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Abstract

In the last few years, Support Vector Machine
classifiers have been shown to give results comparable,
or better, than Hidden Markov Models for a variety of
tasks involving variable length sequential data. This type
of data arises naturally in the fields of bioinformatics,
text categorization and automatic speech recognition. In
particular, in a previous work it was shown that certain
string kernels gave a classification performance
comparable to discrete Hidden Markov Models on an
isolated Spanish digit recognition task.

It is known that speech recognition degrades, often
quite severely, when noise is present, and it is interesting
to ask whether Support Vector Machines with string
kernels continue to give a similar proficiency to discrete
Hidden Markov Models in this context. In the present
paper, this question is explored by considering the
performance of Support Vector Machines with string
kernels on the same isolated Spanish digit recognition
task in which the speech data has been corrupted with
different types of noise. Specifically, white noise and
speech babble from the NOISEX-92 database. Results of
these experiments are given.

1. Introduction

Automatic Speech Recognition (ASR) systems try to
recognize, at some level, human speech. One essential
feature of these systems is their ability to classify
phonetic units, such as phonemes, syllables or even
complete words. This is an extremely difficult task in
itself, and more so given that there may be additional
complicating factors such as background noise.

The method of choice for classification in ASR is
based on the Hidden Markov Model (HMM). Each of
the phonetic units is modeled with an HMM by
processing the corresponding speech signal into a
sequence of fixed dimensional vectors, often using mel
frequency cepstral coefficients (mfcc). This gives rise to
a non-discriminative type of learning and classification,
as only examples of the particular class are used to
define the HMM. Deficiencies have been noted with this
framework and researchers have studied other
classifiers, most commonly combining HMMs in various
hybrid schemes, for example with artificial neural nets.

A different type of classifier, called Support Vector
Machines (SVM) was introduced in the early 1990's by

Vapnik [1] and since then they have been applied to a
wide variety of classification problems with excellent
results, usually outperforming other techniques. Their
success has to do principally with their generalization
ability, nevertheless they also provide an attractive
discriminative approach to classification problems
through the use of kernels.

The first kernels used in SVM classifiers, were the
radial basis function and polynomial kernels. These
kernels are defined for problems with static data, where
the patterns are represented by a single vector of a fixed
dimension rather than a sequence of vectors.
Researchers in ASR began to employ SVM classifiers
for different speech recognition tasks at the end of the
1990's with the work of [2,3,4,5]. These papers either
combined the SVM classifier within an HMM scheme or
manipulated the sequences corresponding to phonetic
units, using an averaging process, into a single vector
with a fixed dimension. More recently a straightforward
approach has produced competitive results, as is shown
in the work of [6,7,8], and performs classification by
utilizing the individual vectors of the phonetic units with
the above mentioned 'static' kernels.

However speech is dynamic in nature, with different
instances of the same phonetic unit producing different
length sequences of vectors. This is one of the strengths
of HMMs in as much as they can successfully handle
sequential data. It is interesting to ask whether kernels
can be defined directly on variable length sequences and
produce similar classification results. Additionally, it
would also allow any two sequences to be compared for
similarity using the kernel.

The first attempt at defining kernels of this kind was
motivated by research in bioinformatics and can be
found in [9]. The so-called Fisher kernel was developed
and has become widely used in ASR as an alternative to
HMMs (c.f[10]). Similarly, kernels applied to discrete
sequential data, rather than sequences of vectors, have
also been defined in [11,12]. They have produced good
results in bioinformatics [13], text categorization [14]
and ASR [15].

In the latter work, certain string kernels were adopted
and compared to discrete HMMs (dHMM) on an
isolated Spanish digit recognition task. Their
classification performance was comparable to dHMM:s.
This is encouraging as it provides a conceptually simple
and discriminative alternative to dHMMs, which works
directly on the variable-length sequential data. This
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formulation may also have applications in exemplar-
based phonology as outlined in [16].

It is known that speech recognition degrades, often
quite severely, when noise is present (c.f. [17]), and it is
interesting to ask whether SVMs with string kernels
continue to give a similar proficiency to dHMMs in this
context. In the present paper, this question is explored
by considering the performance of SVMs with string
kernels on the same isolated Spanish digit recognition
task in which the speech data has been corrupted with
different types of noise. Specifically, white noise and
speech babble from the NOISEX-92 database. The noise
was added to the speech data at different signal to noise
ratios (SNR).

The organization of the paper is as follows: a brief
review of SVM classifiers and string kernels is
presented, followed by a description of the data and
results obtained using the classifiers. Finally some
conclusions are given.

2. Svm classifiers

The techniques employed in the paper are based on
SVM classifiers with string kernels and dHMMs. While
dHMMs are well-known in the speech community, SVM
classifiers, and in particular string kernels, have been
introduced more recently and a brief review will be
given here. For a detailed introduction to SVM
classifiers the interested reader can consult [18], or find
a good tutorial in [19].

The basic idea behind SVMs, for a two class
classification problem, is to map the data in each class
into linearly separable sets in a higher dimensional inner
product vector space, called the feature space. A
separating hyperplane is then found in feature space
which maximizes the minimal distance, known as the
margin, between the hyperplane and the closest points of
the classes to it. New patterns are then classified
according to the side of the hyperplane they are mapped
to.

The mathematical formulation for this is the
following: consider a dataset X = {x;, x,..., xy} in R,
n-dimensional Euclidean space, each point of which
belongs to one of two classes C;, C, with associated
labels y;, v, € {-1,+1}. When the vectors in the two
classes are linearly separable, that is, there is a
hyperplane which separates the two classes, then there
are different algorithms which can find a separating
hyperplane, such as the Perceptron algorithm. In general
any hyperplane, P, is defined by:

P={zeR"| <w,z>+b=0} (1)

where w = (w,...,w,)eR" is the normal vector to the
hyperplane P, be R and <w,z> is the inner product in
R". The fact that P separates the two classes means that
the additional condition holds:

yi(<w,x>+b)>0Vi ()
In this case the corresponding classifier is given by:
fx) = sign(<w,x> + b) 3)

A typical separating hyperplane, P, is shown in Figure 1.
In the case of a SVM classifier, a special separating
hyperplane is chosen which maximizes its distance to the
patterns of X which are closest. The idea being that such
a hyperplane produces the smallest generalization error.
In Figure 1 this corresponds to P1. The perpendicular
distance between the separating hyperplane and any
which pass through the closest patterns (H1, H2 in
Figure 1) is called the margin, and the hyperplane is
called the maximal margin hyperplane. It is shown in
[20] that the margin is half the shortest distance
between the convex hulls formed using the patterns in
each class. Hence certain patterns
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Figure 1: Example separating hyperplanes

on the boundaries of the convex hulls define the
classifier.

The task of finding the maximal margin hyperplane
can be formulated as the following optimization
problem. Firstly, Eq (2) is normalized such that the
following holds for the closest patterns in X:

yi(<wx>+b)=1 “4)

This means that the margin is 1/||w|, where |w| =
\<w,w>. Therefore in order to maximize the margin the
following problem has to be solved:

N
Min — |jw 5
2|| [ ®)
subject to: y(<w,x>+b) =1 Vi

Points satisfying (4) are called support vectors.

As will be seen below, it is convenient to reformulate
problem (5). To this end non-negative Lagrangian
multipliers, @;, ...,y are introduced for each
restriction, and (5) changes to minimizing the following
Lagrangian, L, with respect to w, b:

1 N N
L= WP - Yoy (<wx; >+b)+ Y a;  (6)
i=1 i=1
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Taking partial derivatives with respect to w, b and
equaling to zero gives:

N
W= D0 YX; (7

i=1

N
20y, =0 ®

i=1

Substituting the equations (7) and (8) into (6), one
obtains the dual problem:

N 1 N
Max > ¢, -5 Zal-ajyiyj <X, x> 9)

i=1 i,j=lI

N
subjectto o; 20, i=1..,N and Y a;y; =0
i=1
Generally, the data is not linearly separable and the
previous treatment is modified by mapping the data X to
an inner product space, H, called the feature space, in
which it is initially assumed they will be linearly
separable. In order to reformulate the dual problem of
(9) for the space H, it suffices to note that the objective
function only involves the inner product of the elements
of X. If ¢ is the mapping of the input space to the feature
space, H, then the new dual problem is:

N 1 N
Max } o D) 2oy <e(x),¢(x;)> (10)
i=1 inj=1

N
subjectto o; 20, i=1..,N and Y oy, =0

i=1
Let {0{,0 }llil be the solution to problem (10), which

theoretically is unique, then the classifier, f, is defined
by:

N
fix) =sign (;1 oy, <P(x;),p(x)>+by) (11

where b, is a constant whose value can be found from
the optimal solution (c.f. [18]).

The relation of (11) to the hyperplane mentioned
above is that its equation is:

N 0
2.0y <z,9(x;) >+by =0
i=1

where z is in feature space. Equation (11) then signifies
that classification of test points takes place according to
the side of the hyperplane the point lies on.

A modification is usually introduced into this
formulation to deal with noise in the data. A so-called
soft margin classifier is obtained by introducing a
constant C and changing the restrictions of (10) to:

N
0<e; <C, i=1..,Nand Y. o;y;, =0
i=1
This represents a trade-off between maximizing the
margin and minimizing the classification error on the

0

training set. For an optimal solution {ai

}ZI to the last
formulation, it is found that for the points which lie on
or within the margin, or are incorrectly classified, o >
0. These points are called support vectors. The rest of
the points have o/; = 0. The support vectors are therefore
the most informative points in the data set for the
classifier, and the reformulated problem (10), using only
these points, would produce exactly the same classifier.

2.1. Multiclass classification

The SVM classifiers are only defined for a two-class
classification problem. In order to extend this to a
multiclass classification problem several schemes have
been proposed and there is, as yet, no definitive method.
In the present paper a 'l vs rest' basis is adopted; that is,
an SVM is found for each class by separating the data in
that class from the rest of the training data. In this way, a
different function in (11) is obtained for each class. A
test pattern is then classified as belonging to the class
with the maximum function value.

3. Kernels

It is important to note that the original dataset, X,

does not have to belong to R" for the above formulation
to work, in fact an arbitrary set, ¥, can be taken. The
only ingredient that is required is a mapping @ of this set
into an inner product space H. This allows SVM
classifiers to be defined using data from arbitrary sets. In
this general case, a kernel K is defined by:

K(xy) = <@ (x).0(y)> (12)

It then follows that a kernel K satisfies the following two
properties:

a) K is symmetric: K(x,y) = K(y,x) Vx,y€ X
b) K is positive definite: Vn>1, V ¢y,...,.c, € R and
XipeesXg € 2

2. ciciK(x;,x;) 20

19
i,j=I

It is interesting to note that given a function, K,
satisfying these two properties, there exists a
(Reproducing Kernel) Hilbert space H and a
transformation ¢ £—> H such that (12) holds. This also
allows elements of X to be compared for similarity, and
in fact a simple calculation shows that a pseudo-metric d
can be defined on XxX through the relation:

d(xy) = 1900-Py)ll =/ K(x.x)- 2K (%, y) + K (. )

This introduces the concept of a distance into .
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The polynomial and radial base function kernels,

mentioned in the introduction, are defined on R"xR™
by:

K(x,y) = (<x,y>+ 1)
K(x,y) = exp(-|[x-y|[*/2G67)

respectively, where d = 1,2,... and 6 € R. For these
kernels the transformation in (12) is not defined
explicitly, and the kernels are applied directly in the
original data space. This is known as the 'kernel trick'.

3.1. String kernels

The present paper is concerned with kernels defined
on discrete sequential data, called string kernels. They

are defined by explicitly choosing a transformation ¢
from the sequential data into a suitable inner product
space and using the definition of the kernel given by

(12).
Let A be a finite alphabet of size N and X the set of

n
all sequences of elements from A. For n > 1, RN can
be considered as the usual euclidean inner product space

indexed by all sequences from A of length n. The
transformation ¢

n
¢ z— RN (13)
can be defined for x € £ by forming the vector

n
in®N" whose value for any index Ol€ A" is the number

of occurrences of O in x; more concisely, if

O(x) = {rof oe An

then
ro, = number of occurrences of O in x (14)

To illustrate this transformation by means of a
concrete example, let A = {1,23}, n = 2, and x =
1,2,2,2,3,1,1. Feature space is W’ which is indexed by
all pairs (a,b) € AxA. The vector x is then transformed
into (1,1,0,0,2,1,1,0,0) € R°.

Here only contiguous sequences are considered
although in other papers, such as [14,16], non-
contiguous sequences have been used.

A kernel K is defined as in (12) using the
transformation from (13). The n-gram string kernel, K" is
a normalized version of this, given by:

K(x,y)

K XK (y, )

K'(x,y)=

It can be seen that two sequences in X are similar if
they have similar n-tuples in common.

A variant of the n-gram kernel, which is termed the
binary n-gram kernel here, gave better classification
results in [15] on the isolated digit recognition task. The
binary n-gram kernel is defined by modifying (14) to the
following:

ro, = 1 if O occurs in x, and 0 if not

and performing the same normalization.

In this case the example above would be transformed
into the vector (1,1,0,0,1,1,1,0,0). Furthermore, for both
transformations, the number of non-zero coordinates of

@(x) is bounded above by length(x)-n+1.

For the purpose of this paper, A can be considered to
be {1, 2,..., 32}, an enumeration of the prototypes in a
suitably defined vector codebook. The sequence aj,
a,,..., 8, in X associated with a given speech signal is the
same as that which would be associated with a dHMM;
that is, the a;'s are the indices of the prototypes which are
closest to the vectors derived from the mfccs of the
frames in the signal.

Finally, motivated by the results of [21], a type of
'mismatch' kernel was also considered. In this case, and

with the same notation as above, not only were the O 's

occurring in the sequence x considered to have ro = 1,
but also combinations of the closest prototypes to those

in the O 's. For example, if n=2 and O(=1,2 and the
indices of the closest prototypes corresponding to 1 and
2 were 4 and 8 respectively, then the transformed vector
also included non-zero values for the coordinates
corresponding to (1,8), (2,4) and (4,8). The idea was to
see if this type of mismatch kernel was more robust to
certain levels of noise.

4. Data and results

The clean isolated Spanish digits data considered
here was the same as that used in [15]. In the case of
Spanish the digits are: cero, uno, dos, tres, cuatro, cinco,
seis, siete, ocho and nueve. Here all the vowels in
Spanish are represented and there are a variety of
phonetic sounds, making it an interesting task. The
recordings were obtained from 6 young Mexican adults,
5 male and 1 female. These recordings were made in a
normal office environment without special equipment,
which meant that the recording quality varied amongst
the utterances. A sampling frequency of 16 kHz was
used and the waveforms were converted to vectors with
13 coefficients, 12 mfccs and log energy.

Roughly 66% of the clean data was used for training
and the rest for testing. The testing data was corrupted
by adding white noise and speech babble from the
NOISEX-92 database at different SNRs. In total the
training set consisted of 19,718 vectors corresponding to
396 digits, and the test set of 9,896 vectors representing
197 digits. A k-means clustering algorithm was applied
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to the training set, to obtain 32 prototypes. The digits
were then represented by variable-length sequences of
integers from {1,...,32}.

Examples of the spectrograms for the signal of a
clean version of a test digit for ‘seis’ is given together
with the noise corrupted versions at 50dB in Figure 2.
The word ‘seis’ has the same fricative /s/ at the
beginning and end and two vowels /e/ and /i/. The two
vowels are easily distinguished in the spectrograms for
the original signal (clean) and that with speech babble
added because their formants are well defined. The
spectrogram of the signal with white noise added has

lost some of the spectral characteristics, especially for
the /i/.

8000

6000
4000 = = = clean

2000

Frequency

Time

Figure 2: Spectrograms of the Spanish digit ‘seis’
corrupted with white noise and speech babble at 50dB

Various experiments were conducted using dHMMs,
n-gram, binary n-gram and mismatch kernels. In the case
of the dHMMs, a standard left-to-right architecture was
used to model each individual digit, all with the same
number of states. For the SVMs a value of 10 was
chosen for C and no special tuning was conducted. In
the case of the mismatch kernel a value of 2 was chosen.

Tables 1 and 3 show the classification results
obtained for dHMMs with a different numbers of states
(column heading) and a various SNRs. Tables 2 and 4
show the corresponding results for SVMs with different
kernels.

Table 1: Classification results of added white noise at different
SNRs with different dHMMs

white 1 2 3 4 5 6,7,89
0dB | 10.66 | 11.17 | 9.14 | 9.14 | 9.65 11.68
10dB | 11.17 | 12.18 | 9.65 | 10.15 [ 9.14 12.18
20dB | 13.71 | 20.31 | 15.74 | 13.20 | 13.20 14.21
30dB | 17.26 | 24.37 | 21.32 | 19.29 | 19.80 17.26
50dB | 31.47 | 37.56 | 38.07 | 37.56 | 39.09 | 39.60
clean | 71.57 | 79.70 | 87.82 | 87.31 | 88.83 [ 90.35

Table 2: Classification results of added white noise at
different SNRs with different SVMs

white | binary | binary | binary | 2-gram | mismatch
2-gram | 3-gram | 4-gram
0dB [ 10.66 10.15 10.15 10.15 12.18
10dB | 12.18 14.72 15.23 7.61 11.68
20dB | 17.26 15.74 15.74 11.17 13.71
30dB | 20.81 20.30 21.83 11.68 15.74
50dB | 36.55 39.09 37.06 26.90 35.53
clean | 89.34 91.37 88.83 66.50 83.76

Table 3: Classification results of added speech babble at
different SNRs with different dHMMs

babbl 1 2 3 4 5 6,7,89
e
0dB | 17.26 | 21.83 | 13.71 [ 16.24 | 13.71 15.23
10dB [ 25.89 | 24.37 | 19.29 | 29.44 | 27.92 | 24.87
20dB | 28.93 | 31.47 | 30.47 | 37.56 | 37.06 | 35.03
30dB | 40.61 | 46.70 | 43.66 [ 47.72 | 53.81 57.36
50dB [ 62.94 | 64.98 [ 72.08 | 73.10 | 73.60 | 76.65
clean | 71.57 | 79.70 | 87.82 | 87.31 | 88.83 [ 90.35

Table 4: Classification results of added speech babble at
different SNRs with different SVMs

babble | binary | binary | binary [ 2-gram | Mismatch
2-gram | 3-gram | 4-gram

0dB 18.78 17.26 19.80 15.23 19.80
10dB 23.86 24.37 23.35 20.81 23.86
20dB 26.90 26.90 29.44 25.89 32.49
30dB 44.16 50.76 53.30 37.56 46.19
50dB 73.10 79.70 74.62 48.22 64.47
clean 89.34 91.37 88.83 66.50 83.76

5. Conclusion

In [15] it was found that SVMs with binary n-gram
kernels gave a comparable classification performance to
those of dHMMs for the task of isolated Spanish digit
recognition. In the present paper the question as to
whether SVMs with string kernels can continue to give a
similar proficiency to dHMMs in the context of noise
was asked. To this end, the same test data as in [15] was
corrupted with white noise and speech babble from the
NOISEX-92 database at different SNRs. The actual
training of the classifiers was conducted with the clean
data, although this is known to worsen classification
results when tested on noisy data.

The results obtained with the different classifiers are
given in Tables 1-4. It is immediately noticable that
white noise gives far worse results than speech babble
for all the classifiers considered, and this is consistent
with the fact that white noise is more destructive of a
signals spectral properties. This is illustrated in Figure 2.

In terms of the results of the individual classifiers,
the binary 3-gram and dHMMs with 6-9 states continue
to be among the best although there is little to choose
between them, and this is confirmed by statistical tests
that were performed on them. The question arises as to
why the best SVMs with string kernels maintain their
performance with that of dHMMs. In [22] it is shown
that n-gram kernels are in fact a particular case of a
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visible Markov model. However curiously enough the 2-
gram kernel gave the worst results of the kernels tried.

The mismatch kernel, whilst better than the 2-gram,
did not prove to be robust as had been hoped.
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