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Abstract: A new method for the design of predictive controllers for SISO systems is presented. 
The proposed technique allows uncertainties and constraints to be concluded in the design of 
the control law. The goal is to design, at each sample instant, a predictive feedback control law 
that minimizes a performance measure and guarantees of constraints are satisfied for a set of 
models that describes the system to be controlled. The predictive controller consists of a finite 
horizon parametric-optimization problem with an additional constraint over the manipulated 
variable behavior. This is an end-constraint based approach that ensures the exponential 
stability of the closed-loop system. The inclusion of this additional constraint, in the on-line 
optimization algorithm, enables robust stability properties to be demonstrated for the closed-
loop system. This is the case even though constraints and disturbances are present. Finally, 
simulation results are presented using a nonlinear continuous stirred tank reactor model. 
 
Keywords: Predictive control, parametric optimization, multi-objective optimization. 
 

1. INTRODUCTION 

Over the last few decades model predictive control 
(MPC) has been applied successfully in many 
applications. MPC consists of a step-by-step 
optimization technique: at each sample a new value of 
the control signal is calculated on the basis of the 
current measurement and the prediction of the future 
states and outputs (see e.g. [9]). The predictive control 
technique is very popular since it is possible to handle 
constraints on the input and output signals. The design 
of the control law is usually based on two 
assumptions: a) there is no uncertainty and b) the 
disturbance, which includes the effect of uncertainties, 
has a well defined behavior (the most common 
assumption is that the disturbance remains constant 
over the prediction horizon). The resulting control law 
will therefore be optimal for the nominal plant model 
and the disturbance model assumed during the design. 
Thus, the closed-loop performance may be rather poor 
and constraints may be violated, when there are 
uncertainties and / or disturbances in the system. 

Various modifications of MPC algorithms have 
been proposed to ensure stability in the presence of 
modelling errors; these changes can be grouped into 
four general categories: 

● Detune the controller by suppressing input 
movement: this method is motivated by the fact that 
one can always stabilize an open-loop stable system 
by making the controller less aggressive; in the limit 
of a completely passive controller, the system reverts 
to its stable open-loop behaviour. Methods based on 
detuning the controller share two fundamental 
limitations; appropriate tuning factors must be 
computed or determined from closed-loop simulation 
and the closed-loop performance may suffer 
unnecessarily when the model is accurate [10,18, 
27,28]. 
● Minimize the worst-case controller cost: is one 

of the most heavily studied robust stability methods. 
Lee and Yu [19] summarize the development of so-
called min max algorithms, pointing out that the usual 
open-loop implementation may perform poorly. They 
propose a closed-loop approach that is capable of 
better performance, and discuss computationally 
tractable approximations. The main disadvantage of 
the min max approach is that control performance may 
be too conservative in some cases [2,5,19,24]. 
● Cost function constraints: this approach to the 

robust stability problem involves that the use of cost 
function constraints and leads to robust stability for a 
finite set of stable subject to hard input and soft state 
constraints [3]. Robust stability is achieved by adding 
cost function constraints that prevent the sequence of 
optimal controller costs from increasing for the true 
plant. The optimal input is re-computed at each time 
step by solving a convex semi-infinite program. The 
solution is Lipschitz continuous in the state at the 
origin; as a result the closed loop system is 
exponentially stable and asymptotically decaying 
disturbances can be rejected. 
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● State contraction or terminal state constraints: 
this approach to the robust stability problem involves 
adding a constraint that forces all possible system 
states to contract on a finite horizon, or to terminate in 
a robustly stabilizable region.  If the horizon is short, 
state contraction constraints may have feasibility 
problems or may be so conservative that they cause an 
unacceptable performance loss [15,17,29]. 

A significant disadvantage of most robust control 
algorithms is that all possible plant dynamics are 
considered to be equally likely; thus the controller 
focuses necessarily on the worst-case performance at 
each time step. However, typical statistical 
assumptions for a process identification experiment 
lead to an estimate of the joint probability distribution 
function for the plant parameters, providing a clear 
indication of which parameter set is most likely to be 
encountered by the controller. The typical min max 
controller does not exploit this knowledge and it may 
spend most of its time focused on plant dynamics that 
are extremely unlikely to occur. 

The main contribution of this paper is a predictive 
controller that combines a direct feedback action with 
a multi-objective optimization of the control law, 
which is performed at each sample. The stability of 
the closed-loop system is guaranteed using an 
inequality end constraint in the control variable, called 
a contractive constraint.  Moreover, contrary to the 
end constraint proposed by other authors [21,20], 
neither the region of attraction nor the control law 
need be pre-computed. 

The organization of the paper is as follow: Firstly, 
in Section 2 the basic mathematical problem 
formulation is presented and the meaning of the 
design parameters is discussed. At the end of this 
section, the effect of the contractive constraint over 
closed-loop response is analyzed. Then, in Section 3 
the basic problem formulation is extended using 
polytopic ideas, to cope with slowly time-varying or 
nonlinear systems. The objective function of the new 
optimization problem is analyzed and compared with 
the objective function employed in the specialist 
literature. In Section 4 we show the results obtained 
from the application of the proposed algorithm to a 
nonlinear continuous stirred tank reactor. Finally, the 
conclusions are presented in Section 5. 
 

2. PREDICTIVE FEEDBACK CONTROL 

Model predictive control refers to the class of 
algorithms that use a model of the system to predict 
the future behavior of the controlled system and to 
then compute the control action such that a measure of 
the closed-loop performance is minimized and 
constraints are satisfied (Fig. 1(a)). Predictions are 
handled according to the so called receding horizon 
control philosophy: a sequence of future control 

actions is chosen, by predicting the future evolution of 
the system and the control at time k is applied to the 
plant until new measurements are available. Then, a 
new sequence of future controls is evaluated so as to 
replace the previous one [9]. A simple MPC 
formulation can be expressed in the following 
optimization problem: 
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where ŷ( i ,k) is the closed-loop prediction error at 
time k+i based on measurement until time k. This 
includes the effect of past control actions, through the 
open-loop predictor 1( , )i z−P , and the effect of future 
control actions determined by the impulse model 
coefficients jh� . The prediction ŷ( i ,k) is updated 
using the current measurement y(k). The transfer 
function of the corrected open-loop predictor 

1( , )i z−P  is given by (see Appendix A) 
 

1 1

1 1
( , ) ,

N N
i j j

i j j
j i j

i z a z h z h z− − − −

= + =
= + +∑ ∑� ��P  (2) 

 
where N is the convolution length, ãi  i=1,2,… ,N is 
the coefficient of the step response and jh�  

j = 1,2,… ,N is the coefficient of the impulse response. 
The prediction horizon V and control horizon U ≤ V, 
along with the output weighting matrix wy and the 
input weighting matrix wu are the user specified 
tuning parameters. 

Control Horizon
j=1 , … ,U

r (k+ i )
ê 0 ( i , k )
y0 ( i , k )

k

Prediction Horizon
i = 1 , … , V

y(k-j)

k-1k -2
t

k -w+J k+Jk-2 k -1

r (k- i+J )
ê 0 (J , k- i )
y0 (J,k - i )

t

y(k-j)

k

u(k )

u(k +j )

 
Fig. 1. MPC and Predictive feedback set ups. 
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As many authors have shown (see i.e. [19]), this 
formulation of the problem implies a control 
philosophy similar to an optimal open-loop control 
law, which allows constraints to be included in a 
simple and efficient way. In this framework, the 
stability and robustness problems have been addressed 
employing a worst-case minimization of the predicted 
error over a set of model realizations that describe the 
plant [11]. To guarantee constraint fulfillment for 
every possible model realization, it is clear that the 
control actions have to be chosen to be safe enough to 
cope with the worst case model realization [12]. This 
effect is evaluated by predicting the open-loop 
evolution of the system driven by a worst-case model. 
As investigated by Lee and Yu [19], this inevitably 
leads to over conservative control schemes that 
provide a robust and cautious control. To solve this 
problem, the authors suggest the exploitation of 
control movements to mitigate the effects of 
uncertainties and disturbances on the closed-loop 
performance. This is achieved by using the closed-
loop prediction and solving a rigorous min-max 
optimization problem, which is computationally 
demanding. To overcome the computational burden 
problem, Bemporad [4] developed a predictive control 
scheme that also uses the closed-loop predictive 
action, but it is limited to include a constant feedback 
gain matrix. 

Following the idea proposed by Bemporad [4], 
Giovanini [14] introduced direct feedback action into 
the predictive controller. The resulting controller, 
called predictive feedback, uses only one prediction of 
the process output J time intervals ahead and a filter, 
such that the control changes can be computed 
employing the last w predicted errors (see Fig. 1(b)). 
Thus, the predictive control law is given by:  

0

0
ˆ( ) ( , ) ( ),

v

j
j

u k q e J k j u k
=

= − +∑  (3) 

 
where qj j=0,1,… ,v  are the controller's parameters 
and ê0(J ,k–j) is the open-loop predicted error J step 
ahead based on measurements until time k–j  
 

0 1ˆ ( , ) ( ) ( , ) ( ),e J k j e k j J z u k j−− = − − −P  
 
where e ( k – j ) is the measured error at time k – j. In 
this work, [14] it was shown that  
• The predictive feedback controller (3) provides 

better performance than the predictive controller 
(1), particularly for disturbance rejection, because 
it employees more feedback information than the 
standard MPC in the computation of the control 
law1, and 

• the parameters of the controller, qj j=0,1,… ,v , 
and the prediction time, J, can be chosen 
independently. 

The last fact is quite important because it makes the 
tuning procedure easier. The stability criteria derived 
in the original paper [14] is employed to choose J and 
to then tune the filter using any technique. In this 
framework, the problem of handling the system's 
constraints was solved tuning the parameters of the 
controller. This solution is not efficient because it is 
only valid for the operational conditions considered at 
the time of tuning the controller [1,13]. Thus, any 
change in the operational conditions leads to a loss of 
optimality and to violation of constraints. 

The only way to guarantee that the constraints are 
satisfied is to optimize the control law (3) for every 
change, in reference or disturbance that is happening 
in the system. Following this idea, the original 
predictive feedback controller is modified by 
including an optimization problem into the controller 
such that the parameters of the controller are 
recomputed at each sample instant. The structure of 
the resulting controller is shown in Fig. 2. 

Remark 1: The actual control action u(k), is 
computed using the past predicted errors and control 
movements, whereas the vector of parameters – Q(k) – 
is optimized over the future closed-loop system 
behavior. Thus, the resulting control law minimizes 
the performance measure and guarantees the 
fulfillment of all the constraints over the whole 
prediction horizon. 

Before introducing the optimization problem the 
predictive contro law (3) is modified to improve the 
overall closed-loop performance, in two ways. Firstly, 
new parameters that weight the past control actions 
are introduced  

0

0 1
ˆ( ) ( , ) ( )

v w

j j v
j j

u k q e J k j q u k j+
= =

= − + −∑ ∑ . (4) 

 
This fact allows the closed-loop performance to be 
improved. However the decoupling property between 
the prediction time J and the parameters of the 

 

ŷ0(J ,k) 

– 

ê0(J ,k) 

P (J ,q - 1) 

C(Q (k ) ,q - 1) r(k)

y (k) 

u (k) 

Q(k) 

– 

Optimizer 

Fig. 2. Structure of the predictive feedback controller.

1 In the traditional formulations of MPC, the algorithms only 
employ the last measurement, while the predictive feedback 
employs the last v measurements. 
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controller qj j=0,1,… ,v+w  is lost for most 
situations. This result is summarized in the following 
theorem. 

Theorem 1: Given a system controlled by a 
predictive feedback controller (4), the closed-loop 
system will be robustly stable if and only if 
 

1

1 1 10

1
.

w
N Nj vj

J i i i iv
i J i i Njj

q
a h h h h

q

∞+=

= + = = +=

−
+ > + − +

∑
∑ ∑ ∑

∑
� ��

(5) 
 

Proof: See Appendix B.                                        � 
After augmenting the controller, it is allowed to 

vary in time 
 

0

0 1
ˆ( ) ( ) ( , ) ( ) ( ),

v w

j j v
j j

u k q k e J k j q k u k j+
= =

= − + −∑ ∑  

(6) 
 

this fact gives enough degrees of freedom to handle 
the constraints present in the system. It is well known 
that the optimal result is obtained when the control 
law is time-varying. However, as many authors have 
pointed out, only few control steps have a strong 
effect on the closed-loop performance (see i.e. [22]). 
The control law is therefore modified so that the 
control law is assumed time-varying for the first U 
samples and it is time invariant for the remaining ones 
 

0
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0
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v
jj

w
j vj

u k i q k U e J k i j i U

q k U u k i j

=

+=
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∑

 (7b) 

 
Under this design condition, in each sample a set of 
parameters qj(k+i) j=0,1,… ,v+w ,  i=0,1,… ,U  is 
computed so that the future closed-loop response will 

fulfill the constraints and be optimal. Then, only the 
first elements of the solution vector – qj(k) 
j=0,1,… ,v+w – is applied and the remaining ones –
qj(k+i) j=0,1,… ,v+w , i=1,2,… ,U – are used as 
initial conditions for the next sample. The 
optimization is repeated until a criterion, applied over 
the error and/or manipulated variable, is satisfied. 
When the stopping criterion is fulfilled the last 
element – qj(k+U) j=0,1,… ,v+w , i=1,2,… ,U – is 
applied and the optimization is stopped. This criterion 
is usually selected such that the change in the control 
law can be produced without a significant change in 
the closed-loop response. 

In order to obtain a stabilizing control i) the control 
law (7) must be feasible everywhere, and ii) the 
control law (7) must lead to an output admissible set, 
called Ξ. In others word, we wish Ξ to be a positively 
invariant set [11]. In the next section the optimization 
problem employed to compute the parameters of the 
controller will be introduced. It includes an end 
constraint over the control action, called contractive 
constraint, which guarantees the closed-loop stability 
and accelerates numerical convergence by selecting 
feasible solutions with bounded input/output 
trajectories. 
 
2.1. The optimization problem 

In the predictive feedback controller (7) the 
numerator and denominator orders (v and w), the 
prediction time (J) and parameters of the controller 
(qj  j=0,1,… ,v+w) are the parameters to be 
optimized. The optimization problem employed to 
redesign the controller is therefore formulated in the 
space of the controller's parameter and it is a mixed-
integer and nonlinear problem. This type of 
optimization problem is very expensive from a 
computational point of view, so it was changed into a 
nonlinear one by fixing the v, w and J. The prediction 
time is chosen using the stability criterion (5) and the 
orders of the controller (v and w) are fixed arbitrarily. 

Fixing the integer parameters of the controller (v, w 
and J), the controller parameters can be found by 
solving the following optimization problem: 
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(8a)

(8b)

(8c)

(8d)

(8e)

(8f)
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where V is the overall number of sample instants 
considered. The objective function (8a) measures the 
future closed-loop performance of the system. The 
first constraint, (8b), is the J step ahead open-loop 
prediction ŷ0(J ,k+i), which is employed to compute 
the control action u( i ,k). It is calculated from all the 
information available until time k+i. (8c) is the 
closed-loop prediction ŷ( i ,k), which is used to 
compute the future performance of the system, to 
evaluate the constraints and to compute ŷ0(J ,k+i). It 
is computed from all the information available at time 
k+i . The third and fourth equations are the control 
law (7). Finally, an additional constraint, called 
contractive constraint, is included in this formulation 
through the last equation.  This constraint deserves 
specific explanation in the next subsection. 

The optimization problem formulated above 
performs a sort of closed-loop simulation each time 
the optimization problem (8) tries new parameter 
values and therefore, the closed-loop time-domain 
response, as well as the evolution of internal variables, 
may be evaluated directly. The key element of this 
optimization problem is to find a control law that 
satisfies all the constraints. This reduces the 
computational burden in the minimization of the 
performance measure. In control scenarios, it is 
natural that inputs and outputs have limits. The 
particular numerical issues discussed in this paper are 
the same whether such constraints are included or not. 

During the design of the control law the constraints 
are met before finding the minimum of the objective 
function. The opposite case implies there is no 
feasible solution. Then, the optimization may be 
stopped once the design conditions are satisfied. This 
fact does not mean reducing the importance of the 
global minimum; it simply provides a practical 
criterion for stopping the optimization. 
 
2.2. Final control condition 

The contractive constraint (8f ) asks for null or 
negligible control movement at the end of the control 
horizon. It is equivalent to requiring that both y and u 
remain constant after the time instant k+V. Therefore, 
it ensures the internal stability of all systems that are 
open-loop stable, even those having zeros in the right 
half plane. These results are summarized in the 
following theorem. 

Theorem 2: Given a closed-loop system that 
satisfies |∆u(V,k) | ≤ ε  ∀ ε ≥ 0, the closed-loop 
system is exponentially stable. 

Proof: See Appendix C.                                          � 
When ε = 0, the constraint (8f ) is very restrictive 

from a computational point of view. However, it 
possesses a very important property: it is not 
necessary to reach the global minimum to maintain 
stability. It only needs that a reduction in the objective 
function takes place at each step, since the objective 

function acts like a Lyapunov function of the closed-
loop system and the resulting control law will be 
deadbeat [16]. 

When ε > 0, for the system output y verify 
 

ˆ( ) ( , ) (0) ,r k i y i k Gp i Vε+ − ≤ ∀ ≥  
 

which means that y stays in a manifold of radius 
ε Gp(0) around the setpoint starting from k+V (Fig. 3). 
This constraint may also be used as a design condition 
affecting the closed-loop performance. Defining the 
value of V is an alternative way for determining the 
closed-loop settling time. Let us observe that if V is 
large enough (larger than the system's dynamics) and 
ε > 0, this constraint will not affect the closed-loop 
performance and the closed-loop response will be 
shaped by the objective function and any other 
constraints. 

From a numerical point of view, the constraint (8f ) 
helps to select feasible solutions with bounded input / 
output trajectories. It therefore accelerates the 
numerical convergence and it avoids oscillations and 
ripples between sampling points. This is a problem 
frequently arising from discrete cancellation 
controllers, particularly when applied to high-order 
systems. 

The results described in this section can be 
extended to other type of setpoint following the 
procedure employed in Appendix C. For example if 
we want to follow a ramp setpoint, the closed-loop 
system will be exponentially stable if 

 
( , ) ,u V k ε∆∆ ≤  (9) 

 
where ∆∆ is the second difference operator. 

Example 1: Consider the following linear model 

0.5
2

0.001 0.0192( ) ,
0.6124 4.78755

ssGp s e
s s

−− +
=

+ +
 

which results from the linearization of the CSTR 

 

x( i ,k) ∈ Ξ(ε)    ∀ i ≥ V  

x ( i ,k ) 

x ( i ,k ) 

 x ( 0 ) 

Ξ ( ε ) 

ε = 0  
ε > 0 

 x 1  

 x 2  

 
Fig. 3. Behavior of the system’s states with  ε. 
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reactor previously employed by Morningred et al. [23] 
(equation (51)) at nominal parameters and qC(t) = 110 
lt min–1. This nonlinear model was previously 
employed by Morningred et al. [23] to test nonlinear 
predictive control algorithms. The discrete transfer 
function is obtained by assuming a zero-order hold in 
the input and a sampling time tS = 0.1 sec and the 
convolution length N was fixed in 200 terms. The 
manipulated control should satisfy the following 
restrictions 
 

( ) 10 ,u k k≤ ∀  (10) 
 
which arises from the fact that the non-linear system 
becomes uncontrollable when the absolute value of 
qC(t) exceed 113 lt min–1. In addition, the output 
concentration must satisfy 
 

0

0 0

( ) 1.01 ,
( ) 0.01 50,

y k r k
e k r k N

≤ ∀

≤ ∀ > +
 (11) 

 
where r0 is the reference value and N0 is the time of 
change. Finally, a zero-offset steady-state response is 
demanded for the steady-state controller 

1 ( ) 1.w
j vj q U+= =∑  (12) 

The prediction time is chosen using the stability 
condition (30), so the prediction time must satisfy: 
 

10 15J≤ ≤  and 20.J ≥  (13) 
 
To obtain a good performance the smaller prediction 
time (J=10) was chosen. Finally, the objective 
function employed in this example is 
 

2 2

1
( ) ( )

V

i
f e k i u k iλ

=

 = + + ∆ + ∑ , (14) 

 
where the time span is defined by V=100. The control 

weight λ was fixed at a value such that the control 
energy has a similar effect to errors in the tuning 
process (λ=10–3). 

The optimization of the predictive feedback 
controller may be stopped when 

0( ) 0.05 , 1, , 5,

( ) 0.5.

e l r l k k k

u l

≤ = − −

∆ ≤

…
 

These conditions imply that there will be no bump 
when the control law switches to the last controller. 

Finally, the remaining parameters of the predictive 
feedback controller are defined. The orders of the 
controller's polynomials are arbitrarily adopted such 
that the resulting controllers include the predictive 
version of the popular PI controller (v=1 and w=2) 
and U was set equal to 5. Both predictive controllers, 
the predictive feedback and QDMC, were 
implemented using several programs developed in 
Matlab. The codes were not optimized for efficient 
implementation. The software routines employ a 
sequential quadratic algorithm for solving constrained 
optimization problems. 
In Fig. 4 the responses obtained by the predictive 
feedback controller and a QDMC controller 
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Fig. 4. Comparison of closed-loop responses. 
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Fig. 6. Evolution of the controller’s parameters. 
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Fig. 5. Closed-loop responses for different U. 
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(equivalent to a full state feedback MPC controller 
with an integral action) are shown. It shows that the 
predictive feedback controller satisfies all constraints 
and obtains a better performance than the QDMC. The 
predictive feedback controllers exploit the constraints 
on the manipulated variables to satisfy the constraints 
on the output response, providing more aggressive 
control actions than the QDMC (see Fig. 4(b)). This 
fact is obtained by modifying the parameters of the 
predictive feedback controllers along the time plot 
(see Fig. 6). This implies that the closed-loop poles 
and zeros varying with the time. The integral action 
(q2 = –1) is only applied when the stopping criterion is 
satisfied, except for the predictive feedback with only 
one gain (U=1). In this case the closed-loop system 
always has a pole at z=–1, but the others change their 
positions until the output satisfies the stopping 
criterion. 

Fig. 4(b) shows that only few initial control 
movements have strong effect over the closed-loop 
performance. The same behavior is provided by the 
QDMC, but the control action is less aggressive than 
one provided by the predictive feedback due to the 
presence of the integral action in the control law 
which reduces the degrees of freedom to shape 
theclosed-loop response. 

When the predictive feedback controller has more 
degrees of freedom (a greater U), the controller 
obtains a better performance (Fig. 5) through more 
aggressive initial movements and exploiting the 
constraint (10) for a few samples. These facts are 
displayed in the behavior of the controller parameters 
(Fig. 6) that show significant changes in the first 

samples and then they remain constant. The less the 
degrees of freedom (smaller U) the parameters q0  and 
q1  show more movements while q2  converges faster 
to –1 (see Fig. 6). 

Table 1 summarizes the results obtained in the 
simulations for the different predictive controllers. It 
is easy to see to the effect of the number of computed 
gains. Note the effect of allowing the control law to 
vary implies an improvement of 10 % compare with 
the QDMC. When the number of gains employed by 
the controller is increased, a better performance is 
obtained, however the performance improvement 
becomes marginal for U greater than 5. 
 

3. ROBUST PREDICTIVE FEEDBACK 
CONTROL 

In most control problems the model-mismatch 
problem exists, and it is certainly present any time the 
process has a nonlinear characteristic and a linear 
approximation is used. A simple way to capture a 
moderate non linearity is to use a set of M models, 
denoted W , in the neighborhood of the nominal 
operating point. Thus include model uncertainty in the 
basic formulation of the previous section, for the case 
in which the process system is not linear. Suppose the 
uncertainty setW  is defined by a polytope made of a 
set of convolution models. The optimization problem 
may then be written as follows: 

See (15a)-15(f) 
where l ∈ [1,M] stands for a vertex model and M is 
the number of models being considered and 1( , )J z−P  
is the transfer function of the open-loop predictor (2) 
for the nominal model. The objective function F (:) 
(15a) represents a measure of the future closed-loop 
performance of the system. It considers all the models 
are used to represent the controlled system, and 
deserves specific comments in the next subsection. 

Remark 2: When U=1 and the performance is 
measure through an l∝ norm 

{ }
1, ,

ˆ(:) max ( , ) 0, ,l
l M

f e i k i V
=

= =
…

… , 

 

0,1, ,

0 1

1
0

0
0 1

min ( ( ), ( , ), ( , ))

[0, ],ˆ ( , ) ( ) ( ) ( , )
[1, ],ˆ ( , ) ( ) ( ) ( ) ( )

[0, 1ˆ( , ) ( ) ( , ) ( ) ( )

j
l l

q j v w

-
l l

i-
l l jl lj

v w
j l j v lj j

F r k i y i k u i k

st.
i Vy J k i y k J,q u i k
l My i k y k J,q u k h u k j

i Uu i k q k i e J k i j q k i u k i j

= +

=

+= =

+

∈+ = +

∈= + + +

∈ −= + + − + + + −

∑
∑ ∑

…

�
P

P

0
0 1

]

[ , ]ˆ( , ) ( ) ( , ) ( ) ( )

( , )

v w
j l j v lj j

l

i U Vu i k q k U e J k i j q k U u k i j

u V k ε

+= =
∈= + + − + + + −

∆ ≤

∑ ∑

 

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

Table 1. Closed-Loop Performance. 

Controller Parameters IAE 
QDMC N=200, V=100, U=7, λ=10–4 0.47571

PF1 w=2, v=1, U=1 0.49200
PF2 w=2, v=1, U=2 0.45813
PF3 w=2, v=1, U=3 0.43991
PF4 w=2, v=1, U=4 0.43351
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and the optimization problem (15) is equivalent to the 
predictive controller proposed by Kothare et al. [15]. 

The problem (15) consists in a set of the original 
restrictions (8) for each model of W , with the control 
actions u(k–j) j=1,2,… ,w and past errors e(k–j) 
j=0,1,… ,v as the common initial conditions and the 
controller parameters as the common independent 
variables to optimize. The optimization problem 
readjusts the controller until all the design conditions 
are satisfied simultaneously, by a numerical search 
through a sequence of dynamic simulations. The 
resulting controller ensures the stability of the closed-
loop and gives the best possible performance, 
satisfying all the models of W . This is equivalent to 
saying that the resulting controller provides robust 
performance to the closed-loop system. Additionally, 
this formulation doesn't impose any restriction over 
the models to ensure closed-loop stability [10,29]. 

Since all of the models of W  satisfy the stability 
condition, the resulting control law guarantees the 
stability of the original nonlinear system, and it could 
be used as the predictor 1( , )J z−P  of the control law (7). 
 
3.1. The objective function 

Since the polytope that must be shaped along the 
prediction horizon V, the objective function of the 
problem (15) should consider all the linear models in 
simultaneous form. At this point, there is no clear 
information about which model is the appropriate one 
to represent the system. A simple way of solving this 
problem is using a general index of the form 
 

1( : ) ( : )M
l llF fγ== ∑ , (16)

 
where γ l ≥0 are arbitrary weights and f l (:) is the 
performance index for model l measured by any 
weighting norm 
 

ˆ(:) ( , ) ( , ) 0, ..., ,1 .P P
l W Rf e i k u i k i V p= + = ≤ ≤ ∞  

Notice that the coefficients γ l allow us to assign a 
different weight to each index corresponding to model 
l, in such a way that emphasizes, or not, the influence 
of a certain model in the control law. 

In general, the solution obtained by the problem 
(15) produces a decrease in some of the components 
of F, say f l l ∈ [1 ,M], and the increase of the 
remaining, fm m≠n ∈ [1 ,M]. Thus, the minimization 
of the general index f depends on the effect of each 
one of the component f l over the index F. Therefore, 
the best solution doesn't necessarily match with some 
of the optimal singular values f l l ∈ [1 ,M]. It is 
necessarily a trade off solution amongst the different 
components of the general index F. 

This type of optimization problem is described 
naturally as a multi-objective optimization problem. 

Several surveys on the concept and methodology 
employed in multi-objective optimization have been 
given by Chankong and Haimes [6], Gal [8] and 
Sawaragi et al. [25]. In this paper we only recall some 
definitions to explain the properties of the proposed 
formulation. The central idea in the multi-objective 
optimization is the concept of noninferior solution, 
which refers to the best possible solution achievable 
for the original problem. A formal definition of the 
efficient solution was given by Chankong and Haimes 
[6], is: 

Definition 1: q* is said to be an noninferior solution 
of the optimization problem if there exists no other 
feasible solution q such that f j(q) ≤ f j(q*) 
∀ j=1,2,…,M, where the inequality is strict for at 
least one j. Then, the efficient solution set F  is given 
by 

 

{ }: ( ) ( *) 1, , ,j jq Q q f q f q j M= ∈ ≤ ∀ = …F

 
where Q  is the solution space. 

The problem (15) with the objective function (16), 
corresponds to a hybrid characterization of the multi-
objective problem [6], where the performance is 
measured through a weighted-norm objective function 
(equation (16)) and the design constraints are 
considered through the additional restrictions. In this 
framework, the performance index (16) can be seen as 
the distance between the ideal solution, which results 
from the minimum of each component, and the real 
solution (Fig. 7). Thus, the solutions provided by the 
problem (15) will minimize the distance between the 
ideal and the feasible solutions, approaching them as 
closely as the design constraints and the system 
dynamics will allow. 

Remark 3: If only one of the weights is not null, 
said γ l l∈[1,M] , the resulting control law will 
achieve the best possible performance for the selected 
model and guarantee the closed-loop stability for the 

 

Efficient Solutions Set 

 f 1 

 [ ] [ ]
{ }),(ˆmax

,1,,1
kieF l

MlVi
γ

∈∈
∞ =   

 ∑∑ === V
i

M
l l kieF 0

2
12 ),(ˆγ   

  f 2
opt

 

 f 2 

 ∑∑ === V
i

M
l l kieF 011 ),(ˆγ   

f 1
opt 

Ideal Point 

d1 
d2 

d∝

F  

Fig. 7. Solutions sets of the optimization problem (15)
for several performance measures. 
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remaining models. 
In this case, the closed-loop performance achieved 

by the model l will be constrained by stability 
requirements of the remaining models. Therefore, it is 
possible that the performance obtained by the model l 
differs from the optimal singular value. 

This formulation of the optimization problem enjoys 
an interesting property that is summarized in the 
following theorem: 

Theorem 3: Given the optimization problem (15) 
with the objective function (16), the norm employed 
to measure the performance is different to the worst 
case (p ≠ ∝) and γ l >0 l=1,… ,M , then any feasible 
solution is at least a local non-inferior solution. 

Proof: See Theorems 4.14, 4.15 and 4.16 of 
Chankong and Aimes [6].                                            � 

The main implication of this theorem is the fact that 
any feasible solution provided by the problem (15) 
with the objective function (16) will be the best 
possible and it will provide an equal or a better 
closed-loop performance than the worst case 
formulations of predictive controllers [15,29]. 

Example 2: Now, consider the following set of 
discrete-time linear models 

 
3 5

1 2
0.2156 10( )

1.7272 0.7793
zGp z

z z

− −
=

− +
, 

3 5

2 2
0.1153 10( )

1.7104 0.7547
zGp z

z z

− −
=

− +
, 

3 5

3 2
0.1153 10( )

1.7104 0.7547
zGp z

z z

− −
=

− +
, 

 
which represent the nonlinear model (49) in the 
operating region 

90 100Cq≤ ≤ , 

for nominal parameters. In this case, there is no 
manipulated constraint, but the output concentration 
must satisfy 
 

0

0 0

( ) 1.02 ,
( ) 0.02 50,

y k r k
e k r k N

≤ ∀
≤ ∀ > +

 (17) 

 
where r0 is the reference value and N0 is the time of 
change. Finally, a zero-offset steady-state response is 
demanded for the steady-state controller 
 

1 ( ) 1w
j vj q U+= =∑ . (18) 

 
Now, define the parameters of the predictive feedback 
controller. The orders of the controller's polynomials 
are arbitrarily adopted such that the closed-loop poles 
can be arbitrary placed (v=2 and w=3). The 
prediction time J is chosen such that it guarantees the 
closed-loop stability of the three models 

simultaneously [14] 
 

( )1 2 3max , , 8J J J J= = , (19) 

where Jl =1 l=1,2,3 is the minimum prediction time 
that satisfies (30) for each model. Finally, the number 
of controllers to compute was fixed at five (U=5). 

In this example, the effect of different objective 
functions is evaluated. The most popular performance 
measures will be considered: 

( )

3
2 1

1,2,3

,

max ,
l ll

l l
l

F f

F f

γ

γ
=

∞
=

=

=

∑
 

where fl  l = 1,2,3 is given by (14) with the time span 
V equal to 100 and the control weight λ equal to 10–2. 
Since we found no reason to differentiate between the 
models, adopt γ l=1 l=1,2,3. 

Fig. 8 shows that the responses obtained by the 
predictive feedback controllers with both objective 
functions. Both controllers satisfy all constraints but 
the controller with the objective function F2 provides 
a better performance and smother control than that 
with F∞  objective function. Both controllers have 
similar initial manipulated movements but after that, 
the controller with F2 provides smoother movements 
than the controller with F∞  (Fig. 8(b)). 
 

4. SIMULATION AND RESULTS 

Consider the problem of controlling a continuously 
stirred tank reactor (CSTR) in which an irreversible 
exothermic reaction is carried out at constant volume 
(see Appendix D). This is a nonlinear system 
originally used by Morningred et al. [23] for testing 
predictive control algorithms. The objective is to 
control the output concentration Ca (t) using the 
coolant flow rate qC (t) as the manipulated variable.  
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0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8

0

5

10

15

20

 

Y
(t)    Reference

   F
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Fig. 8. Closed-loop responses for different objective
functions. 
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Table 2. Vertices of polytopic model. 

Operating Conditions Model 

Model 1 
qC = 100, ∆qC = 10 

3 5

2
0.1859 10

1.8935 0.9406
z

z z

− −

− +

Model 2 
qC= 110, ∆qC = -10 

3 5

2
0.2156 10

1.7272 0.7793
z

z z

− −

− +

Model 3 
qC= 100, ∆qC = -10 

3 5

2
0.1153 10

1.7104 0.7547
z

z z

− −

− +

Model 4 
qC= 90, ∆qC = 10 

4 5

2
0.8305 10

1.7922 0.8241
z

z z

− −

− +
 

The inlet coolant temperature TCO(t) (measurable) and 
the feed concentration CaO(t) (non-measurable) 
represent the disturbances. The output concentration 
has a measured time delay of td = 0.5 min. 

The nonlinear nature of the system is shown in Fig. 
9, where we can see the open-loop response to 
changes in the manipulated variable. This figure 
shows the dynamic responses to the following 
sequence of changes in the manipulated variable 
qC (t): +10 lt min–1, –10 lt min–1, –10 lt min–1 and +10 
lt min–1. From this figure it is easy to see that the 
reactor control is quite difficult due to the change in 
the dynamics from one operational condition to 
another and the presence of zeros near the imaginary 
axis. Besides, the CSTR becomes uncontrollable when 
qC (t) go to beyond of 113 lt min–1. 

Four discrete linear models can be determined from 
the composition responses shown in Fig. 9 using 
subspace identification techniques [26]. Notice that 
those changes imply three different operating points 
corresponding to the following stationary manipulated 
flow-rates: 100 lt min–1, 110 lt min–1, and 90 lt min–1. 
As in Morningred's work, the sampling time period 
was fixed at 0.1 min, which gives about four sampled-
data points in the dominant time constant when the 
reactor is operating in the high concentration region. 

Table 2 shows the four process transfer functions 

obtained. They define the polytopic models associated 
with the nonlinear behavior in the operating region 
being considered. They should be associated to the M 
vertex models in the above problem formulation (15). 
The controller must be able to follow the reference 
and reject the disturbances present in this system. 
Thus it is necessary to guarantee its controllability 
over the whole operational region. Hence, assuming a 
hard constraint is physically used on the coolant flow 
rate at 110 lt min–1, an additional restriction for the 
more sensitive model (Model 1 in Table 2) must be 
considered for the deviation variable u(k) 
 

1( ) 10 .u k k≤ ∀  (20)
 
and a zero-offset steady-state error 
 

1
( ) 1

w

j v
j

q U+
=

=∑ . (21)

 
This assumes that the nominal absolute value for the 
manipulated is around 100 lt min–1 and the operation 
is kept inside the polytope whose vertices are defined 
by the linear models. The constraints (20)-(21) are 
then included in the optimization problem (15). 

Now, define the parameters of the predictive 
feedback controller. The orders of the controller's 
polynomials are adopted arbitrarily such that the 
resulting controllers include the predictive version of 
popular PID controller (v=1 and w=2). The open-
loop predictor of the controller 1( , )J z−P  was built 
using the model 1 (Table 2), because the CSTR is 
more sensitive in this operating region. The prediction 
time J is chosen such that it guarantees the closed-
loop stability of the four models simultaneously [14] 

 

( )1 2 3 4max , , , 12,J J J J J= =  (22)  

 
where Jl l=1,2,3 and 4 is the minimum prediction 
time that satisfy (30) for each model. Finally, the 
number of controllers to compute was fixed at five 
(U=5). 

Notice in this case it is the polytope that must be 
shaped along the time being considered. Hence, the 
objective function necessary for driving the 
adjustment must consider all the linear models 
simultaneously. At a given time instant and operating 
point, there is no clear information about which model 
is the most convenient one for representing the 
process. This is because it depends not only on the 
operating point but also on the direction the 
manipulated variable is going to move. The simplest 
way to solve this problem is using the following 
objective function 
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Fig. 9. Open-loop response of the CSTR. 
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Fig. 10. Closed-loop responses to changes in setpoint.
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Fig. 11. Manipulated variables corresponding to
responses in Fig. 10. 

2 2

1 1
( ) ( )

M V

l l l
l i

F e k i u k iλ
= =

 = + + ∆ + ∑ ∑ , (23) 

 
where the time span is defined by V=100 and M=4. 
The control weight λ l was fixed in a value such that 
the control energy has a similar effect than errors in 
the tuning process (λ l =10–3). Since in this application 
there is no reason to differentiate between the models, 
we adopt λ l =1 l ∈ [1,M]. 

The simulation tests are also similar to 
Morningred’s work and consist of a sequence of step 
changes in the reference. The set point was changed in 
intervals of 10 min. from 0.09 mol lt–1 to 0.125, 
returns to 0.09, then steps to 0.055 and returns to 0.09 
mol lt–1. 

 Fig. 10 shows the results obtained when 
comparing the predictive feedback controller with the 
robust MPC developed by Kothare et al. [15]. The 
superior performance of the predictive feedback 
controller is due to the objective function employed 
by each controller. The predictive feedback reveals a 
poorer performance, with a large overshoot, than the 
robust MPC to the first change because it is the worst 
model, but in the remaining ones the predictive 
feedback provides a better performance. This response 

is obtained through a vigorous initial movement in the 
manipulated variable, which however does not 
overcome the 110 lt min–1 limit, as shown in Fig. 11. 

The prediction time J can be varied such that a 
better closed-loop performance in each operational 
region is obtained. The resulting prediction times are 
summarized in Table 3. They are the values Jl l=1,2,3 
and 4 obtained to develop the previous controller. 
During the operation of the system the predictive 
horizon J is adjusted at each sample according to the 
operating point, which is defined by the final value of 
the reference. 

Fig. 12 shows the results obtained during the 
simulation. The superior performance of the 
predictive feedback controller is obtained through a 
modification of the controller gain [14]. In the two 
first setpoint changes, the manipulated variable shows 
a smaller peak than in the previous simulation. 

Table 3. Prediction time for each region. 

 Model 1 Model 2 Model 3 Model 4
J 12 11 10 11  
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Fig. 12. Closed-loop responses to changes in
setpoint when J is allows to vary. 
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Fig. 13. Manipulated variables corresponding to
responses in Fig. 12. 
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5. CONCLUSIONS 

A finite horizon predictive feedback scheme was 
proposed with an end constraint on the control 
horizon. In this formulation a direct feedback action is 
included in the optimization that allows the 
uncertainties and disturbances to be considered in a 
simple way. The resulting control law is time varying 
and achieves the robust performance of the system 
although constraints are present. Furthermore, it has 
been shown that the addition of the end constraint to 
the optimal control problem introduces strong stability 
guarantees, even if there are uncertainties in the 
system. The results obtained by simulating a linear 
model and a continuous stirred tank reactor, with 
important non-linearities, show the effectiveness of 
the proposed controller. The robustness and 
performance achieved in the presence of constraints 
was demonstrated. 
 

APPENDIX A: OPEN – LOOP PREDICTOR 
TRANSFER FUNCTION 

In many predictive control techniques, the model 
more frequently used to develop the predictor is the 
discrete convolution truncated to N terms [9]. The 
reason is twofold: a) the convolution summation gives 
the model output explicitly and, b) the main impulse 
response coefficients are relatively easy to obtain. In 
particular, for SISO systems 

1ˆ( , ) ( ) ,N
i iy J k h u k J i J N== + − <∑ �  (24) 

which predicts the output value J sampling intervals 
ahead, k represents the current time instant t = k tS (tS 
is the sampling interval), hi i = 1,2,… ,N are the 
impulse response coefficients and, u(k+J– i) 
i = 1,2,… ,N is the sequence of inputs to be 
considered. However, most frequently ŷ(J ,k) is not 
calculated directly from (24) but from a modified 
expression that includes the prediction for the current 
time ŷ(0,k). For this, notice that (24) can also be 
written as a function of the predicted value for the 
previous sampling time J–1,  
 

ˆ( , ) =y J k N
1ˆ( 1, ) ( ),i iy J k h u k J i=− + ∆ + −∑ �      (25) 

where ∆u(k+J–i) = u(k+J–i) – u(k+J–i–1). Then, 
successive substitutions of ŷ(J–1,k) by previous 
predictions gives  

ˆ( , ) =y J k N
1 i 1

ˆ(0, ) ( )= =+ ∆ + −∑ ∑ �J
ily k h u k l i .    (26) 

 
This equation defines a J–step ahead predictor, which 
includes future control actions 

ˆ( , ) =y J k
l

1 i 1
N

1 i l 1

ˆ(0, ) ( )

( ).

= =

= = +

+ ∆ + −

+ ∆ + −

∑ ∑

∑ ∑

�

�

J

i
l

J

i
l

y k h u k l i

h u k l i

           (27) 

 
The future control actions have to be calculated, and 
therefore they are unknown. To turn the predictor (27) 
realizable it will be assumed that the control variable 
will not move in future 
 

( ) 0 0,1, ,u k l l J∆ + = = … , (28) 
 
then, (26) becomes  
 

0ˆ ( , ) =y J k N
1 i 1

ˆ(0, ) ( ),J
il ly k h u k l i= = ++ ∆ + −∑ ∑ �  (29) 

 
where the upper script 0 recalls the condition (28) is 
included. It defines a realizable J – step ahead open-
loop predictor in the discrete time domain. The 
predictor is realizable since only past inputs to the 
system are used to compute the future behavior.  
Therefore, the open-loop predictor (29) states the 
effect of past inputs on the future behavior of the 
system. 

Expanding (29) and taking the Z – transform results 
 

0ˆ ( , ) =y J z ( )1 1

2 1
ˆ( ) 1 ( ).

N N
i J i

i i
i i J

y z h z h z z u z− − −

= = +

 
+ + + − 

  
∑ ∑� �"  

(30) 
 

Defining the following function  
 

N
i 1 0 ,( , )

0 ,

J i
il h z J NH J z

J N

−
= +

 ≤ <= 
≥

∑ �
 (31) 

 
can be written as  
 

0ˆ ( , )y J z [ ]( )1ˆ( ) (1 ) ( ) 1 ( )−= + + + −"y z H ,z H J,z z u z . 

(32) 
 

Note that there is a recursive relationship  
 

1 1
1( ) ( 1 )− −

+= +�
mH m,z h z H m ,z z . (33) 

 
Then, combining (32) and (33), and rearranging, gives  

0ˆ ( , ) =y J z 1 -1

2
ˆ( ) ( )- (1 ) ( ).

N

i
i

y z h z H J,z H ,z z u z−

=

 
+ + 

  
∑ �  

Adding and subtracting 1
1h z−� and operating gives 
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0ˆ ( , ) =y J z
N

1

i 1
ˆ( ) ( , )- ( ),i

J iy z a z H J z h z u z− −

=

 
+ + 

  
∑ ��  

where Ja� is the J th coefficient of step response 

and 1
N i

ii h z−
=∑ �  the plant model ( )Gp z� . Hence, the 

expression (31) can be written  
 

0ˆ ( , ) =y J z
N N

1

i 1 i 1
ˆ( ) - ( ).J i i

J i i
J

y z a z h z h z u z− − −

= + =

 
+ + 

  
∑ ∑� ��  

(34) 
 

The actual output ŷ(z) is replaced by the current 
measurement y(z) to update the open-loop prediction 
ŷ0(J,z) with disturbances and uncertainties present in 
the system.  Then, the corrected open-loop prediction 
is given by 
 

N N
0 1

i 1 i 1
ˆ ( , ) ( ) - ( )J i i

J i i
J

y J z y z a z h z h z u z− − −

= + =

 
= + + 

  
∑ ∑� �� , 

 (35) 
or simply 
 

( )0 1ˆ ( , ) ( ) , ( )−= +y J z y z J z u zP . (36) 

 
APPENDIX B: ROBUST STABILITY 

CONDITION 
Using the open-loop predictor (2) and the discrete 

convolution, the characteristic closed-loop equation is 
given by 

 

( )

1

1 0 0 1

0 1 0 1

( ) 1

.

w v v N
n n n J i

n v J n n i
n n n i J
v N v

n i n i
n i i n i

n i n i N

T z q z a z q z q z h z

q z h h z q z h z

− − − − −
+

= = = = +
∞

− − − −

= = = = +

= + + +

+ − +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

��

�

 

 
The stability of the closed-loop system depends on 
both: the prediction time J and the controller 
parameters. It may be tested by any usual stability 
criteria. First, the following lemma is introduced. 

Lemma 1: If the polynomial 0( ) i
iiT z t z∞ −

== ∑  has 
the property that 

1
inf ( ) 0
z

T z
≥

> , 

then the related closed-loop system will be 
asymptotically stable [7].  Hence, 
 

( )

1

1 0 0 1

0 1 0 1

( ) 1
w v v N

n n J i n
n v J n n i

n n n i J
v N v

i n i n
n i i n i

n i n i N

T z q z a q z q h z

q h h z q h z

− − − − −
+

= = = = +
∞

− − − −

= = = = +

= − − −

− − −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

��

�

 

and using Lemma A.1 gives 
 

1
| | 1 | | 1 1 0 0 1

0 1 0 1

inf ( ) inf 1

( ) .

w v v N
n n J i n

n v J n n i
z z n n n i J

v N v
i n i n

n i i n i
n i n i N

T z q z a q z q h z

q h h z q h z

− − − − −
+

≥ ≥ = = = = +

∞
− − − −

= = = = +

≥ − − −


− − − 


∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

��

�

 
The worst case happens when z=1, thus 

1 0 0 1

0 1 0 1

1

0,

w v v N

n v J n n i
n n n i J

v N v

n i i n i
n i n i N

q a q q h

q h h q h

+
= = = = +

∞

= = = = +

− − −

− − − >

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

��

�
 

which is equivalent to 
 

1

1 1 10

1 ∞+=

= + = = +=

−
+ > + − +

∑ ∑ ∑ ∑
∑

� ��
w N Nn vn

J i i i iv
i J i i Nnn

q
a h h h h

q
. 

(38) 
 

The closed-loop stability depends on both parameters: 
the prediction time J and the controller parameters qn 
n=0,1,…,v+w. So, for the controller design the 
prediction time J is fixed and then he parameters are 
tuned. 

Remark 4: If the controller denominator verifies 

1 1w
n vn q += =∑ , 

the stability condition (29) becomes 
 

1 1 1
.

N N

J i i i i
i J i i N

a h h h h
∞

= + = = +
> + − +∑ ∑ ∑� ��  (39) 

 
This is condition was derived by Giovanini [14] for 
the predictive feedback controller. This equation mean 
that the prediction time J and controller parameters qn 
n=0,1,…,v+w could be independently fixing. The 
same result is obtained if v=1 and qv+1=–1. 
 

APPENDIX C: ANALYSIS CONTRACTIVE 
CONSTRAINTS 

The discrete controller may be equivalently written 
using the general state-space representation, i.e., 

 

0( 1) ( ) ( ), (0) ,

( ) ( ) ( ),

C C C C
C C

C
C C

x k A x k B e k x x

u k C x k D e k

+ = + =

= +
  (40) 

 
where xC ∈ Rv, e ∈ R and u ∈ R. Assuming load 
change d(k)=0 for ∀ k, and the time delay t d = 0 for 
simplicity, the process model can also be written as 

(37)
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0( 1) ( ) ( ), (0) ,
( ) ( ),

x k Ax k Bu k x x
y k Cx k
+ = + =

=
            (41) 

 
where x ∈ Rn is the state of the plant, and y ∈ R. The 
expressions (31) and (32) may be combined after 
substituting e(k) by 

( ) ( ) ( )
( ) ( ),

e k r k y k
r k Cx k

= −
= −

 

and rearranged such that the whole closed-loop 
system is written in form, 
 

0( 1) ( ) ( ), (0) ,
( ) ( ) ( ),
( ) ( ),

S S

U U

Y

X k A X k B r k X X
u k C x k D r k
y k C x k

+ = + =

= +

=

      (42) 

 
where 
 

[ ] [ ] [ ]

( )
( ) , , ,

( )

0 , , .

C C C
S SC

C C C

Y U C C U C

x k A BD C B C BD
X k A B

B C A Bx k

C C C D C C D D

  −   
= = =     −      
= = − =

 

 
Now, let us consider a change in the control variable 
at the time instant k+1 

( 1) ( 1) ( )u k u k u k∆ + = + − . 

From (42) ∆u(k+1) can be written as follow 

( 1) ( 1) ( 1)U Uu k C X k D r k∆ + = ∆ + + ∆ + . 

Then, substituting X(k+1) and rearranging 
 

( )( 1) ( ) ( ) ( 1)U S S Uu k C A I X k B r k D r k ∆ + = − + + ∆ +  . 
(44) 

 
Given the initial condition X(0) and the input r( i) 
∀ i ∈ [0,k], the solution to the first equation in (42) is 
 

1

1
( ) (0) ( )

k
k i
S S S

i
X k A X A B r k i−

=
= + −∑ .                     (45) 

Hence, the control increment in (44) can be written 
now as 

( ) ( )

]

1

1
( 1) (0) ( )

( ) ( 1).

k
k i

U S S S S S
i

S U

u k C A I A X A I A B r k i

B r k D r k

−

=


∆ + = − + − −


+ + ∆ +

∑  

Assuming a setpoint change from 0 to r0 at the time 
instant k=0, and X(0)=0 for simplicity, the last 
expression becomes 
 

( ) 1
0 0

1
( 1)

k
i

U S S S S
i

u k C A I A B r B r−

=

 
∆ + = − + 

  
∑ .     (45) 

 
Recalling a property of geometric progressions now 

we can write 
 

( ) ( )11
0 0

1
,

k
i k
S S S S S S

i
A B r I A I A B r A I−−

=
= − − ≠∑   (46) 

 
substituting (46) into (45) and rearranging gives 

0( 1) k
U S Su k C A B r∆ + = . 

To visualize the effect of the contractive constraint 
 

( 1) 1u k ε ε∆ + ≤ <<                              (47) 
 
on the location of closed-loop characteristic values, let 
us take a conservative condition using a property of 
the norm–2, i.e. 

0

1kk
U S S U S SC A B C A B

r
ε≤ ≤ . 

Since CU, BS and r  are different from zero, the last 
expression can be rewrite as 
 

k
SA Mε≤ ,                                                      (48) 

  
where 0U SM C B r=  is a positive quantity. 
Observe that if (48) is satisfied for the sampling 
instant k, it will also verify for all subsequent 
sampling instants. This also implies 
 

( ) ( )
1

max ki S S
i

A A Mλ ε≤ ≤  .            (49) 

 
Using controlled form for the controller representation 
(40), it is verified that ║BS║≥1 and ║CU║≥1, due to 
the presence of the integral mode in (40). Therefore, if 
ε is chosen as 

0rε <  

 

1 

-1 

ε  >  0, V → ∞ 

ε  > 0, V >  N 

ε = 0 

Fig. 14. Effect of parameters on the stability region.

(43a)

(43b)
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it is verified that 1Mε < , and the roots are enclosed 
by a circle whose diameter increases asymptotically 
up to 1 when k→∝ (see Fig. 14). When ε=0, from 
(49) it is verified 
 

( ) 0i SA iλ = ∀ .                             (50) 
 

Remark 5: Since condition (44) is equivalent to 
requiring both y and u remain constant after the time 
instant k+V, therefore, it ensures the internal stability 
of all open loop stable systems. 
 

APPENDIX D: REACTOR MODEL 
Consider the problem of controlling a continuous 

stirred tank reactor CSTR in which an irreversible 
exothermic reaction A → B in constant volume reactor 
[23]. The following assumptions are made in the 
modeling the system: (a) perfect mixing, uniform 
concentration temperature; (b) constant volume and 
density; (c) heat losses are ignored; (d ) jacket heat 
transfer resistance is negligible. The reaction occurs in 
a constant volume reactor cooled by a single coolant 
stream. The system can be modeled by the following 
equations. 

 

( )

( )

( )

0

0

( ) ( ) ( ) ( ) ( )exp ,
( )

( ) ( ) ( ) ( ) ( )exp
( )

( ) 1 exp ( ) ( ) .
( )

O

O
P

C PC
C CO

P C C PC

dCa t q t ECa t Ca t k Ca t
dt V R T t

k HdT t q t ET t T t Ca t
dt V c R T t

c hAq t T t T t
c V q t c

ρ

ρ
ρ ρ

 
= − − − 

 
 ∆

= − − − 
 

  
+ − − −  

   

 

(51) 
 
The objective is to control the output concentration 

Ca ( t ) using the coolant flow rate qC(t) as the 

manipulated variable, and the inlet coolant 
temperature TCO(t) (measurable) and the feed 
concentration CaO(t) (non-measurable) are the 
disturbances. The output concentration has a 
measured time delay of td=0.5 min.  The relative 
nominal values of the variables and their description 
are given in Table 4. 
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