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Abstract

Recently, different methods for obtaining sparse representations of a signal using dictionaries of waveforms have been

studied. They are often motivated by the way the brain seems to process certain sensory signals. Algorithms have been

developed using a specific criterion to choose the waveforms occurring in the representation. The waveforms are choosen

from a fixed dictionary and some algorithms also construct them as a part of the method. In the case of speech signals,

most approaches do not take into consideration the important temporal correlations that are exhibited. It is known that

these correlations are well approximated by linear models. Incorporating this a priori knowledge of the signal can facilitate

the search for a suitable representation solution and also can help with its interpretation. Lewicki proposed a method to

solve the noisy and overcomplete independent component analysis problem. In the present paper we propose a

modification of this statistical technique for obtaining a sparse representation using a generative parametric model. The

representations obtained with the method proposed here and other techniques are applied to artificial data and real speech

signals, and compared using different coding costs and sparsity measures. The results show that the proposed method

achieves more efficient representations of these signals compared to the others. A qualitative analysis of these results is also

presented, which suggests that the restriction imposed by the parametric model is helpful in discovering meaningful

characteristics of the signals.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Speech analysis and representation; Sparse coding; Linear predictive coding; Basis pursuit; Matching pursuit; Independent

component analysis
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1. Introduction

Speech signals are amongst the most studied natural signals. In the field of speech signal analysis and
modeling, important advances have been made concerning their representation, such as linear predictive
coding [1], cepstral and mel frequency cepstral coefficients (MFCC) with delta and acceleration coefficients [2],
and RASTA-PLP [3]. However, there are several problems which have not been satisfactorily solved.
Machines are far from human performance in certain speech analysis and recognition tasks [4]. Machine
performance degrades rapidly when faced with background noise, variations between different speakers, and
even changes in the speaking rate of a single speaker. Humans, by comparison, are able to overcome these
difficulties with apparent ease.

In the last few years several researchers have taken a different approach to traditional signal processing.
These new formulations give rise to techniques based on non-linear systems and higher-order statistics,
including independent component analysis (ICA) and methods to obtain sparse representations (SR) of a
signal. They provide new ways of phrasing the solution of the problem of signal modeling or representation.
One underlying idea is that of representing the signals involved using only a few significant characteristics; that
is, as a sparse representation of only a few basic waveforms. Sometimes the waveforms are specified from the
outset, and sometimes they are also found as part of the method. Super-resolution is an important property
discussed in Ref. [5], where examples are given showing its advantages compared to traditional methods.
Because of the intrinsic robustness of sparse representations, denoising techniques can be directly integrated
into the process [6]. There are applications of these techniques to different fields, such as: natural image
analysis [7,8], audio and music signals [9], general biomedical signals [10–12] and automatic speech recognition
(ASR) [13,14].

Many of these new formulations are motivated by biological considerations related to the way natural
images and sounds are coded within the brain. It is known that the neural code itself, which is based on spike
trains, is sparse [15]. Several works use this principle as a model for the representations generated in the
receptive fields of the visual and auditory cortex. It has been suggested that, using this principle, the sensory
systems have been adapted in order to process the signals of their environment in an optimal and efficient
way [16].

Some of the most commonly used speech representations nowadays, such as MFCC or RASTA-PLP,
incorporated biologically inspired characteristics and have provided significant improvements to the
performance of artificial systems. Other aspects, such as those mentioned in the previous paragraph, have
not yet been taken into account even if they might provide better solutions to the speech representation
problem.

In the present paper, a new method for the SR of speech signals is proposed using a generative parametric
model. The main idea is to consider only waveforms derived from linear predictive models, obtaining in this
way the explicit inclusion of the temporal correlations between the samples.

The new method proposed here is discussed in Section 3, and the other methods used in the paper are
sketched in Section 2. Sparseness can be defined in different ways, and the tests employed for judging
representational efficiency are also presented in Section 4. The proposed method is then compared to other
techniques on artificial data and real speech signals and the results are given in Section 5. Finally, Section 6
provides some conclusions concerning the paper.

2. Sparse representation of signals

Given a signal s 2 RN , we consider a representation in terms of a dictionary U as a decomposition of the
form:

s ¼
XM
j¼1

/jaj ¼ Ua, (1)

where a 2 RM is the coefficients vector, U 2 RN�M , with MXN, is a collection of waveforms or atoms /j and
both (a and U) usually unknown.
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Some authors use the term ‘‘basis’’ instead of ‘‘dictionary’’; however, as the set of atoms may not be linearly
independent, the latter is to be preferred.

When there are more waveforms in the dictionary than samples s, i.e., M4N (referred to as an
overcomplete dictionary), or when the waveforms do not form a basis, then there will be non-unique
representations of the signal. In this situation a suitable criterion is required to select only one of them. In this
context, sparseness often refers to the criterion of choosing a representation with ‘‘as few non-zero coefficients
as possible’’ (typically using the ‘0 norm), although several other criteria have been introduced (c.f. Ref. [17]).

The problem of a sparse representation of s with respect to ‘0 could be stated as follows:

min kak0 subject to Ua ¼ s. (2)

It is important to note that in the overcomplete case mentioned above, although Eq. (1) is linear, the
coefficients ag chosen as the solution correspond to a non-linear function of the data s: s! fagg.

In order to solve the SR problem, it can be split into two sub-problems: inference and learning. The first one
consists in finding the representation coefficients a which satisfy a given sparsity criterion. The second one
involves finding the optimal dictionary U to represent the data. The last one is usually the most complex
of both.

Given a set of scalar or multi-index parameters G, sometimes it is useful to employ atoms of parameterized
waveforms ð/gÞg2G. Well-known fixed dictionaries of parametrized waveforms are the traditional Fourier
sinusoids (frequency dictionaries), Dirac functions, wavelets (time-scale dictionaries), Gabor functions
(time–frequency dictionaries), polynomials or combinations of them. Different methods have been proposed
for obtaining a SR from a fixed dictionary (inference problem solution): basis pursuit (BP) [5], matching
pursuit (MP) [18] and best orthogonal basis (BOB) [19]. The method of frames (MOF) [20] also gives a
representation, but usually it is not sparse. In Section 2.1 some of these methods are briefly reviewed for
comparative purposes.

A first attempt to apply this type of representation to speech signals using a fixed dictionary of wavelet
packets appeared in Ref. [21], giving promising results in terms of an accurate localization of spectro-temporal
acoustic phonetic cues with very few coefficients, even in the presence of some noise. Taking advantage of this
property, a simple heuristic denoising method was introduced in Ref. [22].

Other methods to solve the problem of sparse representation—often of a statistical nature (c.f. Ref. [23])—
additionally construct the waveforms appearing in (1), providing the solution to the learning problem. In this
case the coefficients are assumed to be statistically independent. The sparsity of the representation can be
achieved appropriately choosing the prior probability distribution of the coefficients (e.g. Laplacian). This
approach has important connections to higher order statistics and ICA [24,25]. It is interesting to note that
whilst sparsity and independence are different criteria, they can often produce similar solutions (c.f. Ref. [26]).
Additionally, sparse codes generally have low entropy, which leads them to be optimal from an information
theory point of view [27].

The statistical methods used to build the optimum dictionaries will be reviewed in Section 2.2. They will be
the basis for developing the alternative method proposed in this work. An algorithm is introduced which
includes restrictions related to the temporal structure of speech signals, assuming that the elements of the
dictionary are represented by the impulse responses of autoregressive (AR) filters, which have been extensively
and successfully applied to speech. A preliminary evaluation of this parametric approach was presented in
Ref. [28]. In Section 3, the ideas behind this new algorithm are developed.

Once the representations are found, different tests can be applied to estimate the sparsity and coding cost of
them. This will allow us to compare quantitatively the different methods used to obtain the representations.
However, a qualitative analysis of the found dictionaries is also useful in order to test if they are able to find
meaningful characteristics of the signals. These concepts are presented and discussed in Section 4.

2.1. Representation based on fixed dictionaries

In this section we present some methods to solve the inference problem based on dictionaries fixed in
advance. So, the goal is here to find the representation coefficients a which satisfy a given sparsity criterion. In
this case U ¼ f/ggg2G is always known.
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2.1.1. Basis pursuit

The sparse representation problem in (2) is NP-hard.4 As an alternative for obtaining a SR of s in (1), Chen
proposed the BP method [5]. They phrase the problem of finding a suitable representation as one of
optimization with respect to the ‘1 norm (which could be assumed as an approximation of ‘0). More precisely,
the problem to solve is

min kak1 subject to Ua ¼ s. (3)

This problem can be converted to a standard linear program problem and can be solved efficiently and exactly
with interior point methods [5].

2.1.2. Matching pursuit

Mallat and Zhang [18] proposed a general method to approximate the solution to problem (2). Sparsity is
directly included by choosing an appropriate number of terms. Given an initial approximation sð0Þ ¼ 0 and an
initial residual Rð0Þ ¼ s, a sequence of approximations is iteratively constructed. At step k the parameter g ¼ ĝ
is selected, such that the atom /

ðkÞ
ĝ best correlates with the residual RðkÞ, and a scalar multiple of this atom is

added to the approximation at step k � 1, obtaining:

sðkÞ ¼ sðk�1Þ þ a
ðkÞ
ĝ /

ðkÞ
ĝ , (4)

where a
ðkÞ
ĝ ¼ hR

ðk�1Þ;/ðkÞĝ i and RðkÞ ¼ s� sðkÞ. After m steps an approximation to (1) is obtained, with residue

R ¼ RðmÞ. It is said that MP constitutes a greedy solution to the SR problem, thereof it has the same
advantages and disadvantages of these type of optimization methods.5

As was mentioned before, other methods exist which also provide a suitable dictionary as part of the
solution. This framework allows the inclusion of a particular model for the atoms of the dictionary and will be
described in the following section. They are named as optimal dictionaries because in order to find the atoms a
data-driven optimization problem has to be solved.

2.2. Representation based on optimal dictionaries

In this section a more general framework is assumed, where (1) is rewritten to include an additive Gaussian
noise term e as follows:

s ¼ Uaþ e. (5)

Following terminology used in ICA, (5) is referred to as the generative model, to signify that one generates the
signal s 2 RN from a set of hidden sources aj, arranged as a state vector a 2 RM , using a mixing matrix or
dictionary U of size N �M, with MXN.

The aj are initially assumed to be statistically independent, with a joint a priori distribution:

PðaÞ ¼
YM
j¼1

PðajÞ. (6)

If U is known and s is given, the state vector a can be estimated via the Bayes’s rule by considering the
posterior distribution:

PðajU; sÞ ¼
PðsjU; aÞPðaÞ

PðsjUÞ
. (7)

A maximum a posterior (MAP) estimation of a reads as follows:

â ¼ arg max
a

½logPðsjU; aÞ þ logPðaÞ�. (8)
4In Computational complexity theory a non-deterministic polynomial-time hard problem.
5Greedily minimizes ks�Uak2.
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If the posterior is sufficiently smooth, the maximum can be found applying gradient ascent. The solution
depends on the form of the distribution chosen for the noise term e and sources aj, giving rise to different
methods for finding the coefficients. Lewicki and Olshausen [6] proposed an a priori distribution of Laplacian
type:

PðajÞ ¼ Ne�rj jaj j, (9)

where rj is given and, if the noise is Gaussian, this leads to the following rule for updating a:

Da ¼ UTKe e� qT aj j, (10)

where Ke is the inverse of the noise covariance matrix E½eTe�, with E½�� denoting the expected value, and
q ¼ frjg.

Until now, a statistical method has been used to solve the inference problem. In what follows the learning
problem is similarly solved. To estimate the value of U, the following objective function can be maximized [6]:bU ¼ arg max

U
½Lðs;UÞ�, (11)

where L ¼ E½logPðsjUÞ�PðsÞ is the likelihood of the data. This likelihood can be found by marginalizing the
following product of the conditional distribution of the data—given the dictionary—and the coefficients,
together with the coefficients a priori distribution:

PðsjUÞ ¼
Z
RM

PðsjU; aÞPðaÞda, (12)

where the integral is over the M-dimensional state space of a.
The objective function (11) can be maximized using gradient ascent with the following update rule for the

matrix U [29]:

DU ¼ ZKeE½ea
T�PðajU;sÞ, (13)

where Z is a learning coefficient (between 0 and 1). The problem at this point is how to calculate this update
rule, given that it involves solving the following integral:

E½eaT�PðajU;sÞ ¼

Z
RM

ðs�UaÞ aTPðajU; sÞda. (14)

As the dimension of a increases, the previous integral becomes analytically intractable and different authors
have proposed approximation methods in order to compute it. Lewicki and Sejnowski [30] used a multivariate
Gaussian approximation to the posterior distribution around its maximum â:

PðajU; sÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jHj

ð2pÞM

s
e�1=2ða�âÞ

THða�âÞ, (15)

where â is the mean value, and H�1 is the covariance, being H the Hessian of the log-posterior evaluated in â:

H ¼ �rrT logPðajF; sÞ. (16)

It provides a good approximation for a close to â. This result provides a solution of (13) given by

DU ¼ ZKeðêâ
T
�UH�1Þ, (17)

where ê ¼ s�Uâ.
In order to obtain the dictionary and the coefficients (Eqs. (10) and (17)), in this paper we use the

implementation proposed by Lewicki and Olshausen [6] (using Lewicki’s noise overcomplete ICA code or
NOCICA), where computational details can be found. In the following section this method will provide the
basis for introducing additional temporal statistical information in order to obtain a better estimate of U in
the case of speech signals.
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3. Representation based on optimal dictionaries including linear predictive models

The method described in Section 2.2 finds an optimal dictionary for a general class of signals. However, one
problem in modeling speech using this framework is that it ignores all the information concerning the
temporal correlation between samples present in this type of signals.

In order to take advantage of this temporal correlation, we consider the atoms /j associated with the
characteristic states of a linear model of the vocal tract for different phonemes. Then, a particular speech
signal can be obtained by ‘‘adding’’ only the most important characteristics together. A good approximation
to this behavior will be achieved when coefficients have an a priori Laplacian distribution given by Eq. (9). To
take advantage of temporal correlation, we approximate the waveforms used for the dictionary U in (5) by

f̂i; j ¼ �
XQ

q¼1

fi�q; j cq; j þ digj , (18)

where the time index moves forward in the direction of the rows i of U, i.e., along each column or atom j, cq; j

are the linear predictor coefficients and gj are the corresponding gain coefficients. Observe that f̂i; j

corresponds to f̂j½i� in the classical notation for time series. In a similar fashion fi�q; j should be seen as
fj½i � q� and di is the delta sequence d½i� ¼ ½1; 0; :::; 0�T for all time indices i.

In this way we impose a new restriction on the optimization problem (11) that allows the explicit inclusion
of the temporal correlation of the samples of each atom by using the coefficients cq; j . This means that the
problem to be solved can be phrased as one of overcomplete ICA with noise and certain restrictions on the
mixing matrix. These restrictions include the approximation of this matrix’s columns by a linear prediction
model. We denominate this new method linear prediction ICA (LP-ICA). This framework represents a
particular case of convolutive mixtures in the time domain and can be formulated in the z domain of the
original variables. In the latter case the convolution becomes a product and the /j ’s can be expressed as

UjðzÞ ¼
gj

CjðzÞ
, (19)

where CjðzÞ ¼ 1þ
P

qcq; j z�q. This is obtained applying the z transform to Eq. (18). The corresponding
generative model is shown in Fig. 1.
Fig. 1. Generative model for the speech signals in the z domain. This is a particular case of convolutive mixtures.
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In order to solve this parametric ICA problem, it is necessary to find the representation coefficients, the
waveforms and the parametric approximation. These issues can be handled separately. The approach taken in
the present paper for finding the coefficients aj and parametrically modeled waveforms fi; j is to use the
techniques described in the previous section [6,30], including a parametric approximation step [28]. This is
done iteratively.

At each iteration k the matrix UðkÞ has to simultaneously satisfy the restrictions imposed on the columns by
(18) and the maximization of the likelihood in (11). Once UðkÞ is estimated, the coefficients c

ðkÞ
q; j can be

computed using the usual stationary hypothesis by

qE½k/ðkÞj � /̂
ðkÞ
j k2�

qc
ðkÞ
q; j

¼ 0, (20)

i.e., minimizing the mean square error (MSE) between /
ðkÞ
j and /̂

ðkÞ
j approximated using (18), which are the j-

column vectors ffðkÞi; j g and ff̂
ðkÞ
i; j g, respectively.

In order to solve (20), instead of the autocorrelation method we used in Ref. [28], here we adopt Prony’s
method [31]. This method has the ability to recover the impulse response that better matches a given sequence,
and it improves the performance of the former method. Once the linear predictor coefficients are obtained,
ÛðkÞ is evaluated with (18). At this point UðkÞ should be replaced by its parametric version ÛðkÞ. To make sure
that this change is not too disruptive in the first steps of the algorithm, the complexity of the model is
gradually diminished using the order Q if logPðsjUðkÞÞ increases. Moreover, if the approximation exceeds an
error threshold for some atom /

ðkÞ
j , it remains unchanged. In this way, when iterations are finished, we obtain

an estimated dictionary bU.
Summarizing, the solution of the problem can be described in terms of the following LP-ICA algorithm:20

06
.

Initialize k ¼ 0 and Uð0Þ randomly
Initialize order of parametric approximation Q ¼ Qini

REPEAT
k ¼ k þ 1; l ¼ 0

Initialize aðk;0Þ with pseudoinverse solution of (1): Uðk�1Þys
REPEAT

l ¼ l þ 1

Compute Daðk;lÞ using (10)

aðk;lÞ ¼ aðk;l�1Þ þ Daðk;lÞ

UNTIL termination conditions

Compute DUðkÞ using (17)

UðkÞ ¼ Uðk�1Þ þ DUðkÞ

Compute c
ðkÞ
q; j via (20)

Compute g
ðkÞ
j equalizing energy of /

ðkÞ
j and /̂

ðkÞ

j

Compute Û
ðkÞ

using (18)

If MSEð/
ðkÞ
j ; /̂ðkÞj Þ4 ¼ W THEN /̂

ðkÞ
j ¼ /

ðkÞ
j

If j logPðsjÛðkÞÞ � logPðsjUðkÞÞjoz THEN UðkÞ ¼ Û
ðkÞ
, ELSE Q ¼ Q� 1

If QoQmin THEN Q ¼ Qmin
UNTIL termination conditions
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where W and z are predefined constants that control the speed and degree of the parametric approximation.
These thresholds are empirically set, adjusted for each data base in order to assure the algorithms convergence.
Furthermore, there are predefined constants Qini and Qmin that fix the initial and the minimum allowed value
for Q. Qini was set to a high value (Qini ’ N=2, with N the signal length), and for Qmin low values have been
selected (Qmin ¼ 4 or 6). Termination conditions are based on a predetermined number of iterations.6

Ph
ys

ic
6In the algorithm s stands for a randomly selected subset from all the signal data.
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4. Tests to estimate sparsity and coding costs

It is important to establish some criteria to evaluate the obtained representation. As a ‘‘good model’’
generally is equivalent to a ‘‘good representation’’ of the signals involved, the evaluation of the generative
model proposed in this work is an ‘‘indirect’’ one.

There are several ways to measure the representational effectiveness; this means to measure how good the
coefficients a code the data s using the specified generative model. Among the available methods there are
essentially two groups: those related to the dispersion of the coefficients with respect to a norm, and those
derived from the coefficients statistics. To estimate the sparsity and coding costs of a representation, in the
present paper five of the most common ones are employed. From the first group the norms ‘0, minvol and ‘1
have been selected, and the kurtosis K, the entropy H, and the number of bits #bits have been chosen from
the second group of methods. As a measure of the reconstruction capability of the method proposed here, the
value of the averaged MSE over the patterns has been evaluated. The tests used in the paper are briefly
discussed in the following two subsections.

4.1. Sparsity measures

An obvious measure is simply to count the number of non-zero terms. This is exactly what the zero norm ‘0
does [32]:

kak0 ¼ #fj : aja0g.

However, this measure is highly sensitive to small perturbations of zero elements. To ameliorate the strict
effect of the zero norm, the minimum volume norm [17] was introduced. This norm is defined as

minvolðaÞ ¼
XM
j¼1

a2
j

a2
j þ n

,

where 0onominjðajÞ is a small number of machine precision order. This gives an approximation to ‘0 when a
small threshold is used to decide if a coefficient is considered non-zero, and it possesses better properties.

The ‘1-norm is often used as a practical approximation to the ‘0-norm in optimization problems (c.f. Refs.
[5,32]). Minimizing with respect to it is the same as requiring that the coefficients have a Laplacian prior
probability, which is the case here.

Guspı́ and Introcaso [17] analyze other possibilities and their use in finding sparse solutions for general
indeterminant linear systems is similar to (5).

4.2. Coding costs and other useful measures

One way to quantify the dispersion from the statistical viewpoint is to use the 4th order moment or kurtosis.
If the aj are considered as r.v. then

KðajÞ ¼
E½a4

j �

E½a2
j �
2
� 3.

The kurtosis K is not a norm but it provides a good measure of dispersion for symmetric unimodal
distributions. The kurtosis generally increases when the entropy decreases, that is why sometimes it can be
related to statistical independence, although this interpretation requires care [27]. It is often also used as a
measure of ‘‘non-Gaussianity’’. If its value is positive one speaks of super-Gaussians, and sub-Gaussians if it is
negative. The principal problem is that it is sensitive to outliers. In the present paper, the average of the
kurtoses is calculated for each dimension of the vector a.

The entropy H is often used to measure the coding efficiency of s in terms of a:

HðajÞ ¼ �
X

i

piðajÞ log piðajÞ.
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It has more to do with statistical independence (c.f. Ref. [27]) than sparsity. On minimizing the sum of the
HðajÞ the mutual information between the coefficients aj is destroyed, which, with suitable restrictions, gives
statistically independent coefficients [27]. Even though it is a different criterion, it is also desirable to obtain
low entropies for the sparse codes, and both criteria can be applied with good results [33]. One has to be
careful when using H for estimating the coding cost given that low entropy can be obtained even though the
data are not well represented by the dictionary. However, if the dictionary does generate the data, then H is a
reasonable coding cost measure [30]. This can be known by controlling the approximation error. In the present
paper the average of the entropies is calculated for each dimension of a (with the estimator version proposed in
Ref. [34]).

Another important measure is given by the coding cost. H can be used to calculate it by means of the
smallest number of bits required for coding the patterns (Shannon’s theorem):

#bitsXHbitsðajÞ ¼ �
X

i

piðajÞ log2 piðajÞ. (21)

The MSE of the reconstructed signal averaged by all the patterns gives an idea of the required fitting
capability:

MSEðs�UaÞ ¼ hks�Uak2i.

Its value is bounded below by the noise variance se in our generative model (5).

4.3. Methods employed for qualitative analysis of the dictionaries

In order to perform a qualitative analysis of the obtained dictionaries, in Section 5 we will use two methods
that we briefly describe here.

To analyze and compare the dictionary atoms we use their spectrograms. In this case a compromise between
the width of the time window and the overlap is accomplished in order to adequately identify events in both
time and frequency. The spectrograms are ordered with a one-dimensional self-organizing Kohonen map in
such a way that those which appear to be more similar are also closer together. Finally, some of the
intermediate atoms are eliminated in order to show only the most important ones.

To obtain a global time–frequency view of the obtained dictionaries, we use a time–frequency (T2F ) ‘‘tile
covering’’. To create the corresponding figures a method with ellipses, similar to that described in Ref. [16], is
used. The temporal extent of each atom is measured using the width required to cover 95% of their power.
Frequency width is measured using the spectral bandwith at 10 dB down from the peak. Atoms that are not
localized (where the main spectral peak account for less than 50% of the total power) are omitted from the
plot.

5. Results and discussion

In this work two kinds of experiments have been performed: one using artificial data, and the other with real
speech data. In the first case, the synthesis process or ‘‘direct problem’’ has been controlled using the
generative model so that the solution of the ‘‘inverse problem’’ would be known in advance. For the real
speech data, the representations and the different dictionaries obtained for the different types of phonemes
have been compared with the main characteristics of each phonetic class.

5.1. Artificial data

The proposed parametric method LP-ICA and NOCICA method described in Sections 2 and 3 were applied
to artificial data and the tests described in Section 4 were evaluated.

The artificial data set was generated from the parametric version of the generative model (5). The
parameters have been set so that the generated data closely resembles samples taken from vowel phonemes, in
accordance with the interpretation of the generative model as a speech synthesizer. Therefore, the dictionary
elements were chosen as functions with 2 poles in the z domain. For the election of the cq; j coefficients,

Ph
ys

ic
a 

A
: S

ta
tis

tic
al

 M
ec

ha
ni

cs
 a

nd
 it

s 
A

pp
lic

at
io

ns
. V

ol
. 3

67
, N

o.
 1

, p
p.

 2
31

--
25

0,
 J

ul
, 2

00
6.



ARTICLE IN PRESS

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
Pa

rt

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
Pa

rt

0 1 2 3

10

20

30

40

50

60

0 1 2 3

5

10

15

20

25

30

10 20 30 40 50 60

-2

-1

0

1

2

10 20 30 40 50 60

-1

-0.5

0

0.5

1

1.5

i

(a) (b)

(c) (d)

(e) (f) i

θθ

�
i, 

10

�
i, 

40

|Φ
10

(e
jθ

)|

|Φ10(z)| |Φ40(z)|

|Φ
40

(e
jθ

)|

Fig. 2. Pole-zero diagrams (a, b), spectra (c, d) and temporal signals (e, f) for two atoms of the dictionaries used to generate the artificial

data with the generative model.
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frequency values taken from the first two formants of the five Spanish vowels, pronounced in an isolated and
sustained fashion by different speakers [35], were used. In this way, the atoms constitute damped sinusoids
with frequencies which are equivalent to the characteristic resonances of the vocal tract for the production of
these vowels. The sampling frequency used was 8000Hz. The case considered at this stage consisted of 64
atoms of 64 samples each ð64� 64Þ. With this assembled dictionary, coefficients were generated with
independent Laplacian distributions, and atoms were mixed using (5), producing the set of data or signals for
the experiments (a total of 1000 frames with 64 samples each). A small amount of noise was added, with a
Gaussian distribution and zero mean (SNR ¼ 80 dB).7 Examples of both, the atoms and the generated signals,
can be seen in Figs. 2 and 3, respectively.
7This SNR was used in this work since we were not considering the robustness of the representation.
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Fig. 3. Signal examples (a, c, e, g) and their corresponding spectra (b, d, f, h) generated using the dictionary of the previous figure.

Table 1

Sparsity and coding costs obtained from different representations of the artificial data with the dictionary fixed in advance

Representation ‘0 minvol K #bits MSE ðs;UaÞ

Original 0.45 0.67 2.89 3.02 2.28E� 03

NOCICA (Eq. (10)) 0.23 0.74 0.98 3.32 1.26E� 03

BP 0.05 0.51 62.55 1.64 4.68E� 02

MP 0.28 0.44 8.30 2.38 2.90E� 03

DCT 0.21 0.53 0.88 3.37 0.00E+00

DWT 0.47 0.92 0.39 3.53 0.00E+00
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With the generated data certain experiments were conducted using the methods described in the previous
sections. The obtained results are displayed in Table 1, and also compared to those corresponding to cosine
and wavelets bases. In this table ‘‘original’’ makes reference to the fact that coefficients and the dictionary used
correspond to the artificial data set already generated. NOCICA, BP and MP mean that the original
dictionary was used, but coefficients were calculated from the artificial data and with these methods. DCT and
DWT indicate that artificial data were used to calculate the representation in terms of the most traditional
transforms such as discrete cosine and dyadic wavelets transform (with Symmlet 8 mother wavelet),
respectively. From this table we observe that among the traditional transformations, the least sparse
representation is given by the DWT (higher values of ‘0 and minvol). This is due to the fact that the elements of
the basis are quite different from the atoms used to generate the data (thereby requiring the use of many
elements in the representation of the signal). It can also be noticed that it requires the largest number of bits to
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code the coefficients. Observe that DCT displays a higher sparsity, this is due to the fact that the atoms are
quite similar to cosine functions, even though the frequencies for the example were specially chosen. Original
coefficients are located in an intermediate position. Among the specific methods, it can be seen in the table that
BP achieves the sparsest data representation and requires a smaller number of bits to be coded, although with
a greater margin of error than the other methods. NOCICA and MP behaved similarly. These specific
methods are able to find even sparser representations than the original one. Kurtosis results are in agreement
with the previous ones, recalling that, for this parameter, higher values are related to higher sparsity.

An alternative analysis which confirms these observations can be appreciated in the graphical representation
shown in Fig. 4. It shows the mean of the coefficients, ordered and normalized to the maximum value, for the
different representations presented in Table 1. Taking into account that, in our case, for each representation
we obtain a coefficients matrix belonging to R64�1000 (that corresponds to 1000 frames with 64 coefficients each
one), for each frame the coefficients are sorted and the mean value is computed for the obtained rows. In Fig. 4
the obtained vector, normalized with the global maximum of the original coefficients matrix, for each
representation are shown. A higher sparsity of the representation is characterized by a steeper fall of the
corresponding curve.

The inverse problem was then solved using both parametric and non-parametric algorithms so that the
dictionaries which were produced by these methods could be compared with the original one (which, as
previously mentioned, was known in this artificial case). Table 2 shows the results obtained. It can be seen that
all measurements, except ‘1, favor the proposed method. Thus, it can be said that this one achieves a sparser
representation and with a smaller margin of error. Another column is included in the table with the average
MSE between the original dictionary and the one obtained by both methods. The result shows that the
parametric method LP-ICA estimates the original dictionary used to generate the data better than the non-
parametric one. Kurtosis values are in agreement with these results. This can be corroborated by inspecting
Figs. 5 and 6 where a comparison between some of the atoms obtained by both methods and the original one
is given, for both the time and frequency domains. As can be observed, the NOCICA method tends to find
atoms with more spectral peaks than the original ones.

As can be appreciated, the parametric method LP-ICA finds atoms which are more similar to the original
ones and achieves a sparser representation than the NOCICA method. This is due to the fact that it benefits
10 20 30 40 50 60
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Fig. 4. The mean of the sorted coefficients normalized with the maximum value, for the different representations shown in Table 1 which

are derived from a fixed dictionary (64� 64).
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Table 2

Sparsity and coding costs obtained from the representations of the artificial data using the different methods (including the estimation of

the dictionary)

Method ‘0 minvol ‘1 K #bits MSE ðs;UaÞ MSEðU; ÛÞ

NOCICA 0.45 0.63 0.60 1.14 3.37 1.28E� 04 1.3634

LP-ICA 0.20 0.34 0.85 21.86 2.39 5.38E� 06 1.0902

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Original
NOCICA
LP-ICA

Fig. 5. A comparison among the atoms found by the different methods for the artificial data in the time domain ð64� 64Þ.
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from the a priori knowledge that the temporal structure of the atoms can be described by a simple parametric
model (which is precisely the case for this example).

5.2. Real data

A subset of the Albayzin speech corpus [36] was used for the experiments. This subset consisted of 600
sentences concerning Spanish geography, with a vocabulary size of 200 words. The corpus was recorded in a
studio using six male and six female speakers from the central area of Spain with an average age of 31.8 years.
The average sentence lasted 3.55 s and the data were digitalized at 8 kHz using 16 bits and a m-law sampling.
From the segmentation information, frames with a size of 128 samples were extracted for five vowels (/a/, /e/, /
i/, /o/ and /u/) and two consonants (/s/ and /k/), giving approximately 2000 frames each. This subset was
selected for these initial experiments in order to include different phonemic classes while maintaining a small
dataset. The proposed parametric method LP-ICA and the NOCICA version [6] have been applied to the
data, and the tests described in Section 4 have been calculated for the 128� 128 and the 128� 256 cases
(complete and overcomplete cases). Different experiments have been performed, training the methods with the
data for each isolated phoneme, and then adding the data together (the data case ‘‘all’’). The same data were
used for training the dictionaries and for testing the sparsity and coding costs.

The results obtained for the two methods are presented in Tables 3 and 4 for the complete and overcomplete
case, respectively. The last two rows of each table show the significance values obtained with a paired
Wilcoxon test. As can be observed, once more the proposed method LP-ICA gives in general a sparser
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Original
NOCICA
LP-ICA

Fig. 6. A comparison among atoms’ spectra found by the different methods for the artificial data ð64� 64Þ.

Table 3

Sparsity and coding costs obtained from different representations of the real speech data for different phonemes using NOCICA and LP-

ICA, for the complete case ð128� 128Þ

Experiment ‘0 minvol ‘1 K H #bits MSE ðs;UaÞ

/a/(NOCICA) 0.17 0.26 0.54 25.96 1.06 1.86 6.19E� 04

/e/(NOCICA) 0.15 0.23 0.47 35.62 0.94 1.79 6.07E� 04

/i/(NOCICA) 0.12 0.17 0.32 46.79 0.70 1.33 6.17E� 04

/o/(NOCICA) 0.11 0.16 0.35 70.70 0.76 1.24 5.80E� 04

/u/(NOCICA) 0.08 0.10 0.17 105.89 0.38 0.74 5.48E� 04

/s/(NOCICA) 0.10 0.15 0.32 37.61 0.64 1.05 7.36E� 04

/k/(NOCICA) 0.38 0.51 0.56 11.49 0.77 1.63 1.20E� 03

Median 0.12 0.17 0.35 37.61 0.76 1.33 6.17E� 04

/a/(LP-ICA) 0.16 0.24 0.50 32.46 1.00 1.58 6.03E� 04

/e/(LP-ICA) 0.02 0.11 0.76 173.23 1.92 0.85 1.09E� 03

/i/(LP-ICA) 0.11 0.16 0.33 61.82 0.75 1.16 7.85E� 04

/o/(LP-ICA) 0.03 0.09 0.50 201.22 1.22 0.86 8.63E� 04

/u/(LP-ICA) 0.06 0.08 0.16 157.96 0.36 0.68 6.52E� 04

/s/(LP-ICA) 0.11 0.18 0.40 36.50 0.82 1.16 8.25E� 04

/k/(LP-ICA) 0.03 0.06 0.19 143.69 0.50 0.59 7.01E� 04

Median 0.06 0.11 0.40 143.69 0.82 0.86 7.88E� 04

Significance 0.047 0.11 0.72 0.03 0.47 0.05 0.37

� if po0:05 * * *
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Table 4

Sparsity and coding costs obtained from different representations of the real speech data for different phonemes using NOCICA and LP-

ICA, for the overcomplete case ð128� 256Þ

Experiment ‘0 minvol ‘1 K H #bits MSE ðs;UaÞ

/a/(NOCICA) 0.22 0.27 0.27 12.99 0.52 1.96 5.55E� 04

/e/(NOCICA) 0.09 0.12 0.21 61.15 0.48 1.12 6.07E� 04

/i/(NOCICA) 0.06 0.08 0.15 103.55 0.35 0.76 6.06E� 04

/o/(NOCICA) 0.04 0.07 0.16 110.18 0.39 0.78 5.86E� 04

/u/(NOCICA) 0.04 0.05 0.08 134.24 0.18 0.48 5.41E� 04

/s/(NOCICA) 0.17 0.21 0.31 17.19 0.54 1.25 9.30E� 04

/k/(NOCICA) 0.21 0.24 0.23 27.17 0.42 1.04 7.80E� 04

All(NOCICA) 0.12 0.20 0.51 32.86 1.03 1.29 8.69E� 04

Median 0.11 0.12 0.21 61.15 0.45 1.08 6.07E� 04

/a/(LP-ICA) 0.07 0.12 0.30 34.75 0.62 1.31 5.71E� 04

/e/(LP-ICA) 0.06 0.10 0.28 79.81 0.61 0.99 7.80E� 04

/i/(LP-ICA) 0.04 0.07 0.21 125.19 0.49 0.71 7.02E� 04

/o/(LP-ICA) 0.06 0.09 0.17 87.28 0.38 0.76 5.87E� 04

/u/(LP-ICA) 0.00 0.02 0.15 797.53 0.33 0.20 6.16E� 04

/s/(LP-ICA) 0.10 0.13 0.20 34.75 0.41 0.88 7.20E� 04

/k/(LP-ICA) 0.04 0.06 0.13 120.10 0.34 0.56 7.02E� 04

All(LP-ICA) 0.12 0.19 0.45 36.78 0.92 1.20 8.24E� 04

Median 0.06 0.10 0.21 83.55 0.45 0.82 7.02E� 04

Significance 0.05 0.05 0.98 0.11 0.55 0.01 0.84

� if po0:05 * * *
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representation, with a smaller number of bits and with a similar MSE. This difference is also more pronounced
in the overcomplete case. In the parametric case the final average order Q found was 29 and 22 for the
complete and overcomplete case, respectively.

An example of the waveforms from some of the atoms found in the ‘‘all’’ data case ð128� 256Þ (data mixed
from all the classes) is also shown in Figs. 7 (a) and (b), both for NOCICA and for the proposed parametric
method, respectively. At first sight the dictionaries found look similar (observe the marked atoms) and for this
case the measures slightly favor the parametric method (see Tables 3 and 4, row ‘‘All ð128� 256Þ’’).

In order to get a better understanding of why the learned dictionaries reflect the most important features of
the different phoneme types, a qualitative analysis was performed on some of them. Fig. 8 shows the
spectrograms obtained from the learned dictionary atoms for the vowel /a/ ð128� 256Þ with both methods (see
Section 4.3). Among the observed differences, one can see how NOCICA achieves a representation that
encompasses not only the involved frequencies, but also some atoms which account for the ‘‘phase’’ or specific
temporal events (look at those displaying vertical light patterns). On the other hand, given that the parametric
method LP-ICA assumes that the atoms constitute impulse responses of AR filters, the relative phase aspect is
ignored and only atoms tuned to specific frequencies appear. This would indicate a relative insensitivity to the
phase, a desirable feature if one wants to use the dictionary as a shift invariant event detector.

Fig. 9 shows the spectrograms obtained from the learned dictionary atoms for the phoneme /s/ ð128� 256Þ
with both methods. Here, a similar analysis to that for /a/ can be conducted, noting that there is a much more
marked difference in the number of atoms tuned to a principal frequency. This is due to the fact that, in order
to achieve large band widths, more complex or higher order models should be used; thus, the method finds a
simpler solution, which in turn appears to be even sparser (see Tables 3 and 4 for this case). Fig. 10 illustrates
these ideas, it also gives a more ‘‘global’’ view of the distribution of the atoms in the T2F plane. One can
observe the T2F coverage of each one of the dictionary atoms as ellipses, as was described in Section 4.3. In
the case of /a/ (upper row), it can be clearly seen that the proposed method LP-ICA offers a greater frequency
resolution for low frequencies, particularly in the zone which corresponds to formants (see further on). The
aspect of the aforementioned unique phase is also corroborated. On the other hand, in the case of /s/ (bottom
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(a)

(b)

Fig. 7. Some of the waveforms obtained for all speech data using: (a) the standard NOCICA method, (b) the proposed parametric method

LP-ICA.
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row), it can be observed that most of the atoms found by the proposed method are tuned to a principal
frequency, with greater resolution in the high-frequency zone.

If the dictionaries found for vowels by both methods are further analyzed, smaller peaks at other
frequencies also appear, even though the larger part of the atoms’ energy is located around one main
frequency. This would mean that other relevant information has been coded in the atoms, which is not evident
from the previous analyses (although it can be noticed after careful inspection of spectrograms in Fig. 8). It is
known that formants are important to distinguish between vowels, both in the isolated case and in continuous
speech. However in the latter case one also has to track changes of formantic patterns in time because the
classes are not as well separated [37]. Because of its frequency range, this extra information could be associated
with speech formants. This means that these methods are able to find relevant information for discrimination
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Fig. 8. Spectrograms obtained from learned dictionary atoms for vowel /a/ ð128� 256Þ: (a) NOCICA, (b) LP-ICA. The width for time

and height for frequency axis is 16ms and 4 kHz, respectively, for each atom.

H.L. Rufiner et al. / Physica A ] (]]]]) ]]]–]]] 17

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
H

. L
. R

uf
in

er
, J

. G
od

da
rd

, L
. F

. R
oc

ha
 &

 M
. E

. T
or

re
s;

 "
St

at
is

tic
al

 m
et

ho
d 

fo
r 

sp
ar

se
 c

od
in

g 
of

 s
pe

ec
h 

in
cl

ud
in

g 
a 

lin
ea

r 
pr

ed
ic

tiv
e 

m
od

el
"

A
: S

ta
tis

tic
al

 M
ec

ha
ni

cs
 a

nd
 it

s 
A

pp
lic

at
io

ns
. V

ol
. 3

67
, N

o.
 1

, p
p.

 2
31

--
25

0,
 J

ul
, 2

00
6.
purpose using only the training data and, in the parametric case LP-ICA, this information seems to be better
represented.

6. Conclusions and future work

In the present paper we have introduced a new method to obtain an independent and sparse representation
based on solving an overcomplete ICA problem with noise by means of a parametric dictionary called
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Fig. 9. Spectrograms obtained from learned dictionary atoms for the fricative /s/ ð128� 256Þ: (a) NOCICA, (b) LP-ICA. The width for

time and height for frequency axis is 16ms and 4 kHz, respectively, for each atom.
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LP-ICA. The method has been applied and compared to a standard version by calculating different sparsity
measures and coding costs using artificial data and real speech examples. A qualitative analysis of the obtained
dictionaries has also been performed.

It has been shown that the results obtained favor the proposed method LP-ICA, which takes advantage of
the temporal correlations in the data to find a suitable and better solution.
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Fig. 10. Time–frequency tiles obtained from learned dictionary: (a) vowel /a/ ð128� 256Þ NOCICA, (b) vowel /a/ ð128� 256Þ LP-ICA, (c)

fricative /s/ ð128� 256Þ NOCICA, (d) fricative /s/ ð128� 256Þ LP-ICA. The number of atoms that were omitted because of bad

localization were indicated in each plot.
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We have shown that the waveforms found by both methods also exhibit important differences derived from
the restrictions imposed by the parametric approximation used by LP-ICA. These restrictions allow to
discover a different representation of the data that preserves important characteristics of the different
phonemes considered here, and with better sparsity. This is an important feature if the phonemes are to be
statistically modeled within this framework.

The use of these dictionaries within the context of an ASR system is an area to be pursued in a future work.
It is important to mention that it is possible to apply the same type of analysis to speech representations other
than waveforms, avoiding in this way the possible use of ‘‘too many’’ atoms to code characteristics which may
have little significance for recognition purpose such as the atoms phase. However, an important issue
addressed by the LP-ICA method is the possibility of achieving phase shift invariant representations, which
constitutes a known problem in other ICA-based feature extraction methods [14]. The proposed approach
could take advantage of the parametric representation of the atoms in order to carry out the analysis stage
using a greedy MP approximation, implemented by means of an AR matched filter bank [38]. This constitutes
a fast approximate implementation to solve the inference problem with a physiological plausible basis and will
be explored in a future work.
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