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Abstract: This paper considers a method for improved operational robustness in 

applications where clusters of Unhabitated Underwater Vehicles (UUVs) are deployed for 

the purpose of achieving a shared common mission. These applications are typically 

characterized by their strict requirement for coordination between the individual UUVs. 

The proposed method is based on the assumption that the shared mission objectives and 

the associate constraints can be stated in terms of a mixed-integer quadratic optimization 

problem and known by all UUVs. Thus on the outset, the method considered in this paper 

is similar to a centralized approach but solved in a decentralized manner: the problem is 

decomposed into smaller sub-problems and solved in a parallel using a distributed Nash-

based game approach. Sufficient conditions for numerical convergence of the method 

together with performance results are also presented. Finally, simulation results are 

presented to demonstrate the main features of the proposed method.  Copyright © 2002 

USTARTH 
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1. INTRODUCTION 

The problem of allocating resources and assigning 

tasks in multi-team system is an extremely important 

step in insuring that maximum overall performance 

of the system is achieved. A mechanism that allows 

for reallocation of resources and reassignment of 

tasks is important in the control of complex dynamic 

systems especially when the initial deployment of 

resources and assignment of tasks appear to be 

ineffective in yielding satisfactory results. Examples 

are dynamic systems that are controlled by a group 

of agents where each group is divided into several 

teams and each team is allocated a specific task. As 

the operation of the overall system progresses, the 

group may reassess his initial task assignment among 

the teams and may decide that a different assignment 

could yield better overall performance of the system. 

This case, a reassignment of tasks and a 

redeployment of resources will have to be performed. 

In a similar manner, when a specific team completes 

its initial assignment, the group may consider two 

options: it may decide to terminate this team's 

activity (i.e., retire the team) or reassign the team to 

another ongoing task. In the former case, the control 

of the system will continue but with fewer teams and 

in the latter the team may be merged with one of the 

remaining teams to help improve its ability to 

complete its task. These are all important, but very 

complex, issues that need to be considered in any 

control architecture that involves a multitude of 

teams and tasks. 

While cooperation between teams is desirable, it can 

be very complicated to implement. To perform these 

missions, acceptable algorithms must be solved in 

real time, taking into account the need for task 

precedence and coordination, timing constraints and 

feasible trajectories. One of the main difficult 

features of a cooperative control problem is 

complexity. The size of the problem (e.g. number of 

vehicles, number of tasks, resources and performance 

constraints, disturbances, etc.) is one form of 

complexity, however coupling between tasks 

interaction dominates the complexity problem 

(Chandler et al., 2002). 

Emerging cooperative decision and control 

algorithms of different classes have been proposed 

for solving such problems. These algorithms are 

based on customized combinatorial optimization 

methods including: mixed integer linear 

programming (MILP) (Richards et al., 2002; 

Schumacher et al., 2004) capacitated transhipment 

problem (Schumacher et al., 2002), and iterative 
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capacitated transhipment problem (Chandler et al., 

2002). Due to the special characteristics of the 

problem and the requirement for a tractable solution, 

all of the proposed algorithms are suboptimal in 

some sense. 

Many different candidate cooperative control 

algorithms have been developed, implemented, and 

simulated (Alighanbari et al. 2003, Chandler et al., 

2002, Guo and Nygard, 2002; Murphy, 1999; Nygard 

et al., 2001; Schumacher, 2001), but, due to the 

complexity of this problem, all of these algorithms 

have been heuristic in nature. Many of these 

algorithms also do not meet all of the requirements 

of the assignment problem, i.e. assignment 

coordination, task precedence, and feasible 

trajectories. 

This paper considers a method for improved 

operational robustness in applications where UUVs 

are deployed for the purpose of achieving a shared 

mission objective.  The method under consideration 

assumes that the shared mission objectives and the 

associate constraints can be stated in terms of a 

constrained quadratic optimization problem. The 

method also assumes that the shared mission 

objectives and the structure of the quadratic 

optimization problem is known by all UUVs. Thus 

on the outset, the method considered in this paper is 

similar to a centralized approach, where the 

optimization problem would have been solved by a 

supervisory. However, instead of solving the 

optimization problem in a centralized manner, the 

problem is decomposed into smaller sub-problems 

and solved in a parallel and decentralized manner 

using a distributed Nash-based game approach 

(Waslander et al., 2003)]. The paper will show that 

the proposed method allows for a higher degree of 

autonomy in each UUV, and thus better overall 

operational robustness. 

The paper is organized as follows. In Section 2, a 

distributed MPC algorithm based on Nash optimality 

is proposed. In Section 3, the convergent condition of 

the distributed predictive control algorithm for linear 

models is analyzed. The nominal stability and the 

performance deviation under communication failure 

are analyzed, respectively, in Sections 4 and 5. A 

simulation example is provided to demonstrate the 

efficiency of the distributed MPC algorithm in 

Section 6. Conclusions are given in Section 7 

2. OPTIMAL CONTROL PROBLEM 

In this paper, we present a reconfigurable navigation 

algorithm for autonomous navigation in a highly 

complex environment, the controller is desired to 

avoid obstacles, compensate the effects of the sea 

currents or other vehicle constraints and must heed 

vehicle state and control constraints. We will assume 

that an off-line path planner has provided a series of 

waypoints to the goal; however, because the 

controller will be robust to uncertainties in the a 

priori information from which path plans were 

generated, the way points do not have to define 

feasible straight line paths in the environments. We 

also assume that a scene analysis software exists that 

localizes active threat obstacles as a function of the 

vehicle's position. 

The control problem is formulated as a discrete 

finite-time quadratic tracker with penalties on control 

effort and on tracking error relative to a reference 

trajectory. The problem is to determine the sequence 

of actuator commands u(k) k∈[l,…,l+N-1] that 

minimizes a cost function, which will be a function 

of the trajectory and control action. Besides, the 

geometrical features of the environment and 

obstacles can be translated into inequalities 

constraints of output variables to pose a constrained 

optimization problem, such that the vehicle navigates 

safely and adaptively. 

To pose the current problem as a static multi-

assignment is problematic, since the cost of 

performing a set of tasks by any vehicle is a function 

of the order in which the tasks are performed. This is 

not the case in a static multi--assignment.. Suppose 

that Si={Γi 1 , …, Γi n} is an ordered subset of tasks, 

then we refer to S i in the context of autonomous 

vehicle V j performing the tasks in S i in the order in 

which they appear in S i. The first and last tasks 

performed by V j are Γi1 and Γi1 respectively. One can 

associate a cost with V j performing tasks in S i. A 

feasible partition of tasks is an allocation of disjoint 

subset of tasks for each of the vehicles to perform; so 

that every task is performed by some vehicle and all 

timing (coordination) constraints on the tasks are 

met. The problem of resource allocation may be 

posed as finding the minimum cost partition of the 

set of tasks, where P is any feasible partition of 

tasks. 

Suppose there are n tasks and m vehicles, the task 

assignment problem can be solved through the 

following mixed-integer optimization problem 

where [A l B l]  l=1,…, m is the dynamical model of 

the l th vehicle, I lj(k) is an integer variable than can 

only assume the values 0 or 1, and Jl(⋅) is the cost 
function for the l th vehicle  l=1,…,m is given by  

( )
1

( ) ( ), ( )
n

l lj lj l lj
J I k T X k U k

=
=∑  (2) 

where the state and control trajectories are 

given by X l(k)=[xl (k|k)…xl (k+N|k)] and 

Ul(k)=[ul (k |k)… ul(k+N-1 |k)] respectively. 

The variables x(k+i |k) and u(k+i |k) are, 

respectively, the predicted state and the predicted 
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control at time k+i based on the information at time k 

and system model.  The constraints G(Xl(k), Ul(k)) 

represent physical limits in the system and can also 

be the geometrical characteristics of the operating 

area. 

The cost function Jl(k) quantify the cost of allocating 

a group of task in a given sequence to vehicle l.  It 

includes the transition cost between two successive 

tasks, Tlj(xl(k), ul(k)), and the integer variable Il j(k) 

j=1,…, n that indicate that indicates which tasks are 

executed by vehicle l.  This cost function introduces 

a coupling effect between the vehicles through the 

task-vehicle pairing. This coupling effect has a 

positive effect on the system behaviour because it 

introduces a cooperative effect between the vehicles. 

The transition cost T lj(xl(k), ul(k)) includes the 

distance to be navigated and the amount of energy 

required to move from one location to another. This 

term represents some of the objectives of the 

mission. In general, this term is a nonlinear function 

of the vehicle's states (position and speed) and the 

control inputs, however for the case of minimum 

distance navigation Tlj(xl(k), ul(k)) can be written as a 

quadratic function  

( )
( )

2

2 2

1
( ), ( ) ( )

( ) ( 1) ( )

l

ll

N

lj l l T l l Qi

l l l l RQ

T x k u k x C x k i

C x k i x k i u k i

=
= − +

+ + − + − + +

∑
 (3) 

where xT  is the position where the task j should be 

performed and N is the time horizon. 

The constraint (1.c) is included to ensure that all 

tasks will be performed and if a task is not performed 

by two vehicles simultaneously, unless the task 

explicitly required two or more vehicles to be 

performed. In this case, a similar constraint to (1.c), 

but only applied to a specific task j should be 

formulated  

1
( ) [1, , ],

m

lj jl
I k m j n

=
= ∈∑ …  (4) 

where m j is the number of vehicles required to 

perform the task. The constraint (1.d) is employed to 

avoid the collision between vehicles by ensuring that 

distance between the vehicles is bigger than a 

minimum distance δ. 

The optimization problem (1) distribute the task such 

that all the tasks are assigned to a vehicle in a way 

that the overall cost function and minimize and the 

constraints are satisfied. In this way, the resulting 

task assignment is optimal for the information 

available at time k. The optimization produces an 

open-loop optimal control sequence in which the first 

value of the decision variables is applied to the 

system ul(k)=ul(k|k) . Then, the controller waits until 

the next control instant and repeats this process to 

find the next control action. If any new information 

is acquired later, the optimization problem can 

modify the task distribution in order to improve the 

efficiency or to satisfy the new constraints. 

There are two interesting situation: a) one situation is 

when n>m, in this case there are more vehicles than 

tasks therefore n–m vehicles can be assigned to tasks 

resulting in a faster fulfilment of the tasks, and b) an 

alternative situation happens when n<m, in this case 

there are more tasks than vehicles. These two 

situations lead to multiple assignment problems. 

3. DISTRIBUTED MODEL PREDICTIVE 

CONTROL 

Model predictive control (MPC) is formulated as 

resolving an on-line open loop optimal control 

problem in moving horizon style. Using the current 

state, an input sequence is calculated to minimize a 

performance index while satisfying some specified 

constraints. Only the first element of the sequence is 

taken as controller output. At the next sampling time, 

the optimization is resolved with new measurements 

from the plant. Thus both the control horizon and the 

prediction horizon move or recede ahead by one step 

at next sampling time. The purpose of taking new 

measurements at each sampling time is to 

compensate for unmeasured disturbances and model 

inaccuracy, both of which cause the system output to 

be different from its prediction. 

For large-scale systems, because of the effect of 

horizon N, the number of optimized control variables 

U(k) at each sampling time are highly dimensional, 

the computation is intensive which requires high 

performance computers or advanced algorithms. To 

avoid the prohibitively high on-line computational 

demand, this work proposes a distributed scheme 

under network environment. These autonomous 

subsystems are connected via network with dynamic 

input coupling among them, share the common 

resources, communicate and co-ordinate each other 

in order to accomplish the whole objective. Given 

that the behaviour of the system is described by m 

agents, the cost function of the system J can be 

rewritten as follows  

( )
1

( ), ( ), ( ), ( )
m

l l l l pl
J J I k X k U k U k≠=
=∑  (6) 

for p=1,…,m where the original cost function has 

been decomposed into m performance indexes related 

with the local decision variable 

Ul(k)=[ul(k|k)
… ul(k+N|k)]   l=1, …, m. However, 

the outputs each subsystem are still related to the 

remaining decision variables Ul≠n(k) n=1, …, m. In 

this way, the optimization (1) can be decomposed 

into m coupled optimization problems 

where U l≠n(k) is assumed given. The constraint (6.d) 

has been added to ensure the convergence of the 

( )

( ) ( )
( )

( )

1

1 1

1 1

min ( ), ( ), ( )

.
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(5.a) 

(6.b) 

(6.c) 

(6.d) 

(6.e) 
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coupled optimization problems and the stability of 

the closed-loop system. This constraint requires the 

cost function values to remain constant or to decrease 

at each time step, relative to the cost value computed 

using the current measurement and the restriction of 

the input. Because the cost function is defined on an 

infinite horizon, and includes contributions from 

both the state and the input, this can be thought of as 

a generalized state contraction constraint. However, 

because the state and input are required to contract 

on an infinite horizon, this constraint is less 

conservative than a finite horizon contraction 

constraint. 

At each sample time k, the right hand side of (6.d) is 

constant and the left hand side is a strictly convex 

function of U
q
(k) q≥0.  If the objective function 

J l(X(k),Ul(k),U l≠p(k)) l=1, …, m is also strictly 

convex, which means that the optimization problem 

(Dpc) is convex. This fact implies that any local 

minimum is also the global minimum. The fact that 

the objective function is strictly convex also implies 

that the solution, if it exists, is unique. The existence 

of a feasible solution U(k) implies the existence of a 

unique optimal solution U
*
(k). 

Given that the communication network is reliable 

and with capacity that allows the subproblem to 

exchange information while they solve their local 

optimization problem, then such distributed problem 

can be solved by means of the Nash optimality 

concept (Nash, 1951). 

Definition: A group of control decisions 

U(k)=[U1(k) 
… Um(k)]  is said to be Nash optimal if  

( ) ( )( ), ( ), ( ) ( ), ( ), ( )q q q

l l p l l l p lJ X k U k U k J X k U k U k≠ ≠≤ (7) 

If the Nash optimal solution is achieved, each 

subproblem does not change its control decision 

because it has achieved the locally optimal objective 

under the above conditions; otherwise the local 

performance index J l(X(k),U(k)) will degrade. Each 

U l(k) subsystem optimizes its objective function 

using its own control decision assuming that other 

subsystems' solutions are known and optimal. So, if 

condition (7) is satisfied, the whole system has 

arrived to an equilibrium point (attractor) in the 

coupling decision process (see Figure 1).  Since the 

mutual communication and the information exchange 

are adequately taken into account, each subsystem 

subsystems solves its local optimization problem 

provided that the other optimal solutions are known. 

Then, each agent compares the newly optimal 

solution with that obtained in the previous iteration 
  

u 1 

u 2 

Paretto set (P ) 

Equilibrium point (N ) 

Iterates 

J 2 

J 1 

 
Fig 1. Trajectories in decision space traced by two 

subsystems 

and checks if the terminal condition is satisfied. If the 

algorithm is convergent, all the terminal conditions 

of the m agents will be satisfied, and the whole 

system will arrive at equilibrium at this time. 

Algorithm 

Step 1: At sampling time instant k, each subsystem 

makes initial estimation of their decision variables 

and communicates it to the other agents, let the 

iterative index q=0 

( ) ( ) ( ) 1, , .q q q

l l lU k u k u k M l m = + = � …  (8) 

Step 2: Each agent solves its optimization problem 

(6) simultaneously to obtain its solution  

Step 3: Each agent checks if its terminal iteration 

condition is satisfied  

1( ) ( ) 1, , .q q

l l lU k U k l mε−

∞
− ≤ = …  (9) 

If all the conditions are satisfied, then end the 

iteration and go to Step 4; otherwise  

11, ( ) ( ) 1, ,q q

l lq q U k U k l m−= + = = …  (10) 

all agents exchange this information through 

communication and go to Step 2. 

Step 4: Computes the instant control law  

[ ] 1( ) 0 0 ( ) 1, , .q

l lu k I U k l m−= =� …  (11) 

Step 5:Move horizon to the next sampling time, 

k+1→k , and go to Step 1, repeat the process. 

In distributed control, each subsystem can work 

independently to achieve its local objective, but can 

not accomplish the entire objective on its own. To 

this purpose, the subsystems communicate, 

coordinate and negotiate with each other, exchanging 

information through a communication network. The 

question that naturally emerges is how the 

decomposition of the systems and global objective 

affects the performance of the decentralized scheme, 

compared with the solution of the global cost 

function, and the existence of a solution of the 

optimization problem (6). 

CONVERGENCE ANALYSIS 

The convergence of the optimization problem 

depends on how the global problem is split and the 

parameters, Q l and R l l=1, …, m (Giovanini and 

Balderud, 2006). Therefore, it is difficult to 

guarantee the convergence when there is uncertainty 

in the system. This is the main reason to introduce 

the contractive constraint (6.d), which is used to 

guarantee the robust convergence of the optimization 

problem. 

Theorem When the input U(k) is computed using the 

optimization problem (6), the iterative procedure 

converges to an equilibrium point. 

Proof.  Convergence of the state and input to the 

origin can be established by showing that the 

sequence of optimal plant cost values is non-

increasing. 

At any iteration q≥0 of a given time step k, is known 

that the control law U q(k) is a feasible solution of 

problem (6). The plant cost results from the 
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evaluation of the cost J l for the feasible solution 

U
q

l(k) 

( )( ) ( ), ( ), ( ) .q q q

l l l p lJ k J X k U k U k≠=  (12) 

Once the optimal solution U
*
(k) has been found, the 

true cost of this solution can be determined by 

evaluating the cost function  

( )( ) ( ), ( ), ( ) .l l l p lJ k J X k U k U k∗ ∗ ∗
≠=  (13) 

Assuming that a feasible solution have being 

obtained at the initial step q=0, given by  

0 0 0( ) ( ), , ( )l l lU k u k u k M = + …  (14) 

the cost is given by  

( )0 0 0
( ) ( ), ( ), ( ) .l l l p lJ k J X k U k U k≠=  (15) 

Assuming that the first control input u
0

l(0) is applied 

to the system, the states at the next sampling time is 

given  

0( 1) ( ) ( ).x k Ax k Bu k+ = +  (16) 

The constraint (6.d) must be satisfied in the next 

iteration q=1, this means that the cost J
1
(k) can not 

exceed the cost of the previous iteration  

( )1 1 1 0
( ) ( ), ( ), ( ) ( )l l l p lJ k J X k U k U k J k≠= ≤  (17) 

 Because they are computed using the true plant, the 

states sequence in (15) and (17) are identical for 

q≥1.  Subtracting the cost functions at q=0 and q=1 
we obtain 

1 0 0 0( ) ( ) ( ) ( )T

l l l lJ k J k U k U k− ≤ −∆ ∆R  (18) 

where  

0 1 0( ) ( ) ( ).l l lU k U k U k∆ = −  (19) 

 The same argument can be repeated at subsequent 

iteration to show that  

1 1 1( ) ( ) ( ) ( ) .q q q T q

l l l lJ k J k U k U k q− − −− ≤ −∆ ∆ ∀R  (20) 

 This shows that the sequence of cost {J q

l(k)} is non-
increasing and the cost is bounded below by zero and 

thus has a non--negative limit. Therefore as q→∞ 
the difference of cost ∆J q

(k)→0 such that the cost 

converge to the optimal J
q
(k)→J

*
(k) . Because R is 

positive definite, as ∆J q
(k)→0 the updates of the 

inputs must converge to the origin ∆Uq - 1
(k)→0 as 

q→∞, thus the distributed optimization problem 

converges to a solution   . 

In the particular application of mission planning, the 

system is constituted by a set of decoupled 

dynamical systems (vehicles) which are coupled 

through the cost functional and the constraints (1.c) 

and (1.d). Therefore, for this application the 

decentralized algorithm will converge to a solution 

as long as the optimal problem (1) is feasible. 

STABILITY ANALYSIS 

The stability of the closed-loop system, like the 

convergence of the optimization problem, depends 

on how the global problem is split and the 

parameters, Q l and R l l=1, …, m (Giovanini and 

Balderud, 2006). Therefore, it is difficult to 

guarantee the convergence when there is uncertainty 

in the system. This is the main reason to introduce 

the contractive constraint (6.d), which is used to 

guarantee the robust stability of the system. 

Theorem When the input is computed using the 

optimization problem (6) the origin is an 

asymptotically stable equilibrium point with a region 

of attraction consisting of all x0∈R
n
. 

Proof. The closed-loop stability can be proven by 

shown that the input and the true plant state converge 

to the origin, and then it is shown that the origin is an 

stable equilibrium point for the closed-loop system. 

The combination of convergence and stability gives 

asymptotic stability. 

Convergence of the state and input to the origin can 

be established by showing that the sequence of 

optimal plant cost values is non-increasing.  This fact 

can be proved following a similar procedure like in 

Theorem 1.  Then, the stability emerges from the fact 

that the cost function J is a Lyapunov function of the 

closed-loop system.  

The combination of convergence and stability 

implies that the origin is asymptotically stable 

equilibrium point of the closed-loop system. 

SIMULATION AND RESULTS 

Considered in this section is a cluster of UUVs 

deployed on a search and exploration mission, where 

the mission objective is to search and explore the 

area in the vicinity of a pre-defined search path. 

During path following search and exploration 

missions that involves multiple search agents it is 

normally desired to utilize the full potential of the 

combined search and exploration capability of the 

deployed agents. During these types of missions it is 

normally also desired to organize the search agents 

such that they travel in formation along the search 

path. This is to ensure that the agents remain closely 

together which, in turn, gives the cluster a better and 

more structured ability to adapt appropriately to 

unforeseeable changes in the environment, such as 

changing search paths and/or the discovery of non-

penetrable obstacles, and a better and more structured 

ability to cope with failures of individual search 

agents. 

In order to maximize the area searched by the UUVs, 

whilst simultaneously keeping the UUVs reasonably 

close together, the UUVs should be organized into 

line formation that is perpendicular to the direction of 

the search path. It is assumed that there are N UUVs 

positioned along this formation line and that each 

UUV has a search range equal to L units of distance. 

The position, at time instant k, of each UUV (along 

the formation line) is denoted Y (k)=[y1(k) … yN(k)]. 

The optimal position of the UUVs, that maximizes 

the area searched by the UUVs, can then be 

expressed in terms of the solution to the following 

constrained quadratic optimization problem, 

( )1 2 2

11 1( )
min 2 ( ) ( ) ( )

.

( )

N N

i i ii iY k

T

L y k y k y k

st

AY k b

−

+= =
− + +

≤

∑ ∑

��

 (21) 

The first term in the above cost-function ensures that 

the UUVs are spaced 2L units of distance apart  
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Fig 2. Optimal search trajectories for the UUVs. 

during optimal conditions. The second term ensures 

that the formation line is centered on the search path. 

The set of linear inequality constraints in the above 

optimization problem provide a systematic way of 

incorporating the natural constraints created by any 

non-penetrable obstacles. 

The optimization problem (21) yields the position of 

the UUVs at time instant k, and does not take into 

account of external influences, such as obstacles, that 

may affect the position of the UUVs at time step k+1. 

To better cope with external influences it is often 

necessary to carry out the optimization, defined by 

(21), over a longer time horizon. The above 

optimization problem can be decomposed into 

smaller sub-problems and solved using the iterative 

method previously proposed in this paper. For the 

decomposed problem, the optimization problem 

solved by each agent (UUV) is defined by,  

( )
( )
( )
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2

1
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(22) 

where ci(k+j) is defined as follows  

1
( ) ( ) ( ).

N

i i nn
c k y k y k

=
= − +∑  (23)

A simulation scenario has been prepared and 

simulated where four UUVs are deployed on a search 

and exploration mission in an archipelago like 

environment. In this simulation scenario the 

formation must be continuously adapted to maintain 

optimal search performance and to avoid any 

obstacles. The simulation employs the following set 

of parameters, N=4, H=20, L=0.5 

The results from this simulation is shown in Figure 2.  

It is assumed in the simulation that the position of the 

obstacles is known beforehand by all UUVs and that 

the UUVs have the capability to progress one unit of 

length in the x-direction at each time step. At each 

simulation step the agents solve (21) by interactively 

solving (22). 

CONCLUSIONS 

In this study a distributed model predictive control 

method based on Nash optimality is developed. The 

MPC is implemented in distributed scheme with the 

inexpensive agents within the network environment. 

These agents can co-operate and communicate each 

other to achieve the objective of the whole system. 

Coupling effects among the agents are fully taken 

into account in this scheme, which is superior to 

other traditional decentralized control methods. The 

main advantage of this scheme is that the on-line 

optimization of a large-scale system can be converted 

to that of several small-scale systems, thus can 

significantly reduce the computational complexity 

while keeping satisfactory performance.  
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