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Abstract— The application of complexity measures to the
analysis of different biological signals have contributed to give
a better understanding of the dynamical systems involved in
their generation. In this work we present a comparative study
of the complexity of speech signals from subjects with normal
phonation and patients with laryngeal pathologies of the vocal
system. Different complexity measures were considered in this
study. Our results suggest that some of them would allow to
discriminate between normal and pathological voices. This
result could give an indication in order to assist the diagnostic
or the treatment in the clinical practice.
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I. INTRODUCTION

In the study of nonlinear dynamical systems we often
deal with experimental data where the underlying dynamics
is not well known. Most of them present a rich variety of
self-oscillating regimes that involve either regular or
complex behavior [1].

When a non linear dynamics can be represented by
differential equations, there exist a variety of methods that
provide a qualitative and quantitative characterization of its
behavior. In the most frequent case, when explicit equations
are not available, other approaches have been proposed in
which the signal stationarity is taken for granted [1], [3], [4],
[5]-

Different notions of entropy have been used in order to
characterize the complexity degree of differential and
difference equations. The application of quantitative
measures of complexity to the analysis of such signals have
contributed to give a better understanding of the dynamical
systems [6].

The algorithm complexity for sequences of finite length
was suggested by Ziv and Lempel [7], and it is related with
the number of distinct substrings and the rate of their
recurrence along the given sequence. Ziv-Lempel (LZ)
complexity can be a finer measure than the Lyapunov
exponents for characterizing order [8]. Another measure of
complexity (regularity) is the Approximate Entropy (ApEn)
[9] that allows complex system classification. It is well
known its ability to quantify complexity with a reduced
amount of data, although it requires a relative high
computational burden. LZ complexity and ApEn are not
measures of chaos but they quantify the regularity
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embedded in the time series. The main disadvantage of these
techniques, as most of the usual complexity measures
(correlation dimension, Lyapunov exponents), is the large
amount of data required for their estimation [1][3]. The
renormalized entropy, opposite to other complexity
measures, is defined relative to a fixed state [6] and has been
used to indicate transitions from periodic to chaotic behavior
as well as between different types of chaos. Basically it is
the Kullback Information respect to a state with a given
value of effective energy.

The classical Shannon entropy, which comes from
information theory, describes the evolution of order. The
more  general  Harvda-Charvat-Darovezy-Tsallis  (g-
entropies) [6], [10], [11] and their corresponding relative
informations are considered as complexity measure
estimators. In [12] we have presented a comparative analysis
of different complexity measures and the involved
algorithms, taking into account their computational cost and
their robustness in the presence of noise. In [13] we have
included complexity measures in order to improve the
robustness of an automatic speech recognition system.

In this work we deal with pathological speech signals,
which could present a nonlinear underlying dynamics, and
our goal is to compare different complexity measures in
order to characterize them. With this in mind we present
and evaluate different complexity measures, derived from
Shannon entropy, g-entropies, the corresponding relative
information measures, and the LZ and ApEn. These
preliminary results suggest that complexity measures would
allow us to discriminate normal and pathological voices.

II. MATERIALS AND METHODS

A. Complexity Measures

In this section we briefly review the complexity
measures considered in this study. For more comprehensive
discussions, see e.g. [12], [14].

1) Approximate Entropy

The ApEn can classify a system given at least 1000 data
values in diverse settings including deterministic, chaotic
and stochastic processes [9]. The capability to discern
changing complexity from such relatively small amount of
data holds promise for application of ApEn to a variety of
contexts.

Given a finite time series x(1), x(2), ..., x(N), a fix
positive integer m and a positive real number r, we consider
the embedding vectors u(l),..., u(N-m+1) in R™, where

u()=[x(}), x(7+1), ..., x(F+m-1)]’.
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For each i, 1<i < N-m-1,
C” =numberof j<N —m+1 suchthat d(u(i),u(j))<r,
where d(u(i),u(j)) is the [, norm. The ApEn is defined as:

ApEn(m,r)=lim,__|@" () =" ()],

where
N-m+1

Q" = ;lnCi”(r)/(N—m +1).

2) Ziv-Lempel

As proposed in [7], the complexity of a finite sequence
can be evaluated from the point of view of a simple self
delimiting learning machine which, as it scans a given N-
digits sequence x = x(1), ...., x(N) from left to right, adds a
new word to its memory every time it discovers a substring
of consecutive digits not previously encountered. The size of
the compiled vocabulary and the rate at which new words
are encountered along x serve as the basic ingredients in the
LZ complexity evaluation.

B. Entropies

Given a signal x, we can define its Shannon entropy as
[16]:

M
H=- Zpi ln(pi)9
i=1

where p; is the probability that the signal belongs to a
considered interval and with the understanding that p.In(p) =
0 if p = 0 and M is the partitions number. The entropy H is a
measure of the information needed to locate a system in a
certain state, meaning that A is a measure of our ignorance
about the physic system.

The Harvda-Charvat-Darovczy-Tsallis [6], [10], [11], g-
entropy, that depends on a single real parameter ¢Z/, reads
as:

T

H =——

a ql-l,» (pi-piq)

C. Relative entropies

The relative entropy (or Kullback-Leiber distance) K( f| g)
between two probability densities f'and g is defined by [17]:

K(f12)= [ foIn[f(x)/g(0)]dx,

with the understanding that y.In(y) = 0 if y = 0.
In the g-entropies case for ¢#l and ¢l , the
corresponding relative g-entropies are given by [14]:

1 0 gfxd'E
Df18) =i _)[f(x)él B%H Cur

The Kullback divergence Kj(f| g) between two probability
densities f'and g is defined by [17]:

K,(f1g)= D(f1g)-D(gl|f)
In our case, given two probabilities p; and r;, such that the
signal belongs to different intervals, the corresponding
discrete versions read as:

D(p|n =% pin(pi/n)

and

D(plr=—r

-1
=y piE_(pi/ri)q Ely

M=

D. Speech Signals

The complexity measures were obtained from recordings
of people’ s voices with normal phonation and patients with
pathologies of the vocal system. Each signal is a recording
of the sustained phonation of a vowel or a vocalic phoneme.
The use of a vocal type stimulus has certain advantages.
First, the isolated vowels are used in the routine of clinical
practice for evaluation of the quality of pathological voices.
Second, the objective measures are relatively direct,
compared with the continuous speech. Also, they allow an
easy and effective separation among normal and
pathological voices [18]. The study of the continuous speech
is a superior objective and an evident next step. However,
first valid results are required based on stimuli of smaller
complexity. In the upper part of figure 1, a segment of
normal and pathological voices are shown, where the
temporal differences of both waveforms can be appreciated,
while in the bottom the spectra of the same segments are
observed. A difference that is appreciated at first sight is the
appearance of high frequency components in the
pathological case.

i} 0 20 an 40 50 [ns]

o 1000 2000 3000

4000 [Hz]

1] R
Fig. 4. Normal and pathological speech signals in time and frequency
domains.

1) Data of normal voice
The speech signals of normal voice were obtained from
the corpus of continuous voice TIMIT [19]. From the
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sentence SA1.WAV, of the original group of training
sentences, signal portions that contain the phoneme /aa/
were extracted. When creating the different sets of patterns,
the speakers were selected at random among the dialectical
regions DR1 to DRS, in such a way of having represented a
wide variety of dialects and not to repeat the patterns.

2) Data of pathological voice

Signals of pathological voice were obtained from a
library of recordings of voices taken in VA Hospital (West
L.A.) by investigators of the Speech Processing and
Auditory Perception Laboratory (SPAPL), UCLA. The
signals were recorded with a miniature microphone mounted
on the head AKG C410, placed to 4 cm of the patient’ s lips.
The signals were gone by a lowpass filter of 8 Khz, digitized
directly to 20 Khz and sampled to 10 Khz. A segment of 1
second was extracted of the half portion of each recording
[20]. For the purpose of this work, the signals were
resampled to 16 Khz, to obtain the same temporal reference
that the signals of TIMIT.

The classification of the signals was carried out by the
mentioned investigation team, being contained in the
following categories: rough and rough-breathy: 11 files,
bicyclic (also well-known as diplophony): 8, rough-bicyclic:
1, strained-breathy: 2, and strained-rough: 2.

III. RESULTS AND DISCUSSION

Tables 1T and II present the results evaluating the
complexity measures in records of speaking feminine and
masculine respectively on both normal and pathological
conditions. They are expressed as mean values obtained
through the evaluation of sliding windows of 500 samples
from records of 2000 points. This is equivalent to use an
analysis window of 33 ms approximately. In order to avoid
the dependency of the complexity measures with the signal
energy, all the records were normalized to have unit
standard deviation previous to the processing. The presence
of significant differences in the estimated parameters was
evaluated using the unpaired Student’s ¢-test. As can be
appreciated, some complexity measures do not present
meaningful differences in the mean values corresponding to
normal and pathological signals, as for example the Shannon
entropy. The LZ presents a high variance in women and in
the case of the men the mean value is similar. The Kullback
relative entropy K offers a good discrimination in the male
cases, but not in the case of the feminine voices. H,, D,, and
K, presented significative differences on both groups.

Figures 2 and 3 present the results of the temporary
evolution of the mean values of all the speakers by window
and their standard deviation in the case of the feminine
voices. In red line the pathological cases are presented and
in blue the normal ones. In the same way, Figures 4 and 5
show the results corresponding to the masculine voices. As
can be seen, the time evolution of the considered complexity
measures presents a slowly time varying pattern. They allow
us to appreciate the conformity with the results described in

the corresponding tables. In terms of discrimination, the best
results were obtained with the g-divergence H, for women
and the Kullback information K for the men group, with
p<0.005.

TABLE I
COMPLEXITY MEASURES FOR WOMEN

[ Normal | H | H, | p, | K | Ko | LZ |

052 613 0.08 0.016  0.105  14.67

057  6.18 0.07 0.007  0.076  18.87

057 593 0.07 0.010  0.074  16.87

052 598 0.04 0.006  0.056  16.27

054 597 0.05 0.005  0.052  17.13

Mean 054  6.04 0.06 0.009 0.073  16.76

) 0.03  0.11 0.02 0.004  0.021 1.52
[Pathologic| H | H, | D, | K | Ko | Lz |

053  6.40 0.02 0.003  0.030  17.13

054  6.41 0.02 0.003  0.023  15.13

056  6.29 0.03 0.006  0.047  20.73

057 646 0.02 0.004  0.031  21.60

056  6.11 0.03 0.005  0.038  22.80

Mean 055  6.33 0.02 0.004  0.034  19.48

SD 002  0.14 0.01 0.001  0.009 3.22

* p<0.05 * * *
TABLE I
COMPLEXITY MEASURES FOR MEN

[ Normal | H | H | D, | K | Ko | Lz |

056  6.10 0.07 0.014  0.09  17.87

059  6.27 0.03 0.008  0.042  17.13

051 537 0.06 0.007  0.044 1933

057  6.07 0.06 0.015  0.103  17.73

045  5.07 0.05 0.011  0.054  19.93

Mean 053  5.77 0.05 0.011  0.068  18.40

SD 0.05  0.52 0.02 0.003  0.029 118
[Pathologic| H | H, | D, | K | Ko | Lz |

054  6.66 0.02 0.002  0.026 1933

055  6.71 0.02 0.003  0.033  20.07

054  6.69 0.04 0.005  0.045  19.07

053 6.0 0.03 0.004  0.028  19.53

055 6.8 0.02 0.003  0.025  18.60

Mean 054  6.63 0.03 0.003  0.031  19.32

SD 0.01  0.09 0.01 0.001  0.008 0.54

* p<0.05 * * * *

IV. CONCLUSION

In this study, complexity of voice signals was assessed
using ApEn, LZ and information theory derived complexity
measures. Preliminary results were presented comparing
normal and pathological cases stratified by gender.
Significative differences were found between groups,
suggesting that these measures can be successfully applied
to discriminate normal and pathological speech signals.
Further studies should consider a larger amount of data and
the analysis of each pathology individually.
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Fig. 2. Feminine voices — In red the pathological and in blue the normal
ones.
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Fig. 3. Feminine voices — In red the pathological and in blue the normal

ones.
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Fig. 4. Masculine voices — In red the pathological and in blue the normal
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