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Abstract

In this work a new method for designing predictive controllers for linear single-input/single-output syste
presented. It uses only one prediction of the process outputJ time intervals ahead to compute the correspondent fu
error. Then, the predictive feedback controller is defined by introducing a filter which weights the lastw predicted
errors. In this way, the resulting control action is computed by observing the system future behavior and
weighting present and past errors. This last feature improves the closed-loop performance to disturbance rej
shown through simulations of two linear systems and a nonlinear continuous stirred tank reactor. © 2003 ISA
Instrumentation, Systems, and Automation Society.
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1. Introduction

The use of different kinds of linear models
predict the future behavior of the process outp
has stimulated the development of a wide group
control methods known as model predictive co
trol ~MPC!. Many MPC approaches have be
proposed along the past three decades~generalized
predictive control@1#, dynamic matrix control@2#,
model algorithmic control@3#!, most of them
based on a receding-horizon strategy, i.e., at e
sampling instantk the following actions are taken
~a! the plant model is used to predict the outp
response to a hypothetical set of future control s
nals, ~b! a function including the cost of future
control actions and future deviations from a refe
ence trajectory is optimized to give thebest future

*Tel.: 54-353-4537500; fax: 54-353-4535498.E-mail
address: lgiovani@fich1.unl.edu.ar.
0019-0578/2003/$ - see front matter © 2003 ISA—The Instru
control sequence, and~c! the first movement of the
control sequence is applied. These operations
repeated at timek11.

The main advantage of MPC is its ability to ad
dress~a! long time delay,~b! inverse response,~c!
significant nonlinearities,~d! multivariable inter-
actions, and~e! constraints. The widespread us
and success of MPC applications described in
literature@4# attest to the improved performance
MPC compared to the classical control algorith
for control of difficult process dynamics. How
ever, alternative algorithms have been develop
to address the same problems@analytical predictor
algorithm@5# ~APA!, predictor controller@6# ~PC!,
simplified predictive control@7#, variable horizon
predictor @8# ~VHP!# because MPC implementa
tions require sophisticated tools that do not allo
us to apply predictive control at all levels of con
trol systems. All of these algorithms employ,
different ways, only one prediction of the futur
error to compensate time delay and interactio
For example, simplified predictive control and P
mentation, Systems, and Automation Society.
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predict the system output at its steady-state va
~prediction time is set equal to the convolutio
length! and then develop the controller structur
On the other hand, APA predicts the controll
variable on dead time plus one sample and th
uses the predicted error as input into the control
Finally, VHP uses the predicted error as the inp
into the controller, like APA, but the predictio
can be freely chosen from the hole prediction h
rizon and it does not impose any constraint on
controller that can be used.

In this work a new method for designing
predictive is presented. The approach is based
the use of only one prediction of the system o
put, instead of the complete trajectory: it uses
prediction of the process outputJ time inter-
vals ahead to compute the correspondent fut
error. The proposed controller, calledpredictive
feedback controller, uses the lastw predicted
errors instead of using plain feedback errors,
in classical feedback controllers. Hence the
sulting control action is computed by obser
ing the system future behavior and also
weighting present and past errors. So, this con
strategy combines the predictive capacity, wh
results in good performance for set-poi
changes and time delay systems, with the class
use of the feedback information which imp
roves the system performance for disturban
rejection.

The organization of the paper is as follow:
Section 2 the expressions for a generalJ-step
ahead output prediction are presented. In Sectio
the basic formulation for the single-predictio
controller design is derived. Furthermore, a re
tionship between the controller parameter and
settling time of closed-loop response is esta
lished. In Section 4 the closed-loop stability a
performance of the single-prediction controller a
analyzed. In Section 5 a direct feedback mode i
introduced in order to improve the overall syste
performance. Besides, the relationship betwe
the proposed controller and other predictive co
trol algorithms is established. The closed-loop s
bility and performance of the resulting controlle
are analyzed in Section 6. In Section 7 we sh
the results obtained from the application of t
proposed algorithm to a nonlinear continuo
stirred tank reactor. Finally, the conclusions a
presented in Section 8.
l

2. Single-step output predictor

In many predictive control techniques, th
model more frequently used to develop the pred
tor is the discrete convolution truncated toN terms
@4,9#. The reason is twofold:~a! the convolution
summation gives the model output explicitly an
~b! the main impulse response coefficients a
relatively easy to obtain. In particular, for single
input/single-output~SISO! systems

ŷ~J,k!5(
i 51

N

h̃iu~k1J2 i !, J,N, ~1!

predicts the output valueJ sampling intervals
ahead, k represents the current time instantt
5ktS (tS is the sampling interval!, h̃i , i
51,2,. . . ,N are the impulse response coefficien
and u(k1J2 i ), i 51,2,...,N is the sequence o
inputs to be considered. However, most frequen
ŷ(J,k) is not calculated directly from Eq.~1! but
from a modified expression that includes the p
diction for the current timeŷ(0,k). For this, notice
that Eq.~1! can also be written as a function of th
predicted value for the previous sampling timeJ
21,

ŷ~J,k!5 ŷ~J21,k!1(
i 51

N

h̃iDu~k1J2 i !,

~2!

where Du(k1J2 i )5u(k1J2 i )2u(k1J2 i
21). Then, successive substitutions ofŷ(J
21,k) by previous predictions gives

ŷ~J,k!5 ŷ~0,k!1(
l 51

J

(
i 51

N

h̃iDu~k1 l 2 i !.

~3!

This equation defines aJ-step ahead predictor,
which includes future control actions. Since futu
control actions are unknown, the predictor~3! is
not realizable. To turn it realizable a stateme
must be made about how the control variable
going to move in the future. For example, the sim
plest rule is to set all of them equal to zero,

Du~k1 j !50, ; j 50,1,...,J, ~4!

which implies that the control variable will no
move in future sampling instants. Then, Eq.~3!
becomes
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ŷ0~J,k!5 ŷ~0,k!1(
l 51

J

(
i 5 l 11

N

h̃iDu~k1 l 2 i !,

~5!

where the superscript 0 recalls that condition~4! is
included. The new expression~5! defines a realiz-
able open-loopJ-step ahead predictorwhoseZ
transform is given by~see Appendix A!

ŷ0~J,z!5P~J,z!u~z!, ~6!

whereP(J,z) is the transfer function of the open
loop predictor given by

P~J,z!5ãJz
211 (

i 5J11

N

h̃iz
J2 i ,

and ãJ is theJth coefficient of step response.
The predictionŷ0(J,k) is updated by adding

d̃~J,z!5y~J,z!2 ŷ~J,z!. ~7!

This term lumps together possible unmeasu
disturbance and inaccuracies due to plant-mo
mismatch. Since the future value ofd̃(J,z) is not
available, an estimate is used. In the absence
any additional knowledge ofd̃(J,z), the predicted
disturbance is assumed to be equal to that e
mated at the current timed̃(z). A more accurate
estimate ofd̃(J,z) is possible if the disturbanc
output model and a measure of load disturban
are available. So, we use a similar equation to
~6! to predict the future disturbance. The impo
tance of the form of Eq.~5! comes also from the
fact that the predictionŷ0(J,k) can be updated by
the current output measurementy(k). This is done
by substitutingŷ(0,k) by y(k), or equivalently the
correction is implemented byd̃(z) adding to Eq.
~6!, in any case we obtain

ŷ0~J,z!5y~z!1@P~J,z!2G̃p~z!#u~z!, ~8!

where G̃p(z) is the plant model. This equatio
defines a realizable correctedJ-step ahead predic-
tor. Hence there are two type of predictors: one
the open-loop predictor that only depends on
values of the past inputs only@Eq. ~6!# and the
other is the corrected predictor~8! which receives
a correction through the feedback measuremen
l

f

-

3. Single-prediction control

Although the idea of using only one predictio
of the system output for controlling the system
not new@5–8#, all the authors did not use the pre
diction time J as a tuning parameter. This is th
case ofsingle-prediction controller, whose deriva-
tion procedure is quite straightforward from th
open-loop predictor. Revising the assumption us
to go from Eq.~3! to Eq. ~5! observe that if just
the control movementDu(k)Þ0, then

ŷ~J,k!5 ŷ0~J,k!1ãJDu~k!. ~9!

This prediction can be substracted from a ref
ence variabler (k1J) to obtain the predicted erro

ê~J,k!5ê0~J,k!2ãJDu~k!. ~10!

The control action can be computed in the simi
way as standard predictive controllers, minimizin
the following performance measure,

f ~k!5ê2~J,k!1rDu2~k!, r>0. ~11!

Then, the control action that minimizes this pe
formance index is given by

Du~k!5
1

KJ
ê0~J,k!, ~12!

where ê0(J,k)5r (k1J)2 ŷ0(J,k) and KJ5ãJ

1 r/ãJ , and the cost of controlling the system

f ~k!5
r

ãJ
21r

ê0 2
~J,k!.

At this point of the work we are interested o
understanding the meaning of prediction timeJ
and its relationship with the closed-loop respon
To do it, we replaceDu(k) andKJ in the closed-
loop predicted error@Eq. ~10!#, so we can write it
as function ofê0(J,k) andr,

ê~J,k!5
r

ãJ
21r

ê0~J,k!.

Then, definingê(J,k) as a fraction ofê0(J,k),

ê~J,k!5aê0~J,k!, uau,1,

where a is the remaining error after the contro
action Du(k) is applied, the control costr is re-
lated witha through
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r5
a

12a
ãJ

2 .

This equation means that the closed-loop er
will be bounded byue(k01J)u<auê0(J,k0)u, ;t
.k01J, wherek0 is time instant where the se
point changes. Therefore the prediction timeJ
could be seen as theclosed-loop settling timefor
an erroraue(k0)u. When the control costr is set
to 0, which is equivalent toa50, the performance
measure~11! and the predicted closed-loop err
ê(J,k) becomes zero, and the control change
given by

Du~k!5
1

ãJ
ê0~J,k!. ~13!

On the other hand, whenr is set to` ~which is
equivalent toa51) no control action is taken an
ê(J,k)5ê0(J,k0)5e(k0), ;k.k0 .

Using Z transform on Eq.~12! shows that the
single predictive control algorithm is basically a
integral action applied on the predicted error

u~z!5
1

KJ

1

12z21 ê0~J,z!. ~14!

Combining Eqs.~14! and~8! the result is the con-
troller,

C~z!5
1

~12z21!KJ1P~J,z!2G̃p~z!
.

~15!

Fig. 1 shows a block diagram ofC(z), where it is
apparent that it uses the plant model to estim
the output at the present timeŷ(0,k). This value is
then compared with the actual measurementy(k)
to detect modeling errors and external dist
bances. The global detected disturbanced̃(z) is

Fig. 1. Structure of the single-prediction controller.
then assumed constant from every sampling
stantk into the future. In other words, given all th
input changes accounted for until the instantk, the
single-prediction controllerobservesthe value that
would be reached by the system output if no futu
control action is taken and thenu(k) is computed
such to the performance index~11! is minimized.
Hence if d̃(z) actually remains constant after th
instant k and r50, then the output reaches th
reference valueJ sampling intervals later.

Note that controller~15! is realizable if and only
if ãJÞ0. Then, the prediction timeJ should be
chosen such that

J> intS td

tS
D11,

wheretd is the process time delay. This fact mea
that the open-loop predictorP(J,z) compensates
the process time delay. In the following sectio
we assume thatr50 to simplify the expositions,
however, the results that will be obtained are t
same whether the control weightr is set to zero or
not.

4. Algorithm properties

4.1. Stability analysis

To analyze the effect of the prediction time ov
the closed-loop stability, we substituted the co
troller ~15! in the closed-loop characteristic equ
tion to obtain

~12z21!ãJ1P~J,z!1@Gp~z!2G̃p~z!#50.

Then, combining this expression with Eqs.~A8!
and ~A2!, and using the convolution model of th
process, this equation becomes

ãJ1 (
i 5J11

N

h̃i zJ2 i1(
i 51

N

~hi2h̃i ! z2 i

1 (
i 5N11

`

hi z2 i50. ~16!

Using a result obtained by Desoer and Vidyasa
@10# for lineal discrete systems, we derive the fo
lowing stability condition~see Appendix B!:

(
i 5J11

N

uh̃i u1(
i 51

N

uhi2h̃i u1U (
i 5N11

`

hiU,ãJ .

~17!
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The left side of this equation has, ordered from l
to right, the following three terms:~a! the contri-
bution of the nominal model,~b! the additive un-
certainty, and~c! the effect of the truncation mode
error; all of them are related with the convolutio
length N. When there is not uncertainty in th
system and ifN is large enough to neglect th
truncation error, Eq.~17! becomes

(
i 5J11

N

uh̃i u,ãJstb
. ~18!

This condition guarantees that—for any tim
invariant stable plant—there is always a value oJ
for which the closed-loop system is asymptotica
stable. We must note that if the plant has a mo
tone step response, the stability condition~18! can
be written as

ãJstb
.

1

2 (
i 51

`

h̃i5
1

2
K̃p,

whereK̃p is the process gain.
Generally, control engineers assume that a fa

ily W of M linear models is capable to capture
moderate nonlinearity. Therefore to guarantee
stability of the system we must choose aJ such
that it guarantees the stability of all the plants
W. Then, the robust stability problem becomes t
problem of finding aJ such that Eq.~17! is satis-
fied for each model ofW. Using global additive
uncertainty and choosingN large enough to ne
glect the truncation error, Eq.~17! becomes

(
i 5J11

N

uh̃i u1(
i 51

N

max
l P[1,M ]

uhi
l2h̃i u,ãJstb

. ~19!

Another way to solve the robust stability proble
is to find aJ that satisfies simultaneously Eq.~18!
for all the models ofW. In the case of a system
with monotone response, the stability conditi
~19! can be written as

Jstb5max~J1 ;J2 ;...;JM !,

whereJl , l 51,2,...,M is the prediction time for
the l th model of the familyW. This expression
means that we can choose a different predict
time for each model ofW, then we selected th
bigger prediction time.

At this point, a remark about how to build
predictor for nonlinear system must be mad
SinceJstb guarantees the closed-loop stability f
all the models ofW, the open-loop predicto
P(J,z) can be directly built from the nonlinea
model. This fact improves the accuracy of th
open-loop prediction and the closed-loop perfo
mance. The nonlinear predictor can be built fro
the nonlinear model employing a numerical int
gration scheme or using a local model netwo
@11#.

A final remark is for recalling that the stability
condition given by Desoer and Vidyasagar@10# is
a sufficient one. Consequently, stability conditio
~17!–~19! become conservative and impose a t
high lower bound for selectingJ. So, always there
are prediction times lower thanJstb; for those the
closed-loop system will be stable. The firstJ that
guarantees the closed-loop stability can be fou
through a direct search, because the solution sp
is bounded,

1<J<Jstb.

4.2. Performance analysis

The tuning of the single-prediction controlle
implies a discrete optimization problem having
bounded solution space

JPN, 0<J<N.

Hence, independently of the performance ind
being used, the general solution results from a
rect search in the solution space. However, wh
the ISE index is used, the optimal controller r
sults from the solution of the following problem

min
Gc(z)

ie~z!i2
25 min

Gc(z)
i «̃~z!@d~z!2r ~z!#i2 ,

which is equivalent to minimize the sensitivit
function «̃(z) over the whole system bandwidth

min
Gc(z)

i «̃~z!i25 min
Gc(z)

i12G̃p~z!Gc~z!i2 ,

and to guarantee the internal stability of th
closed-loop system@12#. Under these design con
ditions the sensitivity function will be minimum
when the open-loop controllerGc(z) is given by

Gc5G̃p1
21 ,

whereG̃p1 is the nonminimum phase portion o
the plant~right-half plane zeros and time delay!.
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For the single-prediction controller, this conditio
is equivalent to choose a prediction such that
Jth coefficient of the step responseãJ has the
same sign as the stationary process gain, i.e.,

JISE5ki11, ~20!

whereki is the number of samples which cove
the effect of the minimum phase portion of th
plant.

When J5JISE, the controller gainãJ
21 is the

largest. Therefore it provides a vigorous cont
action and attempts to drive the system output
the reference inJISE time intervals. In this case
the single-prediction controller becomes adead-
beat ~minimum-time! controller

C~z!5
1

~12z21!ãJISE
1P~JISE,z!2G̃p~z!

.

~21!

When J is increased the controller gain and th
closed-loop performance decreases. In case oJ
5N the controller gain is the inverse of proce
gain (ãJ5K̃p) and the controller drives the sys
tem output to the reference inN time intervals.
Thus only one significant control move is ob
served in absence of uncertainty~minimum-
energy controller! and the single-prediction con
troller becomes apredictor controller@6#,

C~z!5
1

ãN2G̃p~z!
. ~22!

To finish this analysis, we give a heuristic com
parison of the closed-loop performance achiev
by the single-prediction controller with that of
MPC controller. To carry out this comparison w
analyze the control actions computed by both co
trollers. They are obtained by replacing the ope
loop error by their components, assuming a s
change in the setpoint, in the controller equatio
@4,9# and combining them with the predicted ou
put ~8!. The result for the single-prediction con
troller is

u~k!5u~k21!1KJ
21e~k!

2KJ
21@P~J,z!2G̃p~z!#u~k21!,

~23!

and the result for the MPC is
u~k!5u~k21!1H (
j 51

V

kj J e~k!

2 (
j 51

V

kj@P~ j ,z!2G̃p~z!#u~k21!,

~24!

where V is the prediction horizon andkj , j
51,2,...,V is the j th element of the gain vector. In
these equations we can see that both predic
controllers have a similar structure: the two fir
terms, ordered from the left, are a discretePI con-
troller and the last term is a weighing contributio
of the future open-loop deviations at time(k
1 j )tS,

D ŷ0~ j ,k!5 ŷ0~ j ,k!2 ỹ~k!, j 51,2,...,V,J.

They only differ in the number of prediction gain
employed. So, it is easy to see that we can cho
the prediction timeJ such that both predictive
controllers, single-prediction and DMC, hav
similar performances.
Example 4.1. To analyze the sensitivity of the pro
posed controllers to the parameterJ we consider
a heat exchanger, whose hot outlet temperature
controlled by manipulating the cold stream flo
rate, modeled by [13]

Gp~s!52
35.41

~4.5s11!5 . ~25!

The discrete model employed to build the sing
prediction controller is obtained by assuming
zero-order hold at the input of continuous mod
(25), a sampling timetS52 and the convolution
length N was fixed in 50 terms. The predictio
time is chosen using the stability condition (18),
J must be

J>12.

Fig. 2 shows the responses to a setpoint chan
for different values ofJ. As it was anticipated,
small values ofJ give more rapid response an
require large initial movements in the control var
able (Fig. 3). Observe also that the closed-loo
system is stable even for values ofJ smaller than
the limit provided by Eq. (18).

Now, we compare the closed-loop respons
provided by single-prediction controllers with tha
provided by a DMC controller. The DMC control
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Fig. 2. Closed-loop responses of the linear system to a step change in the setpoint, showing the effect of the p
time J.
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ler was designed following the tune procedure d
veloped by Rahul and Cooper [14]. The pla
model (25) was approximated through a firs
order plus time delay model,

Gp~s!5235.41
e210.1s

12.04s11
,

which was discretized assuming a zero-order h
at the input and a sampling timetS52. The con-
volution length is the same that we used to bu
the single-prediction controller (N550). The pre-
diction horizon V was set equal to the convoluti
length (V5N), the control horizon U was fixed t
five samples, and the condition number of the c
troller c was fixed to 500. The control weightl
was computed using the following formula [14]:

l5
U

c S 3.5
t

tS
122

U21

2 D K̃p53.73.

Fig. 4 shows that the single-prediction contro
ler can provide a similar performance to that ob
tained by the DMC controller. This figure als
shows thatJ can be selected such that the perfo
mance or the robustness of the system be
proved, by reducing or increasingJ.
Fig. 3. Control variable correspondent to the closed-loop responses shown in Fig. 2.
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Fig. 4. Closed-loop responses of the linear system to a step change in the setpoint, comparing the response of the
single-prediction controllers.
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5. Predictive feedback control

From the analysis of the closed-loop perfo
mance in Section 4.2, it is clear that the sing
prediction controller provides a similar close
loop performance to a MPC controller. This fa
means that a single-prediction controller show
poor closed-loop performance when disturban
and uncertainties are present in the system, s
cially when they are assumed to be time invaria
This is true even when the underlying system
time invariant@15#.

A way to solve this problem is to introduce
direct feedback mode in the computation of t
control action. This idea can be accomplished
including a filter F(z) in the single-prediction
control law ~14!. The filter not only includes a
feedback action in the predictive controller, b
also introduces a new set of parameters to all
more demanding performances. Since the con
law ~14! includes an integral mode,F(z) can take
the following form:

F~z!5
1

ãJ
(
j 50

w

qjz
2 j5 (

j 50

w

qj* z2 j , ~26!

wherewPZ is the filter order andqj , j P@0,w#
are the new controller parameters. Since the c
trol law ~14! employs only one prediction of th
process future behavior, the delay operatorz2 j , j
50,1,...,w, is applied to the time instant at whic
-

l

the prediction is calculated~Fig. 5!. Hence the
control movementDu(k) is given by

Du~k!5 (
j 50

w

qj* ê0~J,k2 j !, ~27!

where ê0(J,k2 j ) is the J step ahead open-loo
error computed at timek2 j . The predictive feed-
back controller can be derived from Eq.~27!, re-
placing the open-loop errorê0(J,k2 j ) by their
components and following a similar procedure
obtain Eq.~15!. The result is the controller

C~z!5
F~z!

~12z21!1F~z!@P~J,z!2G̃p~z!#
,

~28!

whose structure is shown in Fig. 6. We must no
that F(z) adds additional degrees of freedom
improve the closed-loop performance. This fa
makes more difficult the controller design sinc
now it is necessary to tune the filter paramete
~the coefficientsqj* , j 50,1,...,w and the order
w). One way to solve this tuning problem is b
using a method for a fixed-structure controller lik
those proposed by Abbas and Sawyer@16# or Har-
ris and Mellichamp@17#.
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Fig. 5. General MPC and predictive feedback setups.
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5.1. Relationship with other control algorithms

It is easy to see that the structure of the pred
tive feedback controller is a generalization of t
internal model control parametrization of the fee
back controllers~Fig. 6!. Depending on the value
of the prediction time and the parameters of t
controller we have the different controllers th
would be studied in the specialized literature.

WhenJ51 the open-loop predictorP(J,z) be-
comes the system modelG̃p(z), and the predic-
tive feedback controller~28! is a reduced order
controller @6#,
C~z!5
1

~12z21! (
j 50

w

qj* z2 j . ~29!

When the prediction time is set equal to the tim
delay(JdtS5td ,) the open-loop predictorP(J,z)
becomes the system model without time delay, a
the predictive feedback controller~28! is theSmith
predictor of the reduced order controller~29!,

C~z!5
F~z!

~12z21!1F~z!@12z2Jd#G̃p~z!
.

~30!
Fig. 6. Structure of the predictive feedback controller.
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In this case, the open-loop predictor only compe
sates the time delay present in the system. In
case ofJ5Jd11 and the parameters of the filte
are free to be tuned, the predictive feedback c
troller becomes theanalytical predictor algorithm
@5#.

When the prediction time is greater than t
time delay(Jd,J,N), w50, and q0* 5ãJ

21 the
resulting controller is thesingle-prediction con-
troller,

C~z!5
1

ãJ1P~J,z!2G̃p~z!
, ~31!

which was studied in the previous sections. T
character of this controller is governed by the p
diction timeJ, which directly influences the spee
of closed-loop response. For the particular cho
of the prediction timeJ5N, we can derive a fam-
ily of predictive controllers whose main characte
istic is to obtain a closed-loop response that is
least as good as the normalized open-loop
sponse. If no other design condition is demand
the controller~23! becomes thepredictor control-
ler @6#,

C~z!5
1

ãN2G̃p~z!
. ~32!

Fixing the parameter of the controllerq05aãN
21,

a>1, we obtainsimplified model predictive con
troller @7#,

C~z!5
a

ãN2aG̃p~z!
. ~33!

The parametera provides a way to speed up th
closed-loop response and build a dead-time co
pensation in the controller, but it does not gi
offset-free responses in the presence of mode
errors. To solve this problem, Chawlaet al. @18#
proposed the inclusion of a first-order filter in
the control law such that the resultant controller
the conservative model based controller,

C~z!5
~12bz21!

~12b!ãN2~12bz21!G̃p~z!
,

0<b,1. ~34!
This controller is derived from the predictive feed
back controller~28! by fixing its parameters to

w51, q05
1

12b
ãN

21, and q15
b

12b
ãN

21 .

Observe that varying the parametersa andb gov-
erns the character of these controllers influenc
the speed of closed-loop response. When the
rameters are in the lower limit(b50 anda51),
the controllers~33! and~34! become the predicto
controller ~32!, obtaining the open-loop respons
In the other case(b51 anda5`) the controllers
~34! and ~33! become the inverse of the syste
model, obtaining the minimum time respons
Varying the parameters between these limits
modify the characteristics of the closed-loop r
sponse, speeding up or slowing down the
sponse, in similar way as the single-predicti
controller with the prediction timeJ.

Finally, we can see that predictive feedback co
trol has a strong connection and significant diffe
ence from VHP@8#. The approach employed b
both frameworks is similar. They employ one pr
diction of the system output, which can be free
chosen, and use the predicted error as inputs
the controller. However, VHP by itself is a predic
tive structure, not a controller, that can be added
another control algorithm~for example PI, PID, or
simplified predictive control!. It is employed to
compensates time delay and interactions and p
vide a built-in feedforward scheme. In this wa
VHP is similar to a single-prediction controlle
Furthermore, VHP computes the whole trajecto
like standard predictive control, and then sele
one prediction.

6. Predictive feedback properties

6.1. Stability analysis

Now, we study the effect of the filter and pre
diction time on the closed-loop stability. Then, w
substitute the predictive feedback controller~28!
in the characteristic closed-loop equation, whi
becomes

T~z21!5~12z21!1F~z21!P~J,z21!

1F~z21!@Gp~z21!2G̃p~z21!#.

~35!
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Combining the transfer function of the predict
~A8! and using the discrete convolution, the ch
acteristic equationT(z21) can be written as fol-
lows:

~12z21!1 (
j 50

w

qj* ãJz
2 j 21

1 (
j 50

w

qj* (
i 5J11

N

h̃iz
J2 i 2 j

1 (
j 50

w

qj* (
i 51

N

~hi2h̃i !z
2 i 2 j

1 (
j 50

w

qj* (
i 5N11

`

hiz
2 i 2 j50. ~36!

The stability of the closed-loop system depends
both the prediction timeJ and the filter param-
eters. So, it may be tested by any usual stabi
criteria. Using the same procedure as in Appen
B, we can derive the following stability condition

(
i 5J11

N

uh̃i u1(
i 51

N

uhi2h̃i u1U (
i 5N11

`

hiU,ãJ .

Note that this condition is the same as that deriv
for the single-prediction controller@Eq. ~17!#.
However, we should note that the parameters
the filter qj* , j 50,1,...,w affect the closed-loop
stability. These facts look contradictory, because
is clear from the characteristic Eq.~35! that the
closed-loop stability depends simultaneously
both. However, these results can be interpreted
follows: the closed-loop stability for the predictiv
feedback controller is obtained by the independ
selection of the prediction timeJ and the param-
eters of the filter, such that they independen
guarantee the closed-loop stability. These fa
mean that the prediction timeJ should be selected
like the single-prediction controller@Eqs. ~17! to
~19!#, and the filter must be tuned as there is
time delay in the system, because it has been c
pensated by the open-loop predictor.

Since the prediction timeJ can be fixed inde-
pendently of the filter’s parameters, we can vary
such that the closed-loop performance is i
proved. VaryingJ we modify the closed-loop set
tling time, speeding up or slowing down the sy
tem response. So, if we have to control a nonlin
system we can choose a differentJ for each oper-
s

-

ating region so that we obtain a similar close
loop response for each one of them. Then, dur
the operation, we varyJ according to the operat
ing region controlled at each sample.

6.2. Performance analysis

Finally, we analyze the effect of the filter ove
the overall closed-loop performance and comp
the predictive feedback controller with a standa
MPC controller, such as the DMC. To carry o
this analysis we compare the control action co
puted by both predictive controllers.

The control actions generated by the predict
feedback control law~27! are obtained by replac
ing the open-loop errorê0(J,k2 j ) by their com-
ponents, assuming a step change in the setpo
and combining with the predicted output~8!, the
result is

u~k!5u~k21!1 (
j 50

w

qj* e~k2 j !

1 (
j 50

w

qj* @P~J,z!2G̃p~z!#u~k2 j !.

~37!

In this equation we must observe that the last te
is a weighing contribution of the future open-loo
deviations at time(k2 j 1J)TS,

D ŷ0~J,k2 j !5 ŷ0~J,k2 j !2 ỹ~k2 j !.

It only depends on the past control actions and
system model, so it states the effect of the p
control actions on the future behavior of the sy
tem. This fact implies that it has significant influ
ence on the closed-loop performance when
have to track the setpoint. However, this term h
a negligible influence when we have to reject
disturbance, because it has little information abo
the disturbance. The two first terms of Eq.~37!,
ordered from the left, are the time implementati
of a reduced order controllerof orderw @6#, and
commands the system behavior during the dist
bance rejection. It is clear now that the control la
~37! includes a direct feedback action based
measured error.

Now, we compare the performance achieved
the predictive feedback with that of an MPC co
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Table 1
Predictive controller parameters and results.

Controller parameters f Set f Dist

N560, V554, U54, l50.14 7.7164 3.0323
w51; q5@0.7280 0.0987# 7.7061 2.5029
w52; q5@0.7468 0.0825 0.0902# 7.6938 2.4595
w53; q5@0.7614 0.0979 0.0792 0.0816# 7.7005 2.4229
-
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troller. Recalling Eq.~24! we have the control ac
tion generated by a standard MPC controller,

u~k!5u~k21!1H (
j 51

V

kj J e~k!

2 (
j 51

V

kj@P~ j ,z!2G̃p~z!#u~k21!.

~38!

In this equation we can see that MPC controlle
only use the last measured error and the two fi
terms, ordered from the left, are a discrete PI co
troller. Like the predictive feedback controller, th
last term is a weighing contribution of the futur
open-loop deviations at time(k1 j )tS, j
51,2,...,V.

Comparing Eqs.~37! and ~38! we can see tha
predictive feedback controller uses more feedba
information than standard predictive controllers
compute the control actions. Therefore the pred
tive feedback controller reduces the effect of d
turbances more aggressively than any stand
MPC controller, and has better performance th
MPC, especially for disturbance rejection proble
or important uncertainties present in the system

A final comment about the predictive feedba
can be made. From Eq.~37! it is easy to see that a
predictive feedback controller combines the c
pacity of the predictive control algorithm for goo
setpoint tracking and time delay compensatio
with the classical use of the feedback informati
to improve the disturbance rejection. Furthermo
for controlling a nonlinear system the predictio
time J can be varied to improve the closed-loo
performance by modifying the closed-loop settlin
time.

Example 6.1. In this example we compare th
performances achieved by a predictive feedba
controller and a standard MPC controller for se
point tracking and disturbance rejection. To eval
ate the closed-loop responses we consider the
lowing linear plant:

Gp~s!5
e250s

~150s11!~25s11!
,

which was used by Rahul and Cooper to evalu
a tuning procedure for a DMC controller. The dis
crete transfer function is obtained by assuming
zero-order hold at the input and a sampling tim
tS516. The tuning parameters for the DMC con
troller are same as those using by Rahul and Co
per in his work [14] (see Table 1).

The predictive feedback controller was design
by solving the basic tuning problem proposed
Giovanini and Marchetti [19] with the objective
function

f 5 (
k51

N

e2~k!1lDu2~k!, ~39!

for given filter orders and a prediction time (J55).
The order of the filter as chosen such that the
sulting controllers include the predictive versio
of popular PI and PID controllers (w51,2,3). The
problem described to this point has a fast soluti
using an algorithm based on the descendent g
dient method. The filter parameters obtained f
each controller are shown in Table 1.

The results obtained in the simulations are su
marized in Figs. 7 and 8. They show the perfo
mance achieved by the predictive controllers no
malized to DMC performance. It has bee
computed as

rx5100
f DMC x2 f PF x

f DMC x
, x5Set,Dist,

where f DMC x , f PF,x is the performance achieve
by DMC and predictive feedback controllers fo
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Fig. 7. Performance comparison between DMC and predictive feedback, using index~39!.
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setpoint tracking and disturbance rejection. Fig.
shows the normalized performance measured w
Eq. (39), while Fig. 8 shows the normalized pe
formance measured with the ISE index. The p
dictive feedback controller exhibits a similar pe
formance to the DMC controller (Fig. 7) for th
setpoint tracking. Although a better response
obtained by the predictive feedback controll
(Fig. 8), it uses more control energy than DM
(Fig. 7). On the other hand, the predictive fee
back controller shows an important improveme
in the closed-loop performance for disturbance r
jection. A better response is again obtained
predictive feedback controller (Fig. 8) and th
controller uses a similar control energy than th
DMC (Fig. 7).
7. Simulations and results

Let us consider the problem of controlling
continuously stirred tank reactor~CSTR! in which
an irreversible exothermic reaction is carried o
at constant volume~Appendix C!. This is a non-
linear system previously used by Morningredet
al. @20# for testing predictive control algorithms
Fig. 9 shows the dynamic responses to the follo
ing sequence of changes in the manipulated v
able qc : 110, 210, 210, and 110 l min21,
where the nonlinear nature of the system is app
ent.

Four continuous linear models are determin
using least-squared procedures to adjust the c
Fig. 8. Performance comparison between DMC and predictive feedback using the ISE index.
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Fig. 9. Open-loop responses of the CSTR concentration to step changes in the coolant flow rateqC(t).
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position responses to the above four step chan
in the manipulated variable. Notice that tho
changes imply three different operating points c
responding to the following stationary manip
lated flow rates: 100, 110, and90 l min21. Table 2
shows the four process transfer functions obtain

Ca~s!

qC~s!
5GPl

~s!, l 51 – 4.

They define the polytopic model associated to
nonlinear behavior in the operating region bei
considered.

Like in Morningred’s work, the sampling time
period was fixed at 0.1 min, which gives abo
four sampled-data points in the dominant tim
constant when the reactor is operating in the h
concentration region. Then, four discrete line
models are used for representing the nonlinear
s

,

-

actor using the polytope idea. These models
obtained byZ transforming the continuous trans
fer functions and assuming a zero-order-hold d
vice is included. This representation should be
sociated to theM vertex models in the tuning
problem formulation.

In this application we stress the fact that th
reactor operation becomes very sensitive once
manipulation exceeds113 l min21. Hence, assum-
ing that a hard constraint is physically used on t
coolant flow rate at110 l min21, an additional re-
striction for the more sensitive model~model 1 in
Table 2! must be considered for the deviation va
ableu(k):

u1~k1 i !<10, 0< i<V. ~40!

Besides, a zero-offset steady-state response is
manded, then we include the following constrain
Table 2
Vertices of the polytope model.

Change Model obtained

Model 1
qC5100,DqC510 GP1

~s!5
20.0008t310.033s220.018s10.67

s411.92s3130.35s2121.49s1153.7
e20.5 s

Model 2
qC5110,DqC5210 GP2

~s!5
21.3 1025 s310.0065s210.354s13.35

s4110.5s31101.37s21334.89s1834.6
e20.5 s

Model 3
qC5100,DqC5210 GP3

~s!5
6.7 1026 s320.0055s210.652s19.35

s4128.45s31324.67s211737.15s13718.6
e20.5 s

Model 4
qC590, DqC510 GP4

~s!5
21.07 1024 s310.0256s210.143s10.457

s419.58s3149.69s21128.05s1178.4
e20.5 s
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y~k! <1.05r ~k!, 0<k<N,

ue~k!u <5.0 1024, 50<k<N. ~41!

This assumes that the nominal absolute value
the manipulation is around100 l min21 and that
the operation is kept inside the polytope who
vertices are defined by the linear models.

Now, we define the parameters of the predict
feedback controller to tune the filter paramete
using the method proposed by Giovanini and M
chetti @19#. The filter sizew is arbitrarily adopted
(w53) and the predictor of the controllerP(J,z)
is built using the nonlinear model~C1!, assuming
the nominal parameters value~Table 3!. An adap-
tive Runge-Kutta integration scheme is used
compute the system output prediction, with t
initial state given byX(k)5@Ca(k) T(k25)# at
each sample. Since the inlet coolant temperat
TCO(t) is measurable, we include it in the predi
tor to improve the rejection to this disturbance.

Because the controller predictor is built usin
the nonlinear model, it is reasonable to assu
that there are no uncertainties. Therefore we bu
the open-loop predictor of the tuning problem@19#
using the same model as that used to simulated
system output. Finally, we choose the predicti

Table 3
Nominal CSTR parameter values.

Parameter Nomenclature Value

Measured
concentration

Ca 0.1 mol l21

Reactor
temperature

T 438.5 K

Coolant flow rate qC 103.41 l min21

Process flow rate q 100 l min21

Feed concentration CaO 1 mol l21

Feed temperature TO 350 K
Inlet coolant

temperature
TCO 350 K

CSTR volume V 100 l
Heat-tranfer term hA 7.03105

cal min21 K21

Reaction rate
constant

k0 7.231010 min21

Activation energy E/R 1.03104 K21

Heat of reaction DH 22.03105

cal mol21

Liquid densities r,rc 1.03103 g l21

Specific heats Cp ,Cpc 1.0 cal g K21
e

time J. It is fixed such that the robust stability o
the system is guaranteed. The prediction time s
isfies

Jstb5max~J1 ;J2 ;J3 ;J4!510. ~42!

Notice in this case that it is the polytope that mu
be shaped along the time being considered. He
the objective function necessary for driving th
adjustment must consider all the linear models
multaneously. At a given time instant and oper
ing point, there is no clear information abo
which model is the convenient one for represe
ing the process. This is because it depends
only on the operating point but also on which d
rection the manipulated variable is going to mov
The simpler way to solve this by proposing

f 5(
l 51

M

(
k51

V

g l@el~k!21rDul~k!2#, ~43!

where the time span is defined byV5200. The
control weightr was fixed in a value such that th
control energy has a similar effect as errors in t
tuning process(r50.01). Since in this applica-
tion we found no reason to differentiate the mo
els, we adoptg l51, l P@1,M #. The problem de-
scribed to this point has a rapid numerical soluti
using an algorithm based on the gradient meth
The parameters obtained are the following:

q050.2313; q1520.1550;

q2520.2531; q350.2157. ~44!

Morningredet al. @20# have previously worked
with this reactor model for testing different alte
natives of predictive controllers and confronte
the results with the responses obtained using a
controller whose parameters were adjusted by
ITAE criterion; thus we used the same settings: t
gain value52 l2 mol21 min21 and the integration
time constant 0.46 min. The simulation tests a
also similar to Morningred’s work and consists
a sequence of step changes in the reference v
and a sequence of load changes in the feed str
concentration and the refrigerant inlet temperatu

Fig. 10 shows the results obtained when co
paring the discrete controller with the mentione
PI. The setpoint was changed in intervals of
min. from 0.09 to0.125 mol l21, returns to 0.09,
then steps to 0.055 and returns to0.09 mol l21.
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Fig. 10. Closed-loop responses of the CSTR concentration to a sequence of step changes in the setpoint using the
controller with one-side constraint in the manipulation and a PI controller adjusted with ITAE.
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The superior performance of the discrete contr
ler is obtained through a vigorous initial move
ment in the manipulated variable, which, howev
does not overcome the110 l min21 limit as shown
in Fig. 11, but shows more movements than the

Fig. 12 shows the results obtained when co
paring the discrete controller with the mention
PI under load changes. For testing the disturba
rejection the following sequence of changes a
made: first the feed stream concentrationCaO(t)
changes from 1 to1.05 mol l21 and 10 min later
the refrigerant temperatureTCO(t) goes down
10 °C; then CaO(t) and TCO(t) return to the
original values, with a 10-min difference betwee
them. A better disturbance rejection cap
bility is observed in the discrete controller su
gested in this paper.

Fig. 13 shows the manipulated movements c
responding to the repsonses in Fig. 12. In this fi
ure we see that the excursion ofqC(t) is more
important in the case of the PI, but smoother.

8. Conclusions

A new method to design predictive controlle
for linear SISO systems has been presented in
work. It uses only one prediction of the syste
outputJ time intervals ahead to compute the co
respondent future error. Then, the predictive fee
back controller is defined by introducing a filte
Fig. 11. Manipulated movements corresponding to the responses in Fig. 10.
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Fig. 12. Closed-loop responses of the CSTR concentration to a sequence of load changes using the predictive con
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which weights the last predicted errors. In th
way, the resulting control action is computed
observing the system future behavior and t
present and past errors. These features enable
predictive feedback controller to combine the c
pacity of predictive control algorithm for good se
point tracking and time delay compensation, w
the classical use of the feedback information
improve the disturbance rejection.

The character of these controllers is governed
one parameter, the prediction time, which direc
influences the speed of closed-loop respon
Some simple criteria for its selection are provide
they guarantee the robust stability of the close
loop system. The predictive feedback control
has additional tuning parameters: the parame
of the filter. Robust stability and closed-loop pe
formance issues of these controllers have b
e

.

analyzed. An extensive analysis of closed-lo
performance, compared with standard MPC co
trollers, have been also carried out.

In spite of the results obtained in his work, se
eral questions about extension to multivariab
systems and how we can address on-line c
straints in the input and output variables still r
main open as future research topics. A future wo
can also include an on-line tuning of the predicti
feedback parameters such that the performance
mains optimal and the constraints would be fu
filled for every sample.

Appendix A: Predictor transfer function

Eq. ~5! defines a realizableJ-step ahead predic
tor in the discrete time domain. The predictor
Fig. 13. Manipulated movements corresponding to the responses in Fig. 12.
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realizable since only past inputs to the system
used to computed the future behavior. Expand
this equation results in

ŷ0~J,k!5 ŷ~0,k!1(
i 52

N

h̃iDu~k112 i !

1¯1 (
i 5J11

N

h̃iDu~k1J2 i !,

and taking theZ transform gives

ŷ0~J,z!5 ŷ~z!

1F (
i 52

N

h̃iz
12 i1¯1 (

i 5J11

N

h̃iz
J2 i G

3~12z21!u~z!. ~A1!

Defining the following function:

H~J,z!5H (
i 5J11

N

h̃iz
J2 i , 0<J<N21

0, J5N,
~A2!

Eq. ~A1! can be written as

ŷ0~J,z!5 ŷ~z!1@H~1,z!1¯1H~J,z!#

3~12z21!u~z!. ~A3!

Note that there is a recursive relationship,

H~m,z!5h̃m11z211H~m11,z!z21. ~A4!

Then, combining Eqs.~A3! and ~A4! and rear-
ranging gives

ŷ0~J,z!5 ŷ~z!1F (
i 52

N

h̃iz
211H~J,z!

2H~1,z!z21Gu~z!. ~A5!

Adding and substractingh̃1z
21 and operating

gives
ŷ0~J,z!5 ŷ~z!1F h̃1z211(
i 52

J

h̃iz
21

1H~J,z!2~ h̃1z211H~1,z!z21!Gu~z!,

~A6!

where we can identify theJth coefficient of step
response,

ãJz
215h̃1z211(

i 52

J

h̃iz
21,

and the plant model

H~0,z!5h̃1z211H~1,z!z215G̃p~z!.

Hence the expression~A6! can be written

ŷ0~J,z!5 ŷ~z!1@ ãJz
211H~J,z!2G̃p~z!#u~z!,

~A7!

and, since

ŷ~z!5G̃p~z!u~z!,

theZ transform of theJ-step ahead single predic
tor is given by

P~J,z!5ãJz
211H~J,z!, ~A8!

i.e.,

ŷ0~J,z!5P~J,z!u~z!. ~A9!

Appendix B: Robust stability condition for
single-predictive controller

The characteristic closed-loop equationT(z21)
for the single-prediction controller is given by

T~z21!5ãJ1H~J,z21!1Gp~z21!2G̃p~z21!.
~B1!

Using the discrete convolution and Eq.~A2!, the
last expression can be written in the followin
way:
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T~z21!5ãJ1 (
i 5J11

N

h̃i zJ2 i

1(
i 51

N

~hi2h̃i ! z2 i1 (
i 5N11

`

hi z2 i .

~B2!

The stability of the closed-loop system depends
the prediction timeJ and may be tested by an
usual stability criteria. First, the following lemm
is introduced.

Lemma B.1. If the polynomial T(z21)
5( i 50

` t i z2 i has the property that

inf
uzu>1

uT~z21!u.0,

then the related closed-loop system will be asy
toptically stable [18].

Hence

uT~z21!u>uãJu2U (
i 5J11

N

h̃i zJ2 iU
2U(

i 51

N

~hi2h̃i ! z2 iU2U (
i 5N11

`

hi z2 iU
~B3a!

>uãJu2 (
i 5J11

N

uh̃i zJ2 i u

2(
i 51

N

u~hi2h̃i ! z2 i u

2U (
i 5N11

`

hi z2 iU, ~B3b!

and using lemma 1 gives

inf
uzu>1

uT~z21!u> inf
uzu>1

H uãJu2 (
i 5J11

N

uh̃i zJ2 i u

2(
i 51

N

u~hi2h̃i ! z2 i u

2U (
i 5N11

`

hi z2 iUJ .0. ~B4!

The worst case happens whenz51, thus
uãJu2 (
i 5J11

N

uh̃i u2(
i 51

N

uhi2h̃i u2U (
i 5N11

`

hiU.0,

~B5!

which is equivalent to

(
i 5J11

N

uh̃i u1(
i 51

N

uhi2h̃i u1U (
i 5N11

`

hiU,uãJu.

~B6!

Appendix C: Nonlinear reactor model

The model of a continuous reactor where an
reversible exothermic reaction takes place h
been selected for testing the proposed control
The reaction is

A→B,

and occurs in a constant volume reactor cooled
a single coolant stream. The operation is mode
by the following equations:

dCa~ t1td!

dt
5

q~ t !

V
@Ca0~ t !2Ca~ t1kd!#

2k0Ca~ t1td!expF 2E

RT~ t !G ,
dT~ t !

dt
5

q~ t !

V
@T0~ t !2T~ t !#

2
k0DH

rcp
Ca~ t1td!expF 2E

RT~ t !G
1

rccpc

rcpV
qc~ t !H 12expF 2hA

qc~ t !rccpc
G J

3@TCO~ t !2T~ t !#.

The nominal parameter values for this model a
pear in Table 3. The objective is to control th
measured concentration of reactiveA at the outlet
streamCa by manipulating the coolant flow rat
qC(t). The concentration has a measured time
lay of td50.5 min. The nonlinear characteristic
are clearly appreciated in Fig. 9 where the r
sponses to equal amplitude step changes
shown.
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