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ABSTRACT 

In this paper, a novel distributed model predictive control 

scheme based on Nash optimality is presented for large-

scale processes, in which the on-line optimization of the 

whole system is decomposed into that of several small co-

operative subsystems in distributed structures. The 

relevant computational convergence, closed-loop 

performance and the nominal stability for distributed 

model predictive control are analyzed. The control 

problem is illustrated to verify the effectiveness and 

practicality of the proposed control algorithm 
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1.  Introduction 
 

In model predictive control (MPC), also called 

receding horizon control, the control input is obtained by 

solving a discrete-time optimal control problem over a 

finite horizon, producing an optimal open-loop control 

input sequence.  The first control in that sequence is 

applied.  At the next sampling instant, a new optimal 

control problem is formulated and solved based on the 

new measurements.  The theory of MPC for linear 

systems is well developed; nearly all aspects, such as 

stability, feasibility, optimality, robustness and 

nonlinearity, have been discussed in the literature (see, 

e.g., [5], [15], [14], [16], [17]).  MPC is very popular in 

the process control industry because the control objectives 

and operating constraints can be represented explicitly in 

the optimization problem that is solved at each control 

instant.  Typically, MPC is implemented in a centralized 

fashion.  The complete system is modeled, and all the 

control inputs are computed in one optimization problem.  

Many successful MPC applications have been reported in 

the last two decades [17].  However, solving a single 

optimization problem for the entire system typically 

requires significant computation, which scales poorly 

with the size of the system.   

To address the computational issue, two research lines 

have being explored: one approach is to reduce the 

computational burden by using suboptimal 

approximations (reducing the number of decision 

variables or using approximation of the problem) [12], 

[21], [27].  More recently Van Antwerp and Braatz [25] 

developed an iterative ellipsoid algorithm to allow the 

quick computation of sub-optimal control moves.  It 

should be pointed out that these approaches still take 

centralized computation and therefore increase the 

computing burden and need high cost computers. 

With the rapid development of communication 

network and the field-bus technology, centralized control 

has not been a sole structure in applications and gradually 

replaced by distributed control.  Distributed control 

structure brings new requirements to the traditional 

control field and allows the conceivability of new 

challenging control applications.  For economic 

consideration and also no degrading performance, it is 

desirable to use several inexpensive microcomputers to 

replace a very high performance computer in control 

systems.  In distributed or decentralized control schemes 

the local control inputs are computed using local 

measurements and reduced-order models of the local 

dynamics [24].  Previous work on distributed MPC is 

reported in [1], [2], [4], [8], [9], [20], [22].  The proposed 

algorithms use a wide variety of approaches, including 

multi-loop ideas [20], decentralized computation using 

standard coordination techniques [8], [9], [22], robustness 

to the actions of others [10], [11], [6], penalty functions 

[23], [26], and partial grouping of computations [13].  The 

key point is that, when decisions are made in a 

decentralized fashion, the actions of each subsystem must 

be consistent with those of the other subsystems, so that 

decisions taken independently do not lead to a violation of 

the coupling constraints. The decentralization of the 

control is further complicated when disturbances act on 

the subsystems making the prediction of future behavior 

uncertain. 

In this paper, we consider situations where the 

distributed controllers can exchange information several 

times every sample. The objective is to achieve some 

degree of coordination among agents that are solving 

MPC problems with locally relevant variables, costs, and 

constraints, but without solving a centralized MPC 
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problem. Such coordination schemes are useful when the 

local optimization problems are much smaller than a 

centralized problem.  These schemes are also useful in 

applications where a centralized controller is not 

appropriate or feasible because, although some degree of 

coordination is desired, the subsystems cannot divulge all 

the information about their local models and objectives 

(e.g. deregulated power markets).  In distributed control, 

the type of coordination that can be realized is determined 

by the information structure; that is, the connectivity and 

capacity of the communication network.  Here we assume 

that the connectivity of the communication network is 

sufficient for the subsystems to obtain information 

regarding all the variables that appear in their local 

problems.  In this case, we are interested in identifying 

conditions under which the agents can perform multiple 

iterations to find solutions to their local optimization 

problems that are consistent in the sense that all shared 

variables converge to the same values for all the agents.  

We also show that when convergence is achieved using 

this type of coordination, the solutions to the local 

problems collectively solve an equivalent, global, 

multiobjective optimization problem.  In other words, the 

coordinated distributed computations solve an equivalent 

centralized MPC problem.  This means that properties 

that can be proved for the equivalent centralized MPC 

problem (e.g., stability) are enjoyed by the solution 

obtained using the coordinated distributed MPC 

implementation.  The significance of proposed distributed 

control scheme is to reduce the computational burden in 

complex large-scale systems. Also it can be extended to 

the remote control and multi-agent systems.   

The paper is organized as follows. In Section 2, a 

distributed MPC algorithm based on Nash optimality is 

proposed. In Section 3, the convergent condition of the 

distributed predictive control algorithm for linear models 

is analyzed. The nominal stability and the performance 

deviation under communication failure are analyzed, 

respectively, in Sections 4 and 5. A simulation example is 

provided to demonstrate the efficiency of the distributed 

MPC algorithm in Section 6. Conclusions are given in 

Section 7. 

 

2. Distributed Model Predictive Control 
 

2.1 Model Predictive Control 

Model predictive control (MPC) is formulated as 

resolving an on-line open loop optimal control problem in 

moving horizon style.  Using the current state, an input 

sequence is calculated to minimize a performance index 

while satisfying some specified constraints.  Only the first 

element of the sequence is taken as controller output.  At 

the next sampling time, the optimization is resolved with 

new measurements from the plant. Thus both the control 

horizon and the prediction horizon move or recede ahead 

by one step at next sampling time.  The purpose of taking 

new measurements at each sampling time is to 

compensate for unmeasured disturbances and model 

inaccuracy, both of which cause the system output to be 

different from its prediction.  At decision instant k, the 

controller samples the state of the system x(k)and then 

solves an optimization problem of the following form to 

find the control action: 

( )

( )

( )
min ( ), ( )

.

( 1, ) ( , ) ( )

( , ) ( )

( ), ( ) 0

U k
J X k U k

st

x k i k Ax k i k Bu k i

x k k x k

G X k U k

+ + = + + +

=

≤

 (1) 

where, 

{ }
{ }

( ) ( , ) ( , ) ,

( ) ( , ) ( , ) ,

X k x k k x k V k V M

U k u k k u k M k

= + >

= +

�

�
 (2) 

In the preceding formulation, the performance index 

represents J(X(k ),U(k )) the measure of the difference 

between the predicted behavior and the desired future 

behavior.  The variables x (k+i,k) and u (k+ i , k) are, 

respectively, the predicted state and the predicted control 

at time k+ i based on the information at time k and system 

model 

( 1) ( ) ( ),

( ) ( ),

x k Ax k Bu k

y k Cx k

+ = +

=
 (3) 

where x∈ R n
, u∈ R m

 and y∈ R p
.  The constraints 

G(X(k ),U(k )) represent physical limits in the system and 

can also be other constraints to ensure the stability or 

robustness of the system.  The optimization produces an 

open-loop optimal control sequence in which the first 

control value is applied to the system u (k) = u (k,k).  

Then, the controller waits until the next control instant 

and repeats this process to find the next control action. 
 

Communication Network 

 •••• •••• ••••  MPC m 

Subsystem m 

MPC j 

Subsystem j 

MPC 2 

Subsystem 2 

MPC 1 

Subsystem 1 

System 

Control System 

 •••• •••• ••••  

 •••• •••• ••••   •••• •••• ••••  

Figure 1:  Distributed control system architecture 

For large-scale systems, because of the effect of 

control horizon M, the number of optimized control 

variables U(k) at each sampling time are highly 

dimensional, the computation is intensive which requires 

high performance computers or advanced algorithms. To 

avoid the prohibitively high on-line computational 

demand, this work proposes a distributed scheme with 

inexpensive computers under network environment. 

 

2.2 Distributed Model Predictive Control based on Nash 

optimality 

The main idea of the distributed model predictive 

control algorithm is the on-line optimization of MPC. The 
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distributed control system architecture diagram is shown 

in Figure 1. Since an optimization formulation can be 

decomposed into a number of small-scale optimizations. 

These autonomous subsystems are connected via network 

with dynamic input coupling among them, share the 

common resources, communicate and co-ordinate each 

other in order to accomplish the whole objective. 

Assumed that the behavior of the whole system is 

described by m agents, the cost function J can be 

rewritten as follows 
 

( ) ( )
1

( ), ( ) ( ), ( ), ( )

1, ,

m

l l l n l

l

J X k U k J X k U k U k

n m

γ ≠
=

=

=

∑
…

 

(4) 

where the original cost function has been decomposed 

into m performance indexes related with the local decision 

variable Ul(k) = [ u l (k ) … u l (k+M ) ] l = 1,… ,m.  

However, the outputs each subsystem are still related to 

the remaining decision variables Ul≠ n (k)  n = 1,… ,m.  In 

this way, the optimization (1) can be decomposed into m 

coupled optimization problem,  

( )

( )

( )

1

min ( ), ( ), ( ) , , 1, ,

.

( 1, ) ( , ) ( )

( )

( ), ( ), ( ) 0

l
l l n l

U k

l l
m

n n

n
n l

l n l

J X k U k U k l n m

st

x k i k Ax k i k B u k i

B u k i

G X k U k U k

≠

=
≠

≠

=

+ + = + + + +

+

≤

∑

…

 (5) 

where U l≠ n (k)  is assumed given.  Given that the 

communication network is reliable and with capacity that 

allows the subproblem to exchange information while 

they solve their local optimization problem, then such 

distributed problem can be solved by means of the Nash 

optimality concept [18]. 

Definition 1: A group of control decisions 

U(k) = [U1(k) … Um (k) ] is said to be Nash optimal if,  

( )
( )

 ( ), ( ), ( )  

( ), ( ), ( ) , 1, ,

q q

l l n l

q

l l n l

J X k U k U k

J X k U k U k n m

≠

≠

≤

= …
 (6) 

If the Nash optimal solution is achieved, each 

subproblem does not change its control decision Ul(k) 

because it has achieved the locally optimal objective 

under the above conditions; otherwise the local 

performance index J l(X (k),U (k)) will degrade.  Each 

subsystem optimizes its objective function using its own 

control decision assuming that other subsystems’ 

solutions are known and optimal.  So, if condition (6) is 

satisfied, the whole system has arrived to an equilibrium 

point (attractor) in the coupling decision process (see 

Figure 2). 

Since the mutual communication and the information 

exchange are adequately taken into account, each 

subsystem solves its local optimization problem provided 

that the other subsystems’ optimal solutions are known. 

Then, each agent compares the newly optimal solution 

with that obtained in the previous iteration and checks if 

the terminal condition is satisfied. 

If the algorithm is convergent, all the terminal 

conditions of the m agents will be satisfied, and the whole 

system will arrive at Nash equilibrium at this time. This 

Nash-optimization process will be repeated at next 

sampling time. 

Step1:  At sampling time instant k, each subsystem makes 

initial estimation of their decision variables and 

communicates it to the other agents, let the iterative index 

q=0;  

( ) ( ) ( ) 1,2,...,
q q q

l l lU k u k u k M l m = + = �  

Step 2:  Each agent solves its optimization problem 

simultaneously to obtain its solution  

( )

( )

( )

1

min ( ), ( ), ( ) , , 1, ,

.

( 1, ) ( , ) ( )

( )

( ), ( ), ( ) 0

l
l l n l

U k

l l
m

n n

n
n l

l n l

J X k U k U k l n m

st

x k i k Ax k i k B u k i

B u k i

G X k U k U k

≠

=
≠

≠

=

+ + = + + + +

+

≤

∑

…

 

Step 3:  Each agent checks if its terminal iteration 

condition is satisfied 

1( ) ( )    1,...,q q

l l lU k U k l mε−

∞
− ≤ =  

If all the conditions are satisfied, then end the iteration 

and go to step 4; otherwise 

11;  ( ) ( ) 1,..., ,q q

l lq q U k U k l m−= + = =  

all agents exchange this information through 

communication and go to step 2. 

Step 4: Computes the instant control law 

[ ] 1
( ) 0 0 ( ) 1,..., ,

q

l lu k I U k l m
−= =�  

Step 5:  Move horizon to the next sampling time, 

k+1 → k, and go to step 1, repeat the process. 

 

Two decentralized MPC schemes can be derived from 

this algorithm, depending on the cost function minimized 

by the optimization problem.  If the cost function only 

includes local information 

( )*
( ), ( ), ( ) , 1, , ,l l l n lJ X k U k U k l n m≠ = …  (7) 

the resulting MPC algorithm is called communication 

based MPC. On the other case, if the cost function 

includes global information 

( )#
( ), ( ), ( ) , 1, , ,l l n lJ X k U k U k l n m≠ = …  (8) 

the resulting MPC algorithm is called cooperation based 

MPC. 
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u 1 

u 2 

Paretto set (P ) 

Equilibrium point (N ) 

Iterates 

J 2 

J 1 

 

Figure 2.  Trajectories in decision space traced by 

two subsystems. 

 

3. Convergence analysis 
 

Consider this distributed model predictive control of 

linear dynamic plants.  At sampling time instant k, the 

output prediction model of the l th agent can be described 

as 

1

1
1

ˆ( , ) ( ) ( )

( )

jj

l l il li
m j

n in ni
n l

y k j k C A x k h u k j i

h u k j i

=

= =≠

+ = + + − +

+ −

∑
∑ ∑

 

(9) 

and the predicted trajectories Y
^
(k) = [ ŷ(k+1 , k) … 

ŷ(k+V,k)]T is given by 

1
ˆ( ) ( ) ( ) ( )

m

nl l n n
n l

Y k x k U k U k=
≠

= Γ + +∑A A  (10) 

where 1, ,l l m= …A  is the dynamic matrices [15]. 

Then, the performance index of the l th agent can be 

written as 

( )
2 2ˆ( ), ( ) ( ) ( ) ( )

l
l

l l lJ X k U k R k Y k U k= − +
RQ

 

(11) 

where R (k) = [ r(k) … r(k+V ) ]T is the setpoint 

trajectory.  According to extremum condition for Nash 

optimality, a necessary condition 

( )( ), ( )
0 1, , ,

( )l

J X k U k
l m

U k

∂
= =

∂
…  

leads to the optimal solution for the l : th agent which 

gives, 

1( ) ( ) ( ) ( )
m

nl l ln n
n l

U k R k x k A U k=
≠

 = − Γ −  
∑K  (12) 

with,  

( ) 1

1, , .
T T

l l l l l l lK A A A l m
−

= + = …Q R Q  (13) 

the overall solution is , 

[ ] 1

1 0( ) ( ) ( ) ( ),
q q

U k R k x k U k
−= − Γ +K K  (14) 

where,  

1

1

0

0
m

K

K

 
 =
 
 

�K  (15) 

At each sample, the setpoint R (k) and the system state 

x(k) are known and do not depend on U(k).  Therefore, 

the first term of (14) is irrelevant to convergence property 

of the solution. Then, the solution is given by 

1

0 0( ) ( ) .q qU k U k−= +K C  (16) 

From this expression is easy to see that the behavior of 

the distributed problem during the iterative process is 

determined by the behavior difference equation (16). 

Then, the convergence of the distributed MPC algorithm 

is related with stability of (16) given as 

( )0
1

1.ρ ≤K  (17) 

Therefore, the way that the global problem is split and 

the parameters , ,  and 1, ,l lM V l m= …Q R  should be 

tuned to ensure the convergence of the decentralized 

algorithm.  This convergence analysis can be extended to 

constrained systems using Lyapunov arguments. 

 

4. Performance Analysis 
 

In distributed control, each agent can work 

independently to achieve its local objective, but can not 

accomplish the entire objective on its own. To this 

purpose, the subsystems communicate, coordinate and 

negotiate with each other, exchanging information 

through a communication network. The question that 

naturally emerges is how the decomposition of the global 

objective affects the performance compared with the 

solution of the global cost function. 

Applying the necessary conditions for extremum for 

the global cost,  

( )( ), ( )
0

( )

J X k U k

U k

∂
=

∂
  

which implies,  

0( ) ˆ2 ( )
( ) ( )

( )
2 ( ) 0      1...

( )

T

l l

l

J U k
E k

U k U k

U k
U k l m

U k

∂ ∂
= − +

∂ ∂
∂

= =
∂

A Q

K

 
(18) 

 

The elements of ∂J / ∂Ul are zero for all elements 

except the l : th element, 

[ ]( )
0 0 0 0 1, , ,

( )l

U k
I l m

U k

∂
= =

∂
� � …  

then, equation (18) can be rewritten as follows, 

[ ] [ ]0

1 1
ˆ2 ( ) 2 ( ) 0

1, , .

l ml l mlE k k k U k

l m

− + =

=

� �

…

A A Q

 

(19) 
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The solution of this system of linear equation is the 

optimal solution, which belongs to the Pareto set. 

Applying the necessary conditions to cooperation 

based MPC where 

( )#
( ), ( ), ( )

0 , 1, ,
( )

l l n l

l

J X k U k U k
l n m

U k

≠∂
= =

∂
…  

which is the same condition for optimality of the global 

cost.  Therefore, if the global cost Jl(X(k),U(k)) is 

optimized in each agent the solution of the decentralized 

scheme is globally optimal and belongs to the Pareto set 

(see Figure 3).It should be pointed out that the centralized 

solution is always Pareto optimal. 

However, if the communication based MPC is 

employed, the necessary condition leads to 

*

0ˆ2 ( ) 2 ( ) 0
( )

1, ,

Tl
l l l l l

l

J
A Q E k K U k

U k

l m

∂
= − + =

∂

= …

 (20) 

Comparing conditions (18.a) and (20), it is clear that 

when the agents minimize the local cost J(X(k),Ul(k))  

l = 1,… ,m the obtained solution is different from the 

optimal solution and they do not belong to the Pareto set 

but rather to a Nash equilibrium set. 
 

u 1 

u 2 

P  

N  

2

*

1 2

2

( , )J u u
u

∂
∂

 

1

*

1 2

1

( , )J u u
u

∂
∂

 

( )
#

1 2

1 1 1

1
J JJ

u u u
α α
∂ ∂∂

= + −
∂ ∂ ∂

 

( )
#

1 2

2 2 2

1
J JJ

u u u
α α
∂ ∂∂

= + −
∂ ∂ ∂

 

0.5α =  

 

Figure 3:  Position of attractors for different cost 

functions. 

Depending on the cost function 

minimized,
* #( ) or ( )l lJ J⋅ ⋅  (equations Error! Reference 

source not found. andError! Reference source not 

found.), the Nash equilibrium point N  can be located 

on the Paretto set P ,if the global cost function is 

minimizes, or not if the local cost function is minimizes 

[7], [19] (see Figure 3). 

 

5. Nominal Stability 
 

In order to analyze the nominal stability, integral Nash 

optimal solution of the whole system, provided that the 

algorithm is convergent at each sampling time, can be 

written as follows, 

[ ]( ) ( ) ( )U k R k x k= −ΓK  (21) 

which leads to the closed-loop state-space model 

( )( 1) ( ) ( )x k A B x k B R k+ = − Γ +K K  (22) 

This expression shows the state mapping relationship 

of the distributed system between the time instant k and 

k+1. The nominal stability of the whole distributed system 

can be guaranteed, if and only if 

( )( )1

0 1 1.A BS Iλ
−

− − Γ ≤K K  (23) 

That is, the norms of eigenvalues of state mapping are 

less than 1.  This stability analysis can be extended to 

constrained systems using Lyapunov arguments. 

 

6. Simulation and Results 
 

Let consider the following transfer function matrix, 
4.8 61.3 28.9

50.4

2 18.79

2

24.7

17.3 20.6 19.9 0
23.8 1 38.8 1 25.4 1

31.4 0.8
0 4.6 0 79.1

48.4 1 31.4 1

48.2 4.0 0.05
0 24.4 0 8.4

27.9 148.2 3.9 0.06

22.8 0.8
0 16.9 39.2 0

39.5 1 22.8 1

s s s

s

s

s

e e e

s s s

e s
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s s e
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e s

s s

− − −

−

−

−

+ + +

+

+ +

+ +
−

++ +

+
−

+ +





















 
 
 

 

obtained from the linearization of heat exchange network 

(HEN) employed by Aguilera and Marchetti [3] to test 

centralized optimization schemes  for HENs (for more 

details on HEN design and control see [3] and the 

references in it).  The main characteristic of this system 

are interactions between different inputs, which propagate 

across the systems.  The system inputs are constrained to 

1 ( ) 1,

1 ( ) 1,

u k

u k

− ≤ ≤

− ≤ ∆ ≤
  

For this system, the decomposition was carried after 

consideration of the multi-loop and determining which 

input affects the corresponding output most.  The 

parameters of the MPC controllers are 

1 2 3 4

1sec; 300; 50; 5;

; ; 1,2,3,4;

20; 25; 10; 5.

S

l V V l l M M

T N V M

I r I l

r r r r

× ×

= = = =

= = =

= = = =

Q R   

The simulation was run for 10 min with the following 

setpoint changes: Firstly, 
1C

T  goes from 0 to –5 at 1 min; 

then 
2C

T  goes from 0 to 5 at 4 min.  Finally, 
2H

T  goes 

from 0 to –10 at 7 min.  In this set of simulations three 

MPC schemes are compared: the classical centralized 

MPC (CPMC), the communication based MPC 

(DMPC 1 ) and the cooperation based MPC (DMPC 2 ). 

Figure 4 shows the behavior of each agents cost 

function during the iterative process, which is compared 

with the constant cost of CMPC.  It can be seen that the 

agents modify their cost dynamically as they approach the 

global cost (CMPC).  As the terminal criterion is reduced 
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more iterations occurs amongst the agents and the cost 

converges with the cost of CMPC and vice versa (Figure 

4.a). The key point here is that this iteration process can 

be terminated even sooner (intermittently) and still the 

agent s will have almost reached the global cost.  This 

becomes another tuning parameter especially for 

improving the quality of the control and also for speed. 

The oscillatory nature of the DMPC2 cost function is due 

to the interactions amongst the agents as the find a 

common objective.  
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Figure 4:  a) Behavior of each agent’s cost function 

at time 50 sec, b) for different stopping criteria. 

Finally, we analyze the effect of the decentralization 

scheme on the computational and communication time. 

Considering Figure 5 and based on the definitions given 

earlier, DMPC2 is seen to have the highest demands for 

communication as well as computation. DMPC1 is 

slightly more expensive that CMPC. Well having said 

that; it should be pointed out that in a networking 

environment where these schemes are deployed, DMPC2 

and DMPC1 make more efficient use of the 

communication resource. Observing the Figure closely, 

CMPC is always computing and communicating for all 

time of the simulation, this is due to the fact that it is 

always getting new data and is always computing control 

actions to mitigate the effect of interactions and 

disturbance in a centralized fashion. But the decentralized 

scheme, only use less in communication, mostly at times 

when there is a significant disturbance or interaction. The 

DMPC2 computational time can be reduced significantly 

by modifying the terminating criterion ε l l = 1, … ,m of 

each agent. 
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Figure 5:  Computation time for different control 

schemes 

To summary, it can be seen that for relatively small 

structured systems like this example, the CMPC is still a 

strong contender in terms of control performance and 

cost. But as the size of the system increases, the scaling 

become very poor as will be seen later. 

 

7. Conclusions 
 

In this study a distributed model predictive control 

method based on Nash optimality is developed. The MPC 

is implemented in distributed scheme with the 

inexpensive agents within the network environment.  

These agents can co-operate and communicate each other 

to achieve the objective of the whole system.  Coupling 

effects among the agents are fully taken into account in 

this scheme, which is superior to other traditional 

decentralized control methods.  The main advantage of 

this scheme is that the on-line optimization of a large-

scale system can be converted to that of several small-

scale systems, thus can significantly reduce the 

computational complexity while keeping satisfactory 

performance.  Furthermore, the design parameters for 

each agent such as prediction horizon, control horizon, 

weighting matrix and sample time, etc. can all be 

designed and tuned separately, which provides more 

flexibility for the analysis and applications.  The second 

part of this study is to investigate the convergence, 

stability and performance of the distributed control 

scheme. These will provide users better understanding to 
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the developed algorithm and sensible guidance in 

applications. 

To summary, it can be seen that for relatively small 

structured systems like this example, the CMPC is still a 

strong contender in terms of control performance and 

cost. But as the size of the system increases, the scaling 

become very poor as will be seen later. 
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