0 to simplify the expositions,
however, the results that will be obtained are the
same whether the control weighis set to zero or
not.

4. Algorithm properties
4.1. Stability analysis

To analyze the effect of the prediction time over
the closed-loop stability, we substituted the con-
troller (15) in the closed-loop characteristic equa-
tion to obtain

(1-z"Y)3,+P(J,2)+[Gp(z)— Gp(2)]=0.

Then, combining this expression with Eq#8)
and(A2), and using the convolution model of the
process, this equation becomes

N

N
A+ 2 27+ Y (h—hy)z
i=3+1 =1

(16)

Using a result obtained by Desoer and Vidyasagar
[10] for lineal discrete systems, we derive the fol-

apparent that it uses the plant model to estimate |owing stability condition(see Appendix B

the output at the present tinj€0,k). This value is
then compared with the actual measuremg()
to detect modeling errors and external distur-

bances. The global detected disturbamite) is

N N .
X R+ =R+ > h|<a.
i=J+1 i=1 = 1

(17)
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The left side of this equation has, ordered from left
to right, the following three termda) the contri-
bution of the nominal modelb) the additive un-
certainty, andc) the effect of the truncation model
error; all of them are related with the convolution
length N. When there is not uncertainty in the
system and ifN is large enough to neglect the
truncation error, Eq(17) becomes

N

i:;H lhil <3,

(18

This condition guarantees that—for any time-
invariant stable plant—there is always a valuel of
for which the closed-loop system is asymptotically
stable. We must note that if the plant has a mono-
tone step response, the stability conditid@8) can

be written as

B 14~ 1.
ajstb>§E hiZEKp’

whereKp is the process gain.

Generally, control engineers assume that a fam-

ily W of M linear models is capable to capture a

211

SinceJg;, guarantees the closed-loop stability for
all the models ofW, the open-loop predictor
P(J,z) can be directly built from the nonlinear
model. This fact improves the accuracy of the
open-loop prediction and the closed-loop perfor-
mance. The nonlinear predictor can be built from
the nonlinear model employing a numerical inte-
gration scheme or using a local model network
[11].

A final remark is for recalling that the stability
condition given by Desoer and Vidyasada0] is
a sufficient one. Consequently, stability conditions
(17)—(19) become conservative and impose a too
high lower bound for selectind. So, always there
are prediction times lower thah,; for those the
closed-loop system will be stable. The fidsthat
guarantees the closed-loop stability can be found
through a direct search, because the solution space
is bounded,

1£‘]$Jstb'
4.2. Performance analysis

The tuning of the single-prediction controller

moderate nonlinearity. Therefore to guarantee the implies a discrete optimization problem having a

stability of the system we must chooselauch
that it guarantees the stability of all the plants of
W. Then, the robust stability problem becomes the
problem of finding & such that Eq(17) is satis-
fied for each model o#V. Using global additive
uncertainty and choosinlyl large enough to ne-
glect the truncation error, Eq17) becomes

N N
> [h|+> max|hl-h|<7; . (19
i=J+1 i=1 le[1,M] sth

Another way to solve the robust stability problem
is to find aJ that satisfies simultaneously EJ.8)

for all the models ofW. In the case of a system

with monotone response, the stability condition
(19) can be written as

Jstp=maxJy;Jz;...:dm),

whereJ,, I=1,2,..,M is the prediction time for
the Ith model of the family)V. This expression
means that we can choose a different prediction
time for each model ofV, then we selected the
bigger prediction time.

At this point, a remark about how to build a
predictor for nonlinear system must be made.

bounded solution space
Je N, 0=<J=<N.

Hence, independently of the performance index
being used, the general solution results from a di-
rect search in the solution space. However, when
the ISE index is used, the optimal controller re-
sults from the solution of the following problem:

min|le(2)||3= min|[&(2)[d(2)—r(2)]|
Gc(2) Gc(2)

2

which is equivalent to minimize the sensitivity
functione(z) over the whole system bandwidth,

min|[&(2)[,= min[|1-Gp(2)Ge(2)|lz,
Gc(2) Gc(2)

and to guarantee the internal stability of the
closed-loop systeriil2]. Under these design con-
ditions the sensitivity function will be minimum
when the open-loop controll€sc(z) is given by

Ge=Gpit,

whereGp. is the nonminimum phase portion of
the plant(right-half plane zeros and time dejay
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For the single-prediction controller, this condition

is equivalent to choose a prediction such that the

Jth coefficient of the step respon& has the
same sign as the stationary process gain, i.e.,

JlSE:ki+1l (20)

wherek; is the number of samples which covers
the effect of the minimum phase portion of the
plant.

When J=J,sg, the controller gaird; - is the
largest. Therefore it provides a vigorous control
action and attempts to drive the system output to
the reference inJ,sg time intervals. In this case,
the single-prediction controller becomesdaad-
beat(minimum-time controller

1

1

(1-z Y3, +P(Jise.2)—Gp(2)
(21)

When J is increased the controller gain and the
closed-loop performance decreases. In casd of
=N the controller gain is the inverse of process

gain (3,=Kp) and the controller drives the sys-
tem output to the reference N time intervals.
Thus only one significant control move is ob-
served in absence of uncertainyminimum-
energy controller and the single-prediction con-
troller becomes aredictor controller[6],

C(2)=

C(2)= (22

ay—Gp(2)
To finish this analysis, we give a heuristic com-
parison of the closed-loop performance achieved
by the single-prediction controller with that of a
MPC controller. To carry out this comparison we
analyze the control actions computed by both con-
trollers. They are obtained by replacing the open-

loop error by their components, assuming a step

change in the setpoint, in the controller equations
[4,9] and combining them with the predicted out-
put (8). The result for the single-prediction con-
troller is

u(k)=u(k—1)+K; *e(k)
—K;[P(3,2)-Gp(2)Ju(k—1),

(23
and the result for the MPC is

Leonardo L. Giovanini/ ISA Transactions 42 (2003) 2026

\
u(k)=u(k—1)+[zl kj}e(k)
=

\%
- 2, klP(j.2-Gp(@)]u(k-1),

(24)

where V is the prediction horizon and;, j
=1,2,..,Vis thejth element of the gain vector. In
these equations we can see that both predictive
controllers have a similar structure: the two first
terms, ordered from the left, are a discrBtecon-
troller and the last term is a weighing contribution
of the future open-loop deviations at timg

+i)ts,
AYO(j, k) =9°(j k) =V(k), ]

They only differ in the number of prediction gains
employed. So, it is easy to see that we can choose
the prediction timeJ such that both predictive
controllers, single-prediction and DMC, have
similar performances.

Example 4.1 To analyze the sensitivity of the pro-
posed controllers to the parametérwe consider

a heat exchanger, whose hot outlet temperature is
controlled by manipulating the cold stream flow
rate, modeled by [13]

=1,2,...V,J.

B 35.41 )
Gp(S)——(4.$+1)5. ( 5)
The discrete model employed to build the single-
prediction controller is obtained by assuming a
zero-order hold at the input of continuous model
(25), a sampling timés=2 and the convolution
length N was fixed in 50 terms. The prediction
time is chosen using the stability condition (18), so
J must be

J=12.

Fig. 2 shows the responses to a setpoint change
for different values of]. As it was anticipated,
small values of] give more rapid response and
require large initial movements in the control vari-
able (Fig. 3). Observe also that the closed-loop
system is stable even for valuesJo$maller than
the limit provided by Eq. (18)

Now, we compare the closed-loop responses
provided by single-prediction controllers with that
provided by a DMC controller. The DMC control-
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R ]
P L T A Reference 4
S —— SPC(J=6) ]
I e O SPC(J=12) ]
5 - 1
3 S T N N SPC(J=24)
g 5 0 v NN = 7]
E N SPC (J=32) ]
E 7| ]
(o) +
S s ]
(1) E
» 9 ]
-10 L T S AN
11 ]
-12 1 L 1 D ]
60 80 100

Time

Fig. 2. Closed-loop responses of the linear system to a step change in the setpoint, showing the effect of the prediction
time J.

ler was designed following the tune procedure de- five samples, and the condition number of the con-
veloped by Rahul and Cooper [14]. The plant troller ¢ was fixed to 500. The control weight
model (25) was approximated through a first- was computed using the following formula [14]
order plus time delay model

—10.1s

2.056+1’

U T
AN=—|35—-+2———
R

5 |Kp=373.

Gp(s)=—354

which was discretized assuming a zero-order hold  Fig. 4 shows that the single-prediction control-
at the input and a sampling timg=2. The con- ler can provide a similar performance to that ob-
volution length is the same that we used to build tained by the DMC controller. This figure also
the single-prediction controller (850). The pre-  shows thatl can be selected such that the perfor-
diction horizon V was set equal to the convolution mance or the robustness of the system be im-
length (V=N), the control horizon U was fixed to proved, by reducing or increasing

2.0 . ; . ; . ' , '

--------- SPC(J=12)
------------- SPC (J=24)
----------- SPC(7=32)

U

05 i -

0.0 | 1 Il " 1 i 1

Time

Fig. 3. Control variable correspondent to the closed-loop responses shown in Fig. 2.
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% S S Reference i
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< O SPC(J=12)
= L ~ SPC(1=24) ]
5 =
5 st ;
£ DMC J
= 5 ]
° ]
6 7+ ]
S L
D 8 ]
%]
-9 | 1
-10 |
-1 ]
A2 . l I :
L = P 60 80 100

Time

Fig. 4. Closed-loop responses of the linear system to a step change in the setpoint, comparing the response of the DMC and
single-prediction controllers.

5. Predictive feedback control the prediction is calculatedFig. 5. Hence the
control movementiu(k) is given by

From the analysis of the closed-loop perfor-
mance in Section 4.2, it is clear that the single- w
prediction controller provides a similar closed- _ * 20 .
loop performance to a MPC controller. This fact A“(k)‘;o aj &°(Jk=1), @7
means that a single-prediction controller shows a
poor closed-loop performance when disturbances ~0 o
and uncertainties are present in the system, spe-Where&’(J,k—j) is the J step ahead open-loop
cially when they are assumed to be time invariant, €or computed at time—j. The predictive feed-
This is true even when the underlying system is Pack controller can be de”YOEd from EQ?7), re-
time invariant[15]. placing the open-loop errog (q,lg—J) by their

A way to solve this problem is to introduce a components and foIIowmg_ a similar procedure to
direct feedback mode in the computation of the ©btain Eq.(15). The result is the controller
control action. This idea can be accomplished by
including a filter F(z) in the single-prediction

control law (14). The filter not only includes a C(z)= F(2) ’
feedback action in the predictive controller, but (1-zYH+F(2)[P(J,2)-Gp(2)]
also introduces a new set of parameters to allow (28)

more demanding performances. Since the control

law (14) includes an integral mod&,(z) can take ) o
the following form: whose structure is shown in Fig. 6. We must note

that F(z) adds additional degrees of freedom to

1 X Y , improve the closed-loop performance. This fact
F(Z):gzo qu_J:,ZO afz), (26 makes more difficult the controller design since
= = now it is necessary to tune the filter parameters
wherew e Z is the filter order andy;, j e[Ow] (the coefficientsqy”, j=0,1,..,.w and the order

are the new controller parameters. Since the con-w). One way to solve this tuning problem is by
trol law (14) employs only one prediction of the using a method for a fixed-structure controller like
process future behavior, the delay operaof, | those proposed by Abbas and Sawlyss| or Har-
=0,1,..,w, is applied to the time instant at which ris and Mellichamg17].
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Prediction Horizon

i=1,..,V
r(k+i)
y(k-j) T G
h ~—— ___:-_-_'"-' --------- u(®)
- Control Horizon
i=1,..,U
t
k-2 k-l
Fk-i+J)
R -—i—’k———- eI, ki)
IHH o 5000, k-1)
y(k-j) »
b
*‘0\\\ _+
-9 o)
t
k2 kel k-wed K+

Fig. 5. General MPC and predictive feedback setups.

5.1. Relationship with other control algorithms 1 w .
C(z>=m2 qfz ). (29
It is easy to see that the structure of the predic- 1=0
tive feedback controller is a generalization of the
internal model control parametrization of the feed-
back controllergFig. 6). Depending on the value
of the prediction time and the parameters of the
controller we have the different controllers that
would be studied in the specialized literature.
WhenJ=1 the open-loop predictoP(J,z) be-

When the prediction time is set equal to the time
delay (J4ts=t4,) the open-loop predictaP(J,z)
becomes the system model without time delay, and
the predictive feedback controll&28) is theSmith
predictor of the reduced order controllé29),

~ F
comes the system mod€&p(z), and the predic- C(z)= (2 — )
tive feedback controllef28) is a reduced order (1-zH+F(2)[1-z]Gp(2)
controller [6], (30
Ao Au(k)
J.k
(k) —() .0 F(2) ) u(k)
. “ o
5.k
P{J,z)
$k) N
Gp(2)

Fig. 6. Structure of the predictive feedback controller.
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In this case, the open-loop predictor only compen- This controller is derived from the predictive feed-
sates the time delay present in the system. In theback controller(28) by fixing its parameters to
case ofJ=J,y+1 and the parameters of the filter
are free to be tuned, the predictive feedback con-
troller becomes thanalytical predictor algorithm
[5].

When the prediction time is greater than the
time delay(J4<J<N), w=0, andq} =3, ! the
resulting controller is thesingle-prediction con-
troller,

— — 1 =1 _ ~—1
w=1, qo—mal\, , and Q1—ﬁam :
Observe that varying the parametersind 8 gov-
erns the character of these controllers influencing
the speed of closed-loop response. When the pa-
rameters are in the lower lim{f8B=0 anda=1),
the controllerg33) and(34) become the predictor
controller (32), obtaining the open-loop response.
(31) In the other caséB=1 anda=x) the controllers
A+ P(J,z)—ép(z)' (34) and (33)_ t_)ecome theT i_nverse_of the system
model, obtaining the minimum time response.

which was studied in the previous sections. The Varying the parameters between these limits we
character of this controller is governed by the pre- modify the characteristics of the closed-loop re-
diction imeJ, which directly influences the speed Sponse, speeding up or slowing down the re-
of closed-loop response. For the particular choice SPonse, in similar way as the single-prediction
of the prediction timel=N, we can derive a fam-  controller with the prediction timd.

ily of predictive controllers whose main character- ~ Finally, we can see that predictive feedback con-
istic is to obtain a closed-loop response that is at trol has a strong connection and significant differ-
least as good as the normalized open-loop re- €nce from VHP[8]. The approach employed by
sponse. If no other design condition is demanded, Poth frameworks is similar. They employ one pre-

the controller(23) becomes theredictor control-  diction of the system output, which can be freely
ler [6], chosen, and use the predicted error as inputs into

the controller. However, VHP by itself is a predic-
tive structure, not a controller, that can be added to

C(2)=

C(z)= — . (32 another control algorithnffor example PI, PID, or
an—Gp(2) simplified predictive contrgl It is employed to
compensates time delay and interactions and pro-
Fixing the parameter of the controllge= aZy*, vide a built-in feedforward scheme. In this way,
a=1, we obtainsimplified model predictive con-  VHP is similar to a single-prediction controller.
troller [7], Furthermore, VHP computes the whole trajectory,
like standard predictive control, and then selects
Clz)— a~ ' 33 one prediction.
ay—aGp(z)

The parameter provides a way to speed up the ©- Predictive feedback properties

closed-loop response and build a dead-time com-
pensation in the controller, but it does not give

offset-free responses in the presence of modeling N dv the eff ¢ the fil q
errors. To solve this problem, Chawd al. [18] ‘Now, we study the effect of the filter and pre-
diction time on the closed-loop stability. Then, we

proposed the inclusion of a first-order filter into . o
the control law such that the resultant controller is _SUbSt'tUte the predictive feedback controli@s)

the conservative model based controller in the characteristic closed-loop equation, which
becomes
(1-pz7Y T(z H=(1-z H+F(z HPJ,z°Y)
(1-B)ay—(1- Bz HGp(2) +F(Zil)[Gp(Zfl)—ép(Zfl)].

0=<p<1. (34) (35

6.1. Stability analysis

C(2)=
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Combining the transfer function of the predictor
(A8) and using the discrete convolution, the char-
acteristic equatiorm(z~1) can be written as fol-
lows:

w
(1—2‘1)+JZO qfaz it

w N
"'20 qf 2 Rz
j=

i=J+1
w N
+> qf > (h=h)z "]
j=0 i=1

hz i-i=0. (36)

w 0
+2 qf >

j=0 i=N+1
The stability of the closed-loop system depends on
both the prediction time) and the filter param-
eters. So, it may be tested by any usual stability
criteria. Using the same procedure as in Appendix
B, we can derive the following stability condition:

N N .
2 R+ 2 =R+ X | <3F;.
i=J+1 i=1 I =N+1

Note that this condition is the same as that derived
for the single-prediction controllefEq. (17)].
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ating region so that we obtain a similar closed-
loop response for each one of them. Then, during
the operation, we vary according to the operat-
ing region controlled at each sample.

6.2. Performance analysis

Finally, we analyze the effect of the filter over
the overall closed-loop performance and compare
the predictive feedback controller with a standard
MPC controller, such as the DMC. To carry out
this analysis we compare the control action com-
puted by both predictive controllers.

The control actions generated by the predictive
feedback control law27) are obtained by replac-
ing the open-loop errog®(J,k—j) by their com-
ponents, assuming a step change in the setpoint,
and combining with the predicted outp(8), the
result is

u(k)=u(k—1)+ 3 are(k—])

+ 2 47 [P3.2) = Gp(2)Ju(k—).

(37)

However, we should note that the parameters of In this equation we must observe that the last term

the filter g, j=0,1,..,w affect the closed-loop
stability. These facts look contradictory, because it
is clear from the characteristic EG35) that the
closed-loop stability depends simultaneously on

is a weighing contribution of the future open-loop
deviations at timgk—j+J)Tg,

AYO(3. k=) =9I k=) =Y(k=]).

both. However, these results can be interpreted as

follows: the closed-loop stability for the predictive

It only depends on the past control actions and the

feedback controller is obtained by the independent system model, so it states the effect of the past

selection of the prediction timé and the param-
eters of the filter, such that they independently

control actions on the future behavior of the sys-
tem. This fact implies that it has significant influ-

guarantee the closed-loop stability. These facts ence on the closed-loop performance when we

mean that the prediction timkshould be selected
like the single-prediction controlldiEqgs. (17) to
(19)], and the filter must be tuned as there is no

time delay in the system, because it has been com-

pensated by the open-loop predictor.

Since the prediction timg can be fixed inde-
pendently of the filter's parameters, we can vary it
such that the closed-loop performance is im-
proved. Varying we modify the closed-loop set-
tling time, speeding up or slowing down the sys-
tem response. So, if we have to control a nonlinear
system we can choose a differehfor each oper-

have to track the setpoint. However, this term has
a negligible influence when we have to reject a
disturbance, because it has little information about
the disturbance. The two first terms of E®7),
ordered from the left, are the time implementation
of areduced order controlleof orderw [6], and
commands the system behavior during the distur-
bance rejection. It is clear now that the control law
(37) includes a direct feedback action based on
measured error.

Now, we compare the performance achieved by
the predictive feedback with that of an MPC con-



sinc(i) Laboratory for Signals and Computational Intelligence (http:/fich.unl.edu.ar/sinc)

"Predictive feedback control"

ISA Transactions Journal. Vol. 42(2), pp. 207--226, 2003.

L. Giovanini;

218 Leonardo L. Giovanini/ ISA Transactions 42 (2003) 2026

Table 1

Predictive controller parameters and results.

Controller parameters fset foist

N=60,V=54,U=4,\=0.14 7.7164 3.0323

w=1; q=[0.7280 0.098Y 7.7061 2.5029
w=2; q=[0.7468 0.0825 0.09Q2 7.6938 2.4595
w=3; q=[0.7614 0.0979 0.0792 0.08]L6 7.7005 2.4229

troller. Recalling Eq(24) we have the control ac-
tion generated by a standard MPC controller,

\%

u(k)zu(k—1)+[ 21 kj]e(k)
=

\%
=2 klP(.2-Bp@)]utk-1).

(38)

point tracking and disturbance rejection. To evalu-
ate the closed-loop responses we consider the fol-
lowing linear plant

e~ 50s

GP(S) = (150+1)(25s+ 1)

which was used by Rahul and Cooper to evaluate
a tuning procedure for a DMC controller. The dis-
crete transfer function is obtained by assuming a
zero-order hold at the input and a sampling time

In this equation we can see that MPC controllers ts=16. The tuning parameters for the DMC con-
only use the last measured error and the two first rg|ler are same as those using by Rahul and Coo-

terms, ordered from the left, are a discrete PI con-
troller. Like the predictive feedback controller, the
last term is a weighing contribution of the future
open-loop deviations at time(k+j)tg, |
=1.2,...V.

Comparing Eqs(37) and (38) we can see that

predictive feedback controller uses more feedback

information than standard predictive controllers to
compute the control actions. Therefore the predic-

per in his work [14] (see Table 1)

The predictive feedback controller was designed
by solving the basic tuning problem proposed by
Giovanini and Marchetti [19] with the objective
function

N
f=k21 e?(k)+NAu?(k), (39)

tive feedback controller reduces the effect of dis- o, given filter orders and a prediction time £5).
turbances more aggressively than any standardthe order of the filter as chosen such that the re-

MPC controller, and has better performance than
MPC, especially for disturbance rejection problem
or important uncertainties present in the system.

A final comment about the predictive feedback
can be made. From E37) it is easy to see that a
predictive feedback controller combines the ca-
pacity of the predictive control algorithm for good
setpoint tracking and time delay compensation,
with the classical use of the feedback information
to improve the disturbance rejection. Furthermore,
for controlling a nonlinear system the prediction
time J can be varied to improve the closed-loop
performance by modifying the closed-loop settling
time.

Example 6.1.In this example we compare the

sulting controllers include the predictive version
of popular Pl and PID controllers (w1,2,3). The
problem described to this point has a fast solution
using an algorithm based on the descendent gra-
dient method. The filter parameters obtained for
each controller are shown in Table 1

The results obtained in the simulations are sum-
marized in Figs. 7 and 8. They show the perfor-
mance achieved by the predictive controllers nor-
malized to DMC performance. It has been
computed as

1:DMCx_fPFx

px=100 ,  X=SetDist,

1:DMCx

performances achieved by a predictive feedback where fpyc «,fpr« is the performance achieved

controller and a standard MPC controller for set-

by DMC and predictive feedback controllers for
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Fig. 7. Performance comparison between DMC and predictive feedback, using(88jex

setpoint tracking and disturbance rejection. Fig. 7
shows the normalized performance measured with
Eq. (39), while Fig. 8 shows the normalized per-
formance measured with the ISE index. The pre-
dictive feedback controller exhibits a similar per-
formance to the DMC controller (Fig. 7) for the
setpoint tracking. Although a better response is
obtained by the predictive feedback controller
(Fig. 8), it uses more control energy than DMC
(Fig. 7). On the other hand, the predictive feed-
back controller shows an important improvement
in the closed-loop performance for disturbance re-
jection. A better response is again obtained by
predictive feedback controller (Fig. 8) and the
controller uses a similar control energy than the
DMC (Fig. 7).

7. Simulations and results

Let us consider the problem of controlling a
continuously stirred tank react0€STR) in which
an irreversible exothermic reaction is carried out
at constant voluméAppendix Q. This is a non-
linear system previously used by Morningretl
al. [20] for testing predictive control algorithms.
Fig. 9 shows the dynamic responses to the follow-
ing sequence of changes in the manipulated vari-
able g.: +10, —10, —10, and +10 Imin™%,
where the nonlinear nature of the system is appar-
ent.

Four continuous linear models are determined
using least-squared procedures to adjust the com-

20

O P
—A—

Improved Performance
Percentage [ % ]

]

i
i
|
|
DMC 1

2 3

Filter Size (w+1)

Fig. 8. Performance comparison between DMC and predictive feedback using the ISE index.
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Fig. 9. Open-loop responses of the CSTR concentration to step changes in the coolant figw(tjate

position responses to the above four step changesactor using the polytope idea. These models are
in the manipulated variable. Notice that those obtained byZ transforming the continuous trans-
changes imply three different operating points cor- fer functions and assuming a zero-order-hold de-
responding to the following stationary manipu- vice is included. This representation should be as-
lated flow rates: 100, 110, arg® | min~ . Table 2 sociated to theM vertex models in the tuning
shows the four process transfer functions obtained, problem formulation.
In this application we stress the fact that the
Ca(s) . "
=Gp(s), |=1-4. reactor operation becomes very sensitive once the
dc(s) : manipulation exceedkl3 Imin 1. Hence, assum-

They define the polytopic model associated to the ing that a hard constraint is physically used on the

. _l g _
nonlinear behavior in the operating region being copla_lnt flow rate ai10 Im|_n_ , an additional re
considered. striction for the more sensitive modé@hodel 1 in

Like in Morningred's work, the sampling time Table 2 must be considered for the deviation vari-

period was fixed at 0.1 min, which gives about ableu(k):

four sampled-data points in the dominant time uy(k+i)<10, O<i<V. (40)
constant when the reactor is operating in the high

concentration region. Then, four discrete linear Besides, a zero-offset steady-state response is de-
models are used for representing the nonlinear re-manded, then we include the following constraint:

Table 2
Vertices of the polytope model.
Change Model obtained
Model 1 —0.00083+0.033s2—0.018+0.67
0c=100,Aqc=10 Cr.(9= 75 1,009+ 303557 21,495+ 163.7°
Model 2 —1.3 105 s34 0.0065s2+ 0.3545+ 3.35
qc=110,Aqc=-10 G~ 910,557 101,375+ 334,805 834.6°
Model 3 6.7 1076 s3—0.0055s2+0.6525+9.35
Gc=100,Agc=—10 Cr(9= 5752845571 304.6752+ 1737 155+ 3718.6°
Model 4 —1.07 10% s34+ 0.0256s2+0.143s+0.457

e—O.Ss

qc=90,Aqc=10 Cr(8= ~7 155859+ 49,6957+ 128.055+ 178.4
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Table 3

time J. It is fixed such that the robust stability of
Nominal CSTR parameter values.

the system is guaranteed. The prediction time sat-

Parameter Nomenclature Value isfies
1
Mecisnl:::ee:tration o o4 molt Jsto=max(J;;Jz;J3;d4) = 10. (42)
Ri:ﬁozrawre T 438.5K Notice in this case that it is the polytope that must
Coolast flow rate q 103.41 | mirr* be shaped_ along th_e time being con5|der_eq. Hence
Process flow rate qc 100 I mir- th(=T objective functlon_ necessary.for driving the_
Feed concentration Cag 1 mol -2 adjustment must con_S|der_aII the linear models si-
Feed temperature To 350 K _muItangoust. At a given time |'nstant gnd operat-
Inlet coolant Teo 350 K ing point, th(_are is no cle_ar information about
temperature which model is the convenient one for represent-
CSTR volume v 100 | ing the process. This is because it depends not
Heat-tranfer term hA 7.0 10 only on the operating point but also on which di-
calmin 1K1 rection the manipulated variable is going to move.
Reaction rate Ko 7.2%10%° min~! The simpler way to solve this by proposing
constant o ) M v
Activation ener E/R 1.0x10" K~
Heat of rea(:tiorgwJy AH —2.0x10° f=|21 k21 yle(k)?+pAuk)?], (43
calmol ! T
Liquid densities PPe 1.0x10° gl where the time span is defined by=200. The
Specific heats Cp,Cpe 1.0calgk™? control weightp was fixed in a value such that the
control energy has a similar effect as errors in the
tuning procesgp=0.01). Since in this applica-
y(k) <1.05r(k), O<k<N, tion we found no reason to differentiate the mod-
els, we adopty,=1, | e[1,M]. The problem de-
le(k)] =5.010% 50<ks=N. (41 scribed to this point has a rapid numerical solution

using an algorithm based on the gradient method.

This assumes that the nominal absolute value for The parameters obtained are the following:

the manipulation is around00 Imin ! and that
the operation is kept inside the polytope whose
vertices are defined by the linear models.

Now, we define the parameters of the predictive
feedback controller to tune the filter parameters
using the method proposed by Giovanini and Mar-

(o=0.2313; q;= —0.1550;
g,= —0.2531; q3=0.2157. (44)

Morningredet al. [20] have previously worked

chetti[19]. The filter sizew is arbitrarily adopted
(w=23) and the predictor of the controll&t(J,z)

is built using the nonlinear modéC1), assuming
the nominal parameters val(&able 3. An adap-

with this reactor model for testing different alter-
natives of predictive controllers and confronted
the results with the responses obtained using a Pl
controller whose parameters were adjusted by the

tive Runge-Kutta integration scheme is used to ITAE criterion; thus we used the same settings: the
compute the system output prediction, with the gain value52 >mol *min~! and the integration
initial state given byX(k)=[Ca(k) T(k—5)] at time constant 0.46 min. The simulation tests are
each sample. Since the inlet coolant temperaturealso similar to Morningred’s work and consists of
Tco(t) is measurable, we include it in the predic- a sequence of step changes in the reference value
tor to improve the rejection to this disturbance. and a sequence of load changes in the feed stream
Because the controller predictor is built using concentration and the refrigerant inlet temperature.
the nonlinear model, it is reasonable to assume Fig. 10 shows the results obtained when com-
that there are no uncertainties. Therefore we build paring the discrete controller with the mentioned
the open-loop predictor of the tuning probl¢i®] Pl. The setpoint was changed in intervals of 10
using the same model as that used to simulated themin. from 0.09 t00.125 molI'%, returns to 0.09,
system output. Finally, we choose the prediction then steps to 0.055 and returns Q@9 mol I'L.
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Fig. 10. Closed-loop responses of the CSTR concentration to a sequence of step changes in the setpoint using the predictive
controller with one-side constraint in the manipulation and a PI controller adjusted with ITAE.

The superior performance of the discrete control- bility is observed in the discrete controller sug-

ler is obtained through a vigorous initial move- gested in this paper.

ment in the manipulated variable, which, however, Fig. 13 shows the manipulated movements cor-

does not overcome tHELO I min ! limit as shown responding to the repsonses in Fig. 12. In this fig-

in Fig. 11, but shows more movements than the PI. ure we see that the excursion g(t) is more
Fig. 12 shows the results obtained when com- important in the case of the PI, but smoother.

paring the discrete controller with the mentioned

Pl under load changes. For testing the disturbance8. Conclusions

rejection the following sequence of changes are

made: first the feed stream concentrati©ag(t) A new method to design predictive controllers

changes from 1 td.05 moll"* and 10 min later  for linear SISO systems has been presented in this

the refrigerant temperatur@.o(t) goes down  work. It uses only one prediction of the system

10°C; then Cagp(t) and Tco(t) return to the  outputd time intervals ahead to compute the cor-

original values, with a 10-min difference between respondent future error. Then, the predictive feed-

them. A Dbetter disturbance rejection capa- back controller is defined by introducing a filter

110 |
—— Predictive Feedback

o
o

© o
o IS

Coolant Flowrate [ /t min’" ]
8

85 n 1 n 1 n 1 n 1

Time [ min]

Fig. 11. Manipulated movements corresponding to the responses in Fig. 10.
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Fig. 12. Closed-loop responses of the CSTR concentration to a sequence of load changes using the predictive controllers.

which weights the last predicted errors. In this analyzed. An extensive analysis of closed-loop

way, the resulting control action is computed by performance, compared with standard MPC con-

observing the system future behavior and the trollers, have been also carried out.

present and past errors. These features enable the In spite of the results obtained in his work, sev-

predictive feedback controller to combine the ca- eral questions about extension to multivariable

pacity of predictive control algorithm for good set- systems and how we can address on-line con-

point tracking and time delay compensation, with straints in the input and output variables still re-

the classical use of the feedback information to main open as future research topics. A future work

improve the disturbance rejection. can also include an on-line tuning of the predictive
The character of these controllers is governed by feedback parameters such that the performance re-

one parameter, the prediction time, which directly mains optimal and the constraints would be full-

influences the speed of closed-loop response.filled for every sample.

Some simple criteria for its selection are provided:

they guarantee the robust stability of the closed-

loop system. The predictive feedback controller Appendix A: Predictor transfer function

has additional tuning parameters: the parameters

of the filter. Robust stability and closed-loop per-  Eq. (5) defines a realizablé-step ahead predic-

formance issues of these controllers have beentor in the discrete time domain. The predictor is

10 | i
) Predictive Feedback

=3
*

o
[=1

©
@

90

Coolant Flowrate [ /t min ™|

85

Time [ min]

Fig. 13. Manipulated movements corresponding to the responses in Fig. 12.
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realizable since only past inputs to the system are _ >
used to computed the future behavior. Expanding 9°(J,2)=¥(z)+ h12*1+_2 hiz !
this equation results in 1=2

N +HJ,2)—(hyz *+H(12)z Y |u(2),
§°3,K)=9(0J) + 2 MiAu(k+1-i)
1=
(A6)
N
ot 2 hAu(k+I—i), where we can identify théth coefficient of step

i=J+1
response,

and taking theZ transform gives J
A,z '=h,z7 1+ > hz 4,
9°(3,2=9(2) =2

N N
- . - . and the plant model
+H X ht 7+ X i P
i=2 i=J+1 ~ ~
H(0,z2)=h;z '+ H(1,2271=Gp(z).
X (1—z YHu(z). (A1) ' P

Hence the expressioi\6) can be written
Defining the following function:

§°(3,2)=9(2)+[3,2 *+H(J,2) - Gp(2)]u(2),
N
-~ (A7)
> hZ7l, 0=J=N-1
H(J,z)=14 i=3+1 dsi
0. J=N, and, since
(A2) ~ ~
¥(2)=Gp(2)u(2),
Eqg. (A1) can be written as , ,
the Z transform of thel-step ahead single predic-
9°(3,2)=9(2)+ [H(L2)++++H(3,2)] for s given by
X (1—z"YHu(2). (A3) P(J,2)=3,z '+ H(J,2), (A8)
Note that there is a recursive relationship, ie.,

H(M,2) =Rz 1+ H(M+12)2 L (Ad) §°1.2)=P(J.2)u(2). (A9)

Then, combining Eqs(A3) and (A4) and rear-  Appendix B: Robust stability condition for

ranging gives single-predictive controller
N The characteristic closed-loop equatidfz 1)
9°(3,2)=9(2)+ > hiz 1+ H(J,2) for the single-prediction controller is given by
=2
T(z Y)=3;+HJ,z7H+Gp(z 1) —Gp(z7Y).
—H(12)z tu(2). (A5) (B1)

5 Using the discrete convolution and E@\2), the
Adding and substractinh,z” - and operating last expression can be written in the following
gives way:

1
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N

T(z hH=3a;+ >

i=J+1

N 0
+E (hi_ﬁi)z_i+ 2 hi Z_i.
i=1 i=N+1

(B2)

The stability of the closed-loop system depends on
the prediction timeJ and may be tested by any
usual stability criteria. First, the following lemma

is introduced.
Lemma B.1.
=3"tz"

If the polynomial T(z™%)
' has the property that

inf [T(z"1)|>0,

|z =1

then the related closed-loop system will be asym-

toptically stable [18].

Hence
IT(z7hH[=[3, - hi 22~ ’
i=J+1
N ©
2 -h) H > hiz"
= i=N+1
(B339
N
=3l - E Ih e
N
_i21|(hi_hi)z_l|
- hiz‘i‘, (B3b)
i=N+1

and using lemma 1 gives

N
z Y)|= inf {faﬂ_i:%l hy 22|

|zZ|=1

inf | T(

|zZ|=1
N
-2 [(h=Py) 2|

—‘ h; z“H>O. (B4)
i=N+1

The worst case happens whes 1, thus

N N o
@l— > =2 [h=h]-| > h>0,
i=J+1 i=1 i=N+1
(BS)
which is equivalent to
N N o
2[R+ 2 [hi=hi | X by <[a|
i=J+1 i=1 i=N+1
(B6)

Appendix C: Nonlinear reactor model

The model of a continuous reactor where an ir-
reversible exothermic reaction takes place has
been selected for testing the proposed controller.
The reaction is

A—B,
and occurs in a constant volume reactor cooled by

a single coolant stream. The operation is modeled
by the following equations:

dCa(t+t t
afjt ")—qf,)[Cao(t) Ca(t+kg)]
E
—mcmuﬂymﬁRnU}
dT(t) q(t)

gt~ v LTe(O=TM)]

koAH —E
c, Ca(t+ty)ex m

o o
qc(t)pccpc

The nominal parameter values for this model ap-
pear in Table 3. The objective is to control the
measured concentration of reactifeat the outlet
streamCa by manipulating the coolant flow rate
gc(t). The concentration has a measured time de-
lay of ty=0.5 min. The nonlinear characteristics
are clearly appreciated in Fig. 9 where the re-
sponses to equal amplitude step changes are
shown.

Pc pc

v de(D) 1

><[Tco(t)—T(t)]-
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