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Abstract

In this work we show that the anti-wind-up-bumpless-transfer controller emerges from the structure of model
predictive controlMPC) with quadratic objective and input constrains. The key to establish that relationship is the
application of optimality conditions to the equivalent optimal control problem. The proposed framework employs a
model of physical constraints as part of the controller architecture to ensure that the commands sent to the actuator do
not exceed their specific limits and the internal states of the controller are well updated. Numerical examples are
presented for illustrating the proposed control design methodology. © 2003 ISA—The Instrumentation, Systems, and
Automation Society.
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1. Introduction Controllers in the first class rely on a process
model and on-line solution of a constrained opti-
Controller design for linear process with actua- mization problem that minimizes an objective
tor saturation nonlinearities has long been studied function over a future horizofl,5]. If properly
within various contexts. In general, there are two designed, such controllers can provide optimality,
different classes of structures that handle input robustness, and other desirable propertiés
saturations: However, because of the time needed to perform
1. On-line optimization based control structures, the on-line optimization, these controllers are usu-
such usmodel predictive control(MPC) which ally implemented on relatively slow processes. For
modifies its structure every time that the optimiza- fast processes the implementation of MPC does
tion problem is solved in the way of obtaining the not use on-line optimization, tunable parameters
best possible performan¢], and such as prediction and control horizon length and
2. Variable structure controllersthat have a  weighting factors in the objective function can be
closed form and do not perform on-line optimiza- adjusted to achieve desirable closed-loop proper-
tion. They change their structure with a predeter- ties in the presence of constraifs-9|.
mined logic, avoiding the solving of an optimiza- Controllers in the second class completely by-
tion problem[2—4]. If they are correctly designed, pass on-line optimization, therefore they are inher-
they can provide an optimal and robust perfor- ently faster and can be used on faster processes.
mance of the closed-loop system. The anti-wind-up bumpless transfe@kWBT) con-
troller design approach is based on the following
*Tel.: 54-353-4537500; fax: 54-353-4535498:mail two-step design paradigf2]: First, a linear con-
address Igiovani@fichl.unl.edu.ar troller is designed ignoring input constraints. In

0019-0578/2003/$ - see front matter © 2003 ISA—The Instrumentation, Systems, and Automation Society.



"Model Predictive Control With Amplitude and Rate Actuator Saturation”

sinc(i) Laboratory for Signals and Computational Intelligence (http:/fich.unl.edu.ar/sinc)

L. Giovanini;
ISA Transactions Journal. Vol. 42, No. 2, pp. 227--244, 2003.

228

the next step, an anti-wind-up scheme is added to
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2. Relationship between MPC and optimal

compensate the adverse effects of the constrainscontrol

on the closed-loop performance. There are many
heuristic techniques for designing AWBT control-
lers, which can be summarized into a structure that
includes a saturation nonlinearity in the forward
path and a linear transfer function in the feedback
path. Kothareet al. [4] unified all the existing
AWBT schemes and developed a general frame-
work for studying stability and robustness issues.
The importance of that work lies in that the model
uncertainties can be taken into account systemati-
cally.

Although MPC and AWBT control methods can
be applied to the same problem, no connections

Given a linear system, a MPC controller solves
at each sample time step the following optimiza-
tion problem:

Y%
min > wy(k+i)
Au(k+})j=0,1,..u—1 1=0
u-1
+ > wAuZ(k+j),
i=o

St.

(1)

between these control techniques has appeared in

literature. In this work we show that there is a
relationship between MPC and AWBT control. In
fact, we show that the general structure of AWBT
controller emerges naturally from the structure of
MPC controller with quadratic objective, input
constraints, and plant model structure affine in in-
put variables. Closed-loop stability, regulatory per-
formance, and sensitivity analysis to model mis-
match issues will be considered in a future work.
The outline of this paper is as follow. In Section 2,
we show the relationship between MPC and opti-
mal control. The general structure of optimal con-
trol problems emerges naturally from the structure
of MPC. In particular, we rigorously show that the
linear quadratic regulatoris derived from MPC
with quadratic objective function. From this point
of view, we analyze the effect of the tuning param-
eters on the closed-loop behavior. Section 3 con-
centrates on providing an analytical solution to the
optimal-constrained control problem, equivalent to
MPC controller. The key tools use for obtaining
such solution are the optimality conditions and
Pontryagin’s minimum principle. Then, the gen-
eral solution is applied to free final state and the
closed-form structures are obtained. The proposed
framework employs the model of saturations as
part of the controller architecture to ensure that no
rate and no amplitude commands are sent to the
actuators that exceed their specific limits and the
internal states of the controller are correctly up
dated. In Section 4, we illustrate the application of
this framework by showing two simulation ex-
amples on SISO linear systems. Finally, we
present the conclusions and discuss future works
on the topics in Section 5.

x(k+i+1)=Ax(k+i)+Bu(k+i) x(k),

r(k+i)=Ax(k+i)+B,u,(k+i) x,(k),
whereV is the prediction horizon and <V is the
control horizon along with the output weigthing
matrix w, and the input weighting matriw, are

the user specified tuning parameters. The states
measured at the present tifhgk) andx, (k)] are

the initial conditions of the optimization problem.
Employing the extended space-state mo(B:)
(see Appendix Aand defining the weights as

(2a)

(2b)

Q=Cw,Cy,
R=w,,
where
Cy=[-C 0 C],

we can write the MPC controllgfl) like the fol-
lowing optimal control problem:

\%
min .

XT(k+1)QX(k+i)
Uk+j)j=0,1,..,u—11=0

uUu-1
+ _20 UT(k+])RUK+]), (3a)
“
st.
X(k+i+1)=AX(k+i)+Bk+i)
+BrR(k+i) k). (3b)
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Due to the receding horizon control philosophy
using in the MPC controllers, the proble(8) is
solved at each sample with the initial condition
X(k) given by

X(K)=[x(k) u(k=1) r(k)]".

Splitting the predicted errors that are inside the
control horizon from those that are outside the
control horizon, the objective functiof3a) can be
written as

\%
:EU XT(k+1)QAX(k+1i)
u-1
+ _ZO [XT(k+i)QX(k+i)

+UT(k+i)RUK+I)]. (4)

The first term of this equation measures the sys-
tem performance outside of the control horizon. It
can be written as function of the system states at
time k+ U and the control action computed by the
control problemi/(k+i), i=0,1,..,U—-1 (Ap-
pendix B. The result is

\%

_:ZU XT(K+1)QX(K+i)

= XT(k+U)SpX(k+U)
Uu-1

+ZO UT(k+1)SUk+i),  (5)

where
V-U
Sy= 2 AVQAY, (63
V-U i i
S,= izo Bg, JZO AJXT QLZO AL|By. (6b)

Before we continue our analysis, a remark about
these expressions must be made. Note tha{H&q.
measures the cost of the uncontrolled portion of
state trajectoryU<i<V). So it acts like a Ly-
punov function of the closed-loop system that
could ensure the system stability if the controller
parameters are properly selected. From HGS.
we can see that the controller parameters which
can be manipulated to guarantee the closed-loop
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stability, for a givenU, are the prediction horizon
V and the state weight, . Now, defining the ma-
trix

R,=R+S,, (7)

the MPC controller(1) can be written as the fol-
lowing optimal control problem:

min XT(k+U)SpX(k+U)

Ukk+i) i=0,1,..,U—1
u-1

+ ZO [XT(k+1)QA(Kk+i)

FUT(K+DRUK+)],
st. (8)
X(K+i+1)=AX(K+i)+B,UK+i)
+BRR(K+i)X(K).

Observe that the resultant optimal control problem
has fixed initial condition, the states measured at
present timeX(k), and does not specify final
state. Notice that the control law computed by the
predictive controller(1) is the same as that de-
signed by the optimal control problert®). The
only difference is the tools used to solve them:
dynamic programing for the optimal control prob-
lem (8) and a parametric optimization program for
the predictive controllefl).

2.1. Effect of tuning parameters on closed-loop
behavior

Many authors show that the choice of MPC tun-
ing parameters have a significant effect on the
closed-loop stability and performance. Now based
on the results of the previous section we want to
analyze the effect of each parameter over the sys-
tem response. The parameters that must be se-
lected are: prediction horizoW, control horizon
U, and penalty weight matrices, andw, . Egs.
(4)—(7) show a strong relationship between them,

which is shown by a couple effect on the closed-

loop behaviof1,11].

» Prediction horizon: It is well known that
longer prediction horizon produces a more
robust controller, which result in a poor
closed-loop performancgll]. These facts
can be easily seen from Eqg)—(7), where
an increment ofV increases the num-
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ber of terms employed to comput&j and * input bounding constraints, imposed by
S,, penalizing bothi(i) the behavior outside physical limitations of actuators.

the controll ho:jizon a”d“)lthhe control acé The last ones cannot be ignored under any condi-
:'ﬁé‘scoe;?r%ﬁ)gf te;%scc;?)trgorftrgl Stﬁate;?/.stercr){ tion, since they may lead to significant deteriora-
smoothly and improve the closed-loop sta- g%;e'g Ict)?); i?\lsotsaf)(ijli_tlsop performance and even
bility. - : o

. Cor:/trol horizon: Linear systems results in- In the case of MPC, as well as in optimal con-
dicate that longer control horizon relative to (0l constrains are explicitly accounted for, and
prediction horizon produces more aggressive the controller action is a solution to a constrained
controllers that achieve better closed-loop Optimization problem. So, the optimal control
performance, employing more control en- problem derived in the previous sectiffq. (8)]
ergy. This effect is the same of reduce the should be written as
prediction horizon V. Numerical results . T
show that control horizon greater than five ey X' (k+U)Spx(k+U)
samples has a similar performance than con- (k*1) 1=0.L,...

trollers designed with this control horizon u-1
value[11]. | | + 3 [Ak+H)TQA(K+i)
e Penalty weights For the choice of weight- i=0

ing matrices there are few rules; it is an ac- - )
tive research area yet. Rahul and Cooper +U(k+i1) 'RyU(k+1)],
[12] derive an analytical expression for con-

trol weightw,,. This expression depends on st.
the control horizon, sampling time, and the ; _ ; ;
condition number of the controller. M+ i+ 1)=Axd(kt1) +ByUk+1)
The effect of the trajectory weight/, on the +BrR(k+i)A(k),
closed-loop response is clear from E@: it has F(K+i), UK+ 1))=<0 9)

a direct effect on the performance and stability of
the closed-loop system. It influences both the state where f (X(k),U(k)) is a function that describes
trajectory inside and outside the control horizon. the constraints present in the manipulated variable.
On the other hand, the control weight, only acts  The solution of this problem must satisfy theni-

on the performance. In practice, it is common to mum principleor the optimality condition$14],

use only one value ofv, for the whole predicted )

trajectory and define the performance using the Xk+i+1)

control weightw, [11], due to its direct effect. GH[ XK 1) UK+ D) N (K i+ 1)]

However, it can be used different weights for the : X(K),
predictions insidg0<i<U-1) and outside(U IN(k+i)
<i=<V) the control horizon calledv,, andw,,, (108

respectively. Under this design condition we can
usew,, to guarantee the closed-loop stabilisee
Eqgs.(4)—(6)] of all plants of the family employed
to describe the systefd3].

 OH[AKE ) UK DK+ 1)]
Mk+i)= IAKET)

MKk+U), (10b

JH[ X(k+1),U(k+1) N(k+i+1)]
3. MPC anti-wind-up scheme 0= UK+1) ’
(100

whereH(:) is the Hamiltonian function of the sys-

tem, \(:) is the Lagrange multiplier or system co-

states, and¥(k) and A(k+U) are the boundary

« output constraints, imposed by the opera- conditions. These conditions are certainly not in-
tive conditions, and tuitively obvious, so we should discuss them a

Most practical control problems are dominated
by inequality constrains. In general, there are two
types of constrains:
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little. Writing Eq. (10) explicitly in terms of its
components we can see that E4j0g is the con-
strain that describes the dynamic behavior of the
system. Eq.10b), known as theadjoint system
describes the dynamic behavior of the costates
N(K). The system(10g9 and the adjoint system
(10b are coupled difference equations that de-
scribe the dynamical behavior of states as function
of costates. They define a two-point boundary
problem, since the boundary conditions required
for the solution are the initial stat&(k) and the
final costatex (k+U). Finally, Eq.(100 is called
the stationary conditionit allows us to express the
control (k) as function of costates and guaran-
tees the optimality of control sequence.

To solve this dynamical recursion we have to
specify the split boundary conditions. They are
given by

[5H[X(k),2/[(k),)\(k+ 1)]

S0 }d)((k)zo,

(113

Il X(k+U),U]
[ ST 0) —)\(k+U)}d)((k+U)T101.b)

Eg. (119 holds only at initial timek and it de-
pends on the initial states. In our application the
system starts at known initial value: the measured
stateX(k). ThusdAX(k)=0 and Eq.(113 is held
regardless of the value dfi(k). On the other
hand, Eq(11b) holds at the final timé&+ U and it

depends on the behavior of the system outside the

control horizon.
Applying these expressions to problé®) gives

XKk+i+1)=AX(k+i)+B,k+1) X(K),
(123

AKk+i)=QX(k+i)+AN(k+i+1)

Ak+U), (12b)
Uk+i)=—R, B(k+i+1). (129
The control actions are given by
i
u(k+i)=PUX(k)+IZO Uk+1),
i=0,1,...,Uu-1, (13

wherePy, is the matrix,

231

The actual control action(k) will be given by
u(k)=PU(k), (14

whereU(K) is the vector of future control actions

Uk)=[u(k) u(k+1) --- u(k+U-1)]"
andP is projection matrix
P=[10 --- 0O].

The presence of constrains in the actuators forces
us to modify Eg.(120, applying Pontryagin’'s
minimum principle over the admissible solution
set [15]. Since MPC computes the changes of
control action instead of control actions, we
should translate the amplitude saturation into a
rate saturation. So, we can define the upper and
lower admissible instantaneous changé&+i)

and/(k+i) as

UK+T)=upin— PyX(k+i), (159

UK+i)=Unpa— PuX(k+i). (15D

These constraints are time varying and will be ac-
tive when the computed control actian(k+i)
overcomes the amplitude saturation limits. They
are the maximum change in the control signal al-
lowed at timek+i by the amplitude saturation.
When amplitude and rate saturation are simulta-
neously presenting the contr@f(k+i) action
should be written as follows:

UK+i)=max{Upmin Uk +1),
MIN{Upna, UK+1),— Ry 1By (K+i + 1)},
(16)

Replacing the costateqk+i+1) and the admis-

sible instantaneous changiisand{ by their ex-
pression$Eqgs.(120 and(15)], the constraint16)
is equivalent ta(Fig. 1)

u(k+i)=f{u(k+i—1)
— AR, B (k+i+1)]},
i=0,1,2,..,Uu—1, (17

= f {u(k+i—1)—fr[Au(k+i)]}.
(18)
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Au(k)— FA~) JulH) >— u(k)

Z'b

Fig. 1. Structure of the actuator’s constraints.

Notice that Eqs(16) and(17) mean that we have  AU(k)=U(k)—U(k—1)

to apply all the control action allowed by the ac-

tuator such that the information employed by the =[Uk) Uk+1) - Uk+U-D]T,
controller to compute the next control action
would be well updated.

At this point, we must note that Eq&l2)—(16) 1 0 0 0
correspond to a static system, where the knowl-
edge of the actual stat&(k) and the behavior S—
outside the control horizon are sufficient to com- : .
pute everything else. Fig. 2 shows a block diagram 11 1 1
interpretation of Eqs(12)—(16), where block M

is the set of algebraic equations corresponding to | the following section we will apply the expres-

andS is the following matrix:

1 10 0

the system dynamic sions derived in this section to a MPC controller
i-1 and we will derive the expressions and the closed-
X(k+i)=AX(K)+ >, Uk+1), form structure.
I=0
i—12...U, 3.1. The controller

When we consider the standard MPC, the be-
havior of the system outside the control horizon is
free [1]. So, the equivalent optimal control prob-

block £ is the set of algebraic equations corre-
sponding to costates behavior

AMk+i—1)=QX(k+i —1)+A})\(k+i), lem (9) has a free final state. In this cadex(k
+U) # 0 and the boundary conditioii1b) is only
i=1,2,..,U, held if
9 i i dp[ X(k+U),U
f(:) is the function(16), AU(K) is the vector of A(K+U) = ol X( ),U]

future changes in control actions, dX(k+U)

d._T AU(k) U(k)
X (k) M L R, B, = £ S ->Q—>| P > u(k)

M Pylyw

Fig. 2. Structure of the generic MPC controller.
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Under this design condition, the final costaték
+U) is given by
Nk+U)=SyA(k+U). (19

To solve the optimal control problem we employ
the swapping methadsuch that we can write the

costates as the boundary conditidr9),
A(k)=SX(K). (20

Employing the extended system model, the co-
states can be expressed in the following form:

NK+i)=A Sy X(k+i+1)+QX(k+i),

i=0,1,...U-1,

= (AsSiA+ Q) X(k+i)
+ ALS B UKFI).

Since the predicted states are given by
i-1

X(k+i)=AL,(X(k)+EO ALB, Uk+i—]),
|=
the costates can be written in the following form:

N(k+1)=(ASyAx+Q)| Al X(K)

i—1

2 ALcBuu<k+i—j>1
=

+A,S B UK+). (21)

Replacing these expression in E¢k20) and (13)
we obtain the unconstrained control actions vector,

U(k)=1lyxuPuX(k)+SR,'B/[L;L,X(k)

+(Lz+Ls)B,AUK)], (22)
where
(AxSyAx+Q) 0
L= : : :
0 (AxSxALTQ)
A%
L= & | (23a
Ay

233
| 0 0
Ay | 0
L3— N l
AVt AL? |
AxSy 0
0 <+ A;Sy

Note thatPyX(k) is justu(k—1), which can be
also obtained frond (k) by multiplying by P and
applying a time delay,

PuX(k)=PU(k)z™ 1. (24

Taking into account this idea and working with
Eq. (22) we can write it as

U(K)=lyxuPU(k)z 1+ SR, 'BjL 1L, (k)
+SR,'B/(LiLs+L,)B,S™?
X (1=lyxuPz HU(K).

Observe that any control actian(k+1i) is given

in terms of the actual state, the past control action,
and the system and weighting matrices. Therefore
the gains of the controller does not depend on the
state trajectory and they can be computed before
the control is ever applied to the plant.

Because MPC controllers employ a receding
control philosophy, a sequence of control actions
[U(K)] is computed at each sample time, but only
the first is applied and the procedure is repeated
again in the next sample, the actual control action
is given by Eq.(14). Therefore we can define the
gainsK, andK, as

Ke=PSR,'B/LiL,, (25)
Ku=PSR,'B/(L;L3+L,4)B,S*
X(1=lyxuPz™h). (26)

If there are amplitude and rate constraints we have
to apply the conditior{17). In this case the struc-
ture of the controller is shown in Fig. 3. The main
characteristic of this structure is the presence of a
feedback path around the constraints. As seen
from comparison of Figs. 3 and 4, the resulting
controller structure of MPC shows strong resem-
blance to the classical anti-wind-up feedback
structure[4].
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X(k)=>L,L,

y .
U 9‘ FAD

P > uk)

Iyw

(L1L3+L4)BU

<€

Fig. 3. Structure of the standard MPC controller.

4. Simulations and results

We present two examples that illustrate the ef-
fectiveness of the proposed anti-wind-up ap-
proach. Furthermore, we will illustrate the capa-
bilities in comparison to the solution that have
appeared in the literature.

Example 1 Consider the following example
studied by Doyle et al[16], which is somewhat
artificial and it was constructed to expose the limi-
tations of existing anti-wind-up schemes. The
plant model comprises two second-order Butter-
wort filter in series

%+ 25,018+ w% %+ 25,05+ wi
Gp(s)=0.2

32+ 2§1w28+ (1)% 32+ 292&)25+ Q)g '
(27)

where w;=0.2115, »,=0.0473,s,=0.3827, and
5,=0.9239.In addition, this problem still requires
the following definitions: (i) The adopted sampling
time is Tg=1.0 sec,and assuming a zero-order
holder for converting the transfer function (27) to
Z domain, (ii) the convolution length was fixed
N=150 (this quantity guarantees a 98% of the to-
tal response), (iii) the prediction horizon V was set

equal to the convolution length &N). Finally,

the predictive horizon (U) was chosen using the
principal component analysis [17] such that the
condition number of matrix gain has a condition
number 1500 withw,=0, obtaining V=10. The
closed-loop response and the associated (uncon-
strained) control action are given in Figs. 5 and 6,
respectively. In Doyle et aJ16], the effect the in-
put signal is bounded within the intervatl with

an amplitude saturation

1, uk)=1
f(u(k))=4 uk), —1<u(k)<1l
-1, uk)=-1.

The resulting closed-loop response is shown in
Fig. 5. With no anti-wind-up compensation, the
closed-loop response degenerates to a limit cycle
of large amplitude. Using a conventional anti-
wind-up approach [16], the response exhibits a
large overshoot and large settling time. That is,

-0~

) u(k)

Ky

Fig. 4. Classical feedback structure with anti-wind-up.
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T T T I T T
14 | . -
7N
/ Y
I \
1.2 | //,/ ‘.\ .
\ -
® \ /N
@ 10 ‘. 7 N =
g - / N
o \.7 \.\‘ /I
B ost \ / 4
o e
S~
= o06F &/ i e Reference -
'g ----------- Unconstrained system
;c,f; 0.4 | S Constrained system with -
conventional anti-windup
02 ! —— Constrained system with 1
/ anti-windup proposed
0.0 | " 1 . 1 L L —_
0 20 40 60 80 100

Time

Fig. 5. Closed-loop responses of the linear systg for a setpoint change showing the effects of amplitude saturation and
anti-wind-up schemes.

the closed-loop performance exhibits a significant Example 2 Now, let us consider a heat ex-
deterioration, in comparison with the uncon- changer, whose hot outlet temperature is con-
strained response, due to the poor compensation. trolled by manipulating the cold stream flow rate,
The closed-loop response obtained using the modeled by [10]

structure proposed earlier has a better perfor-

mance than the others. It only exhibits a small

overshoot due to the fact that the closed-loop sys- Gp(s) = — 35.41 (28)
tem becomes temporarily uncontrollable (4.55+1)°"
4 T T N T ! | v T
------------ Unconstrained system
g —rme Constrained system with |
' conventional anti-windup
Constrained system with
- 2r anti-windup proposed ]
2
c
Z 1r
2
5
O o
Ak
2 L ] . 1 . ] L 1 )
0 20 40 60 80 100

Time

Fig. 6. Control variables corresponding to closed-loop responses shown in Fig. 5.
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2

------ Reference 4
------------- Unconstrained System
--------- Constrained System
— Constrained System with
anti-windup proposed

Setpoint / Response

14 N I : 1 A 1 A 1 : 1 . I N I \
0 10 20 30 40 50 60 70 80

Time

Fig. 7. Closed-loop responses of the linear system heat exchanger for a setpoint change, showing the effect of the amplitude
saturation and the anti-wind-up scheme.

The system includes an amplitude due to the bounded amplitude and rate actuation
of the valve. The predictive controller was de-
1 u(k=1 signed following the tuning procedure developed
fu(uk))=4 u(k), O0<u(k)<l (29 by Rahul and Cooper [12]. The transfer function
0, u(k)<0, (28) was approximated through a first order plus a
time delay model
and a rate saturation

~ e—lO S
+0.2, Au(k)=+0.2 —
(k) Gp(s)=—354% 55,577 (31
fo(Au(k))=19 Au(k), —0.2<Au(k)<+0.2
—-0.2, Au(k)=-0.2, which was discretized with a sampling timig=1
(30 sec, and the convolution length was fixed in 65
18 T T T T d T T T T T d T N T T
ver i Unconstrained System ]
14 E‘é ————————— Constrained System -
1ok —— Constrained System with
5 r i anti-windup proposed
g r
S o8t .
% 0.6 -_ i/‘\\ -
&) i i
04| / \'\, !.1.‘\ =
02| - i
0.0 I .
0.2 [ N 1 s 1 ) 1 L I N I . 1 L 1 ]
0 10 20 30 40 50 60 70 80

Time

Fig. 8. Control variable corresponding to the closed-loop responses shown in Fig. 7.
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Table 1 performance between both system (with and with-
Computational load vs performance costs. out anti-wind-up scheme) is due to the use of the
Controller Performance MFELOPS Simulation amplitude and rate constraints for the correct up-

times dating of the past control actions. Fig. 8 shows the
DMC 17532 192 5 sec control actions computed by all the systems
QDMC 154.87 5747 300 sec Table 1 compares the computational effort and
Proposed 155.14 1.92 5 sec control performance for different MPC controllers
approach considered in the specialized literature. In this
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work we consider the QDMC [1], which performs

an on-line optimization. While we have included
representative simulations time for relative com-
parison, the experiments were performed with sev-
eral programs developed in Matlab. The codes
were not optimized for efficient implementation.
Clearly, a substantial speed up in time can be
achieved by the proposed approach with a small
deterioration of the closed-loop performance

terms. The prediction horizon V has the length as
the convolution model (¥N) and the control ho-
rizon was fixed in five samples. Finally, the control
weightsw, was computed using the following for-
mula [12], assuming a condition humber=600:

M T M—-1 ;
Wy=— 3.5_'___‘_2_ Kp=14.92. In a future work we will address the robustness
C s 2 problem and the effect of uncertainties on the per-
(32 formance. However, in this example we include

two simulations where a gain mismatch is consid-
The unconstrained closed-loop response is shownered. We assume that the process gain varies 20%
in Fig. 7. We can see the response of the closed-(—28.3<Kp=<—42.5). In Fig. 9 we show the re-
loop system. However, when the manipulated vari- sponse obtained for the constrained system with
able has a rate and amplitude saturation (due to this variation in the gain. We can clearly see that
physical actuator’s limitations), the closed-loop the proposed approach provided a good perfor-
response shows a significant overshoot and an in- mance in spite of the important deviation in the
crease in its settling time. When the anti-wind-up gain process. Fig. 10 summarizes the results ob-
compensation is added, the closed-loop perfor- tained during the simulations of system (28) with
mance is improved and it recovers its original and without uncertainty by showing the ISE index
characteristic. The difference in the closed-loop obtained in each case

------ Reference
------------- Unconstrained uncertain system (0.8 Kp) |
Constrained uncertain system i
with anti-wind up (0.8 Kp)

---+-- Unconstrained uncertain system (1.2 Kp) |
—— Constrained uncertain system ]
with anti-wind up (1.2 Kp)

Setpoint / Response
[=>]
T

Time

Fig. 9. ISE indices obtained in the simulations of syst@8 with and without uncertainty, including the proposed anti-
wind-up scheme.
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112 | : I --V 7

11 : -

100 L --O-- Nominal System

ISE

--V-- Constrained System
without anti-windup
108 - --A-- Constrained System
with proposed anti-windup

107 T ‘ |

0.8 Kp Kp 1.2Kp
Process Gain

Fig. 10. Closed-loop responses of the linear syst2& with uncertain in the process gain.

5. Conclusions y(k)=Cx(k), (33

In t_his work we solve the _simultaneous actuator 5nd the setpoint is described by the following lin-
amplitude and rate saturation MPC problem by a5y dynamic system:

formulating it as an equivalent optimal control
problem. Furthermore, we established a direct re- 0
lationship between AWBT schemes and MPC with ~ Xr(K+1)=Ax (k) +B,u,(k),  x(0)=x,
quadratic objective, input constrains and plant
model structure that are affine in the input vari- r(k)=C,x,(k), (34)
ables. The key to solving the problem and to es-
tablishing that relationship was the application of
optimality conditions and Pontryagin’s minimum
principle to the optimization problem solved by
MPC. The proposed framework employs satura- x(k+1)=Ax(k)+Bu(k), x(0)=x°,
tion models as part of the controller architecture to
ensure that no rate and amplitude commands are
sent to the actuators that exceed their specific lim-
its. The effectiveness of the proposed approach
was illustrated by two numerical examples.

In spite of the results obtained in this work, sev- e(k)=r(k)—y(k).
eral questions about stability and robustness issues

still remain open as future research topics. A fu- Expressing the manipulated variable in incremen-
ture work must include a stability analysis of the 5] way and defining the extended states,
constrained closed-loop system, which leads to

stability criterion to tune the controller parameters _ T
and a sensitivity analysis of the control structure Ak)=[x(k) u(k=1) x (k)]
presented in this work.

the system erroe(k) is given by

X (K+1)=Ax (k) +Bu,(k), Xr(0)=X?,
(35

the system’s manipulated variables,
Appendix A: Extended system model

Given a linear discrete system, Utkj=Auk), Rl =u(k),

x(k+1)=Ax(k)+Bu(k), x(0)=x9, and the system’s matrices,
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A B O B v _ _
A=l0 1 0 Bu:[ zu XT(k+1)QX(k+i)
0 0 A 0 v
. T .
0 =XT(k+ U),EU ALY QAL YA(k+U)
1=
Br= E? . Cax=[-C 0 C] (39 v o
' +UT(k+U) 2 B > ALT
the extended systen85) can be written as the =Y =0
following: i—u-1
X Al By Uk+U). 40
X(k+1)=AX(K) + B, U(k) + BrR(K), Q .Zo x| Buldl ) (40
e(k)=C, X(K). (37) Defining the following matrices:
V-U V—-U
For system(37), the following well-known results i i
hold, me? ’ Sy=| 2 AVT|Ql 2 Ay, (41a
Lemma 1 If the pair (A,B) and(A,,B,) are _ ,
reachable, then the paifA.,B,) is stabilizable A VI R L
with nonreachable eigenvalues only at the origin Sy~ ;U By 2 Ax |Q ZO Ax|Bu,
Lemma 2 If the pair (A,C) and(A,,C,) are (41b)
observable and system (33) does not possess
transmission zeros at one, then the pgl,,C,) we can write Eq(40) as the following:
is observable v

;J XT(k+1)QX(k+i)

= XT(k+U)SyX(k+U)
Appendix B: Weighting matrix FUT(K+U)S, UK+ V). (42)
The first term of objective functiof), Because of the control actidi(k+ U) is given,
v u-1
2 ATk D)QAkH), (39) Uk+U)= 3, uk+i),
i= =

measures the system behavior outside the controlthe last expression becomes
horizon. It acts like a Lyapunov function, such that
if it guarantees a reduction in the changes of sys-
tem state§ AX(k+i)<0, U<i=<V], the closed
loop will be stable. Since there are no control ac-
tions fori=U, the behavior of the system states =XT(k+U)SyX(k+U)
outside the control horizon can be described as a U—1

function of X(k+U), andi/(k+U), n -Zo UT(K+ 1) S, UK+ ). 43)

\%

:ZU XT(k+1)QXx(k+i)

A(k+i)=AYAk+U)
_ Observe that Eq43) not only affects the behavior
mu-t | ] of the states, but also influences the control actions
+ ;o AByUK+i—1), employed to control the system. So, modifying the
prediction horizonV, or the control horizonJ,
i=U+1U+2,...V. (39 we modify Sy [penalizing, or notA (k+U)]and
S, (penalizing, or not, the energy employed to
Replacing these states in E®8) we have control the system Furthermore, we must note
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that the matrice$, has the same form as the so-
lution of the algebraic Ricatti equatidii5]. The
matrix S, is related withS, through the following
expression:

\
Su=By, 2 Su(i)Bu,

whereS.(j) is given by Eq.(413 with the upper
limit of sumatory given byj instead ofV—U.
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