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Abstract

The purpose of this paper is to marry the two concepts
of multiple model adaptive control and safe adaptive con-
trol. In its simplest form, multiple model adaptive con-
trol involves a supervisory switching among one of a finite
number of controllers as more is learnt about the plant,
until one of the controllers is finally selected and remains
unchanged. Safe adapative control is concerned with en-
suring that when the controller is changed the closed-loop
is never unstable. This paper introduces a receding hori-
zon multiple model, switching and tuning control scheme
based on an on-line redesign of the controller.. This con-
trol scheme has a natural two-stage adaptive control al-
gorithm: identification of the closest model and design of
the control law. The computational complexity aspects of
this approach to adaptive control are discussed briefly. A
nonlinear system is used to illustrate the ideas.

1. INTRODUCTION

Adaptive control systems has been investigated for over
four decades. Since the begining, for the sake of math-
ematical tractability, adaptive control theorists confined
their attention to time invariant systems with unknown
parameters or slow drifts in the parameters [1], [12]. The
accepted philosophy was that if an adaptive system was
fast and accurate when the plant parameters were constant
but unknown, they would also prove satisfactory when pa-
rameters varied with time, provided the latter occurred on
a rather slower time-scale. Based on these general prin-
ciples, adaptive control was extensively studied and nu-
merous robust adaptive control algorithms were derived
[7].

In this framework, the problem of selecting the best
controller according to the performance index J can be
addressed, along a dual control approach, by introducing
a state variable representing the unknown parameter vec-
tor, and solving the resulting optimal control problem on
the augmented state—space representation of the process.
The optimal controller incorporates a self—adjusting mech-
anism, in that it selects a control input that compromises
the control objective versus estimation needs (dual action,
see e.g. [6]). However, such an optimal dual control ap-
proach is generally difficult to implement because it is
computationally excessive. Besides, extensive computer
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simulations have revealed that when there are large errors
in the initial parameters estimates, the system exhibits a
poor performance during the transient phase, exhibiting
oscillatory behaviour with large amplitude.

A computationally feasible — though sub-optimal — ap-
proach to the design of self-adjusting controllers is the so
called switching control design method originally intro-
duced in [9] and further developed in e.g. [5], [11], [13].
The switching control scheme consists of an inner loop,
where a candidate controller is connected in closed-loop
with the process. There is also an outer loop where a
supervisor decides which controller to select and when to
switch to a different one, based on the input-output data.

The switching times are chosen so as to avoid switching
that is too fast with respect to the system settling time,
thus causing instability. As for the controller selection,
it is based on an ‘estimator-based’ procedure [11] typi-
cally. Specifically, at any switching time, a performance
signal is computed for each admissible model parameter.
The supervisor then selects the candidate controller as-
sociated with the model that minimizes the performance
signal. Implementation and analysis of the switching con-
trol scheme is simplified by considering a finite number of
candidate controllers. This set is called a “finite controller
cover” [2].

In standard switching control schemes, the compromise
between robustness and performance is made off-line when
the controller cover is designed. If the controller cover con-
sists of a large number of controllers, each one stabilizing
a wide set of models, then stability is generally rapidly
achieved, even before a large amount of information has
been accrued, but in the long run the resulting perfor-
mance is low typically. In contrast, if the controller cover
consists of a large number of controllers, each one tailored
to a narrow set of models, a high performance control
system is potentially achieved, but poor performance will
possibly occur until there is sufficient data to obtain an
accurate estimate of the process model.

In this paper, a new multiple models, switching and tun-
ing control strategy, based on a receding horizon technique
is proposed. The proposed control algorithm exploits the
advantage of superstable systems to derive a linear opti-
mization problem that designs the controller every sample.
This problem is convex in the controller’s parameter and
allows to include constraints on the system states.

The paper is structured as follow: the class of super-
stable system is introduced and some properties of this
class of system are analysed in Section 1. The main
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property of this class of systems is that they admit non-
asymptotic estimates for the outputs for arbitrary initial
conditions. An optimization design procedure based on
this bound is proposed in Section 2. One key advantage
is that the proposed performance index is quasi convex
with respect to the controller coefficients.. Robustness is-
sues in the optimization problem are also considered in
this section. Finally, the objective function is analysed
from the multiobjective point of view. In Section 3 the
multiple models, switching and tuning control approach
is suggested by modifying the objective function and the
constraints employed by the predictive feedback controller.
Section 4 shows the results obtained from the application
of the proposed algorithm to a nonlinear continuous stirred
tank reactor. Finally, the conclusions are presented in Sec-
tion 5.

2. SUPERSTABLE SYSTEMS

Given that the local approximation to the process model
is given by its state-space discrete model

x(k + 1) = Ax(k) +Bw(k) x(0) = x0, (2.1)

where x(k) ∈ Rn, w(k) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m.
The ∞ and 1 norms for the vectors x ∈ Rn and matrices
A ∈ Rn×m are given by

‖x(k)‖∞ = max
i∈[1,n]

|x(k)| , ‖A‖1 = max
i∈[1,m]

n∑

j=1

|aij | .

Definition 1. The system (2.1) is superstable if ‖A‖1 <
1.

The superstability of the system implies its stability

ρ(A) ≤ ‖A‖1 < 1,

where ρ(A) = maxi∈[1,n] |λi(A)| is the spectral radius of
A.

Discrete—time superstable systems enjoy numerous im-
portant properties [14]. The main one is that they admit
simple non—asymptotic estimates for arbitrary initials con-
ditions. For instance, there exists a constant η such that
if initial conditions are less than or equal to µ, and inputs
are bounded in l∞ norm, then the outputs do not exceed
η for all time steps.

Lemma 1. Assume a closed—loop system, described by
(2.1) with the initial conditions ‖x(0)‖∞ ≤ µ and bounded
disturbances ‖w(k)‖∞ ≤ 1 ∀k. Suppose that the system
is superstable and the equalized performance of the system
[3] is given by

η = ‖B‖1 / (1− ‖A‖1) . (2.2)

Then, the closed—loop system responses is bounded by

‖x(k)‖∞ ≤ η + ‖A‖k1max{0, µ− η} ∀k ≥ 0. (2.3)

In particular, if ‖B‖1 = 0 then

‖x(k)‖∞ ≤ ‖A‖k1 µ. (2.4)

Proof. We have ‖x(k + 1)‖∞ ≤ ‖A‖1 ‖x(k)‖∞ +
‖B‖1 ‖w(k)‖∞ , by induction this implies ‖x(k)‖∞ ≤ η +

‖A‖k1 (‖x(0)‖∞ − η) and hence (2.3).

For superstable systems, the output can be estimated
for all time steps, not only its asymptotic values. Besides,
for any c > 1 a k0 can be found such that |x(k)| ≤ cη
∀k > k0. In contrast, for stable systems only asymptotic
estimates of the output can be guaranteed, while the effect
of non—zero initial conditions may be very large.

An additional advantage of superstable systems is their
robustness with respect to outliers in inputs. Suppose that
the disturbance w(k) is bounded for all samples except
one, |w(k)| ≤ 1 ∀k �= N and |w(N)| = σ > 1. Then, if
the system is superstable and ‖x(0)‖∞ ≤ µ, the effect of
the outlier is attenuated after enough steps (see Theorem
2 [3])

|x(k +N)| ≤ 2µ ∀k ≥ 1 +
lnµ− lnσ ‖B‖1

ln ‖A‖1
. (2.5)

The inputs and outputs can be written as w(k) = w1(k)+
w2(k), x(k) = x1(k) + x2(k) where w2(k) = 0 ∀k �= N,
w2(N) = σ, x2(k) = 0 ∀k �= N . Then ‖x1(k)‖∞ ≤ η and
‖x2(k +N)‖∞ ≤ ‖A‖k1 µ ≤ η ∀k ≥ 0.

These results can be easily extended to time—varying
and nonlinear systems by analyzing the behavior of the
so called frozen systems. The superstability of frozen LTI
systems implies superstability of LTV system

x(k + 1) = Akx(k) +Bkw(k)

and guarantees equalized performance η of the LTV sys-
tem. It is well known that this does not hold for the more
general class of stable systems. Besides, the convergence
x(k) → 0 for any LTV system, with no external distur-
bances, has been shown [15].

2.1. Properties of equalized performance η

The equalized performance η has been employed as a
closed—loop system performance index for controller de-
sign [3], [14]. Assuming that the closed—loop system
φ(z) = (zI − A)−1B is superstable, it is easy to show
that:

1. η(φ) is an upper bound for the H∞ norm

‖φ‖∞ =max
ω

|B(ejω)|
|1+A(ejω)|

≤
maxω|B(ejω)|
minω|1+A(ejω)|

≤ η(φ).

The sharpness of this estimate depends on the sign
of coefficients, for example when all coefficients are
positive η(φ) is a very conservative.

2. η(φ) is an upper bound for the l1 norm: Indeed, the
function φ(z) is analytic in the unit disk, therefore
‖φ‖1 =

∑∞
i=0 |φi| and

∣∣φ(q−1)w(k)
∣∣ ≤ ‖φ‖1 |w(k)| = η(φ) |w(k)| ,

thus,
∥∥φ(q−1)

∥∥
1
≤ η(φ).

In the next section a quasi-convex optimization program
based on the equalized performance η, for design of con-
trollers, will be proposed.
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3. THE CONTROLLER DESIGN

Consider a discrete-time system described by

x(k + 1) = Ax(k) +Bu(k) +D1w(k),
y(k) = Cx(k) +D2w(k),

(3.1)

there is a variety of problem formulations for this system.
In this work the static output feedback stabilization prob-
lem will be consider (u(k) = Ky(k)). Depending on the
system output, the transfer can be of the form

x(k) = (zI −A−BKC)−1(D1 +BKD2)w(k),

u(k) = KC(zI −A−BKC)−1(D1 +BKD2)w(k).

Then, it is required that the closed-loop system matrix
A+BKC to be superstable and minimize the desired per-
formance index, or a mixture of them,

ηx(K) =
‖D1 +BKD2‖1
1− ‖A+BKC‖1

, (3.3)

ηu(K) =
‖KCD1 +KCBKD2‖1
1− ‖A+BKC‖1

. (3.4)

The main feature of the above optimization problem is
its reductibility to a one parameter family of linear or
quadratic programming problems. In the following the
ηx(K) will be employed.

The minimization of (3.3) is equivalent to a parametric
linear programming problem

min
0≤σ<1

min
K

1
1−σ ‖D1 +BKD2‖1

‖A+BKC‖1 ≤ σ
(3.5)

Proof. First, minimization of a fraction of the form
α(x)/(1− β(x)) subject to 0 ≤ β(x) < 1, over x, is obvi-
ously equivalent to minimization of α̂(x)/(1−µ) subject to
0 ≤ µ < 1, where α̂(x) is a solution of minα(x)/(1−β(x))
s.t. 0 ≤ β(x) < 1. Second, note the problem (3.5) is
linear programing for a fix σ. Indeed, the coefficients of
D1 +BKD2 and A+BKC are affine functions of the pa-
rameters of K. In the deterministic case (D2 = 0) the
optimization problem (3.5) is equivalent to

min
K
‖A+BKC‖1 . (3.6)

The parameter σ defines the boundaries of the region
where the eigenvalues of the closed-loop system can be
placed (see Figure 3.1). This means that the eigenvalues
will be located in a the circle of radius σ. When σ = 1, the
eigenvalues can be placed inside of the unitary circle. This
parameter can be employed to improve the robustness of
the optimization procedure against the uncertainties.

The performance index (3.3) and the LP—like design
problem (3.5) have been introduced in the works [3], [14].
It guarantees the optimal rejection of bounded distur-
bances for non—zero initial conditions and provides an
opportunity for direct optimization in the space of con-
troller coefficients, in contrast with all other techniques
(H∞, l1,etc.) where the solution is sought in the Youla
parameter space. These problems can be solved on—line,

1

-1

Pole

Placement

Region

i

-i

σ

Figure 3.1: Effect of σ on the pole placement region

based on a receding horizon technique, such that the in-
formation available in the system output is included in the
design of the control law. Due to this fact, the controller
will act as regulator, driving the system from its current
state, x(k), to the next one, x(k + 1). In this way, the
constraints can be rewritten as in (2.4) leading to linear
constraints of the type

‖A+BKC‖1 ≤

(
x̄

µ

) 1

k

, (3.7)

where x̄ is the constraint value and .

3.1. Robust Design

Assuming that a set W, of M plants

xl(k + 1) = Alx(k) +Blu(k) l = 1, . . . ,M,
yl(k) = Clx(k),

is able to represent the behaviour of system in a given op-
erating region. The problem is to find a controller K which
stabilizes all the plants simultaneously. This simultaneous
stabilization problem is known to be NP-hard for m > 2
[4], and there are no effective algorithms to solve it. The
problem can be solved in this framework by considering a
set of stability inequalities for each model

‖Al +BlKCl‖1 < σ l = 1, . . . ,M. (3.8)

This is a system of linear inequalities with respect to coef-
ficients of the gain K. Hence, the problem of simultaneous
super stabilization has a solution if and only if the sys-
tem of linear inequalities (3.8) is non—empty. If the set of
solutions is non—empty, a η—optimization problem can be
solved. For instance,the optimal control design problem
can be solved through the following linear programming
problem

min
K

∑M
l=1 λl ‖BlK‖1

‖Al +BlKCl‖1 ≤ σl, l = 1, . . . ,M
(3.9)

such that
∑M
i=1 λi = 1 and λi ≥ 0 ∀i.

This type of problem can also arise for the optimal con-
trol design of a single plant when several objectives are
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considered simultaneously during the controller design.
For example minimize the error while the control energy is
bounded or minimize the sensitivity function of the system
S(z), while the complementary sensitivity function T (z) is
bounded or minimized.

4. MULTIPLE MODELS, SWITCHING

and TUNING

In adaptive control, the system is assumed to be lin-
ear with unknown parameters that have small variations..
However, simulation studies and industrial applications [8]
have also revealed that the transient error of these adap-
tive systems are significantly larger than in the linear case,
due to large and abrupt variations of the parameters, so
that the multiple models, switching and tuning approach
is relevant.

This control strategy is based on the idea of describ-
ing the dynamics of the system, using different models
for different operating regimes. It also requires a suit-
able strategy for finding the model that is closest (in
some sense) to the current plant dynamics. This model
is used to construct the control law for the current sam-
ple that achieve the desired control objective. The sug-
gested approach is to consider the control assembled in
two stages: first, the closest models to the current dy-
namic model is identified, followed by a control design
based on this model. The identification is defined via a
finite optimization problem, while the design is defined via
an infinite horizon. The objective of this work is the con-
trol design stage, therefore in the following the switching
variables S(k) =

[
S1(k) · · · SM (k)

]
are assumed be

given. The structure of the resulting MMST controller is
showed in figure 4.1. The switching variables S(k), which
are external inputs of the optimiser, are calculated inde-
pendently of control law every sample of the control de-
sign.

To introduce the switching into the control design prob-
lem (3.9), the objective function and design constraints
are modified by replacing the weight λl with the switch-
ing variables Sl(k)

∑M

l=1 Sl(k) ‖BlK‖1 ,

and including them in the design constraints

gz (Sl(k), x(k),K) ≤ 0 z = x, u, y

In this way, the control law is designed, only employing the
closest model to the current plant dynamic, which is used
to measure the performance and evaluate the constraints,
while the superstability of the set W is guaranteed. Thus,
a better closed-loop performance than a robust approach
is obtained because a less conservative model is used to
design the control law. However, note that the stability of
the nonlinear system is also guaranteed because the con-
trol law satisfies the super stability condition for all mod-
els of W simultaneously. Thus, the resulting control law
will stabilise the system in the whole-operating region and
will obtain the best performance for the current operating
point.

Figure 4.1: Controller structure

5. SIMULATIONS and RESULTS

Consider the problem of controlling a continuous stirred
tank reactor (CSTR) in which an irreversible exothermic
reaction A → B occurs in a constant volume reactor.
This nonlinear system was originally used by Morningred,
Paden, Seborg and Mellichamp [10] for testing discrete
control algorithms. The system is modelled by the follow-
ing equations

dCa
dt
= q

V
[Ca0 − Ca]− k0Ca exp

(
−E
RT

)
,

dT
dt
= q

V
[T0 − T ]− k0∆H

ρ cρ
Ca exp

(
−E
RT

)

+
ρC cρC
ρ cρV

qC
[
1− exp

(
−hA

qC ρC cρC

)]
[TCO − T ] ,

the nominal values of the variables and parameters can be
found in Morningred’s paper [10]. The objective is con-
trolling the output concentration, Ca, using the coolant
flow rate, qC , as the manipulated variable, and the in-
let coolant temperature, TCO, and the feed concentration,
CaO , are the disturbances. The output concentration has
a measured time delay of Td = 0.5 min.

The nonlinear nature of the system is shown in figure
5.1, for the open—loop response to changes in the manip-
ulated variable. It shows the dynamic responses to the
following sequence of changes in the manipulated variable

0 10 20 30 40 50
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Figure 5.1: Open—loop responses of the CSTR
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Table 5.1: Vertices of the polytopic model
Change Model Obtained

Model 1

qC = 100,∆qC = +10
Gp1(z) =

0.1859 10−3 z−5

z2−1.9835 z+0.9406

Model 2

qC = 110,∆qC = −10
Gp2(z) =

0.2156 10−3 z−5

z2−1.7272 z+0.7793

Model 3

qC = 100,∆qC = −10
Gp3(z) =

0.1153 10−3 z−5

z2−1.7104 z+0.7547

Model 4

qC = 90,∆qC = +10
Gp4(z) =

0.8305 10−4 z−5

z2−1.7922 z+0.8241

qC: +10 ltmin−1,−10 ltmin−1,−10 ltmin−1. Besides,
the CSTR becomes uncontrollable when qC is bigger than
113 ltmin−1. Four linear models were determined from
the composition of responses shown in figure 5.1, using a
subspace identification algorithm [16]. Notice that these
changes imply three different operating points correspond-
ing to the following stationary manipulated flow-rates: 100
ltmin−1, 110 ltmin−1, and 90 ltmin−1. Table 5.1 shows
the four process transfer functions that define the poly-
topic model associated to the nonlinear behavior in the
operating region being considered. Like in Morningred’s
work, the sampling time period was fixed in 0.1min, which
gives about four sampled-data points in the dominant time
constant when the reactor is operating in the high concen-
tration region.

The controller must be able to follow the reference and
keep the system’s controllability over the whole opera-
tional region. Hence, assuming a hard constraint is used
on the coolant flow rate at 110 ltmin−1, an additional re-
striction for the more sensitive model (Model 1) must be
considered for the deviation variable u(k):

u1(k + i) ≤ 10 ∀i ≥ 0. (5.1)

In addition, a settling time of 5 min are demanded (the
error must be lower than 10−3 mol lt−1), thus the following
constraints are included

|el(k)| ≤ 10
−3 ∀k ≥ No + 50. (5.2)

where No is the time instant when the setpoint change
happens. This assumes that the nominal absolute value for
the manipulated variable is around 100 lt min−1and that
the operation is kept inside the polytope whose vertices
are defined by the linear models. The constraints (5.1)
and (5.2) are then included in the optimization problem
(3.9).

A traditional MMST controller was developed using the
models showed in table 5.1, therefore four linear controllers
were obtained. Each controller was developed using ro-
bust tuning methods employing two models simultane-
ously: the model corresponding to the operating region
and the previous in order to guarantee the stability of the
system.

The switching criterion employed by both adaptive con-
troller is

Si(k) = αei(k) + β
k∑

j=N0

ρk−je2i (j) (5.3)

with parameters given by

α = 0.7, β = 0.4, ρ = 0.2. (5.4)

The indexes Si(k) i = 1, 2, 3, 4 are initialise each time
that a setpoint happens.

A robust MPC based on the worst—case minimization
was developed to compare the closed—loop responses. The
predictor was built using the model 2 assuming that
the models’s parameters, a, are corrupted by some er-
ror εi i = 0, 1, . . . , p due to modelling error, i.e. aji =

a2i + εi i = 0, 1, . . . , p, j = 1, 3, 4 such that aji ⊂[
a2i − εi, a

2
i + εi

]
j = 1, 2, 3, 4. The uncertainty bound

εi was calculated form the vertex of the polytopic models

εi = max
j=1,3,4

(∣∣∣aji − a2i

∣∣∣
)
.

The noise for the remaining parameters of the model have
been computed in a similar way. Here it is assumed that
the parameters’ noise is an independently identical uni-
form distributed variable. The remaining tuning parame-
ters (the optimization horizon N, the control horizon NU ,
control weight R, and the error weight Q) were setting to

N = 200, NU = 5, R = 510
−3I, Q = I.

The optimization problem was solved, at each step, using
a min—max algorithm.

The simulation tests are similar to Morningred’s work
[10] and consists of a sequence of step changes in the ref-
erence value. The set point was changed in intervals of
10min. from 0.09 mol lt−1 to 0.125, returns to 0.09, then
steps to 0.055 and finally returns to 0.09 mol lt−1. Figure
5.2 shows the closed—loop simulation results sustained by
the controller described in the previous paragraph. As can
be seen in this figure the adaptive controller provides a re-
sponse without overshoot and faster settling time for all
the operating region. The robust MPC always provides
a slower response without overshoot, and in some cases it
fails to achieve the setpoint value in the time of setpoint
changes. Finally, the switching controller always achieves
the setpoint but with an overshot and a bigger settling
time than the predictive feedback controller. The reason
for this result is that the adaptive controller: (a) employes
more to compute the control actions it is able to adapt it
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Figure 5.2: Closed-loop responses to setpoint changes
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Figure 5.3: Manipulated movements

to each operating region, by changing the model, and (b)
include the feedback information available at each sample
in the design the control law.

The good performance of the adaptive controller pro-
posed in this work is due to the combination of a switching
scheme with the on-line design of the controller. In this
way, the adaptive controller is able to identify the local
model and to optimize the closed-loop response whilst at
the same time satisfying the constraints by modifying the
controller’s gains (Figure 5.4-upper figure). The parame-
ters of the adaptive controller are modified with changes
in the reactor’s operating region. They revealed an ini-
tial transient behavior, after each change, before achiev-
ing their steady state values. The major changes hap-
pen during the transitions from and to model 1 because
it is the different behavior (see Figure 5.1). This fact can
be appreciated in the behavior of the switching variables
S(k)—(Figure 5.4-lower figure), which show jitter during
the first, third and fourth reference changes. These tran-
sitions correspond to switches between models 2—1; 2—3
and 3—4; which have similar dynamics and only differ in
the gain.

The switching controller has a better performance than
the MPC and a poorer one than the adaptive controller.
The adaptive nature of the controller leads to a better
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Figure 5.4: Controller gains sequences (upper figure) and
the switching-indices sequences(lower figure)

global performance than a worst—case design whilst guar-
anteeing the robust stability of the system. However, the
response shows an overshoot in one operating region (first
model) and a bigger settling time in other (third model).
The reason for this is that the controller has fixed its pa-
rameters for each operating region. The MPC controller
has a poorer performance than the predictive feedback and
the fixed—structure controller because the worst—case sce-
nario is considered all the time. The conservative nature
of the min—max, added to the difference in the models,
results in a slower response with a consequential loss of
performance.

6. CONCLUSIONS

A simple framework for the design of robust adaptive con-
trollers with multiple models was presented. The approach
was to relate the control law performance to the predic-
tion of performance. The resulting controller identifies,
at each sample, the closest linear model to the actual op-
erational point of the controlled system, and reconfigures
the control law such that it ensures robust stability of the
closed-loop system. The reconfiguration of the controller
is carried out by switching the function used to measure
the closed-loop performance and the constraints.
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