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This paper proposes an algorithm for autonomous strategic mission planning of missions

where multiple unhabitated underwater vehicles (UUVs) cooperate in order to solve one or

more mission tasks. Missions of this type include multi-agent reconnaissance missions and

multi-agent mine sweeping missions. The mission planning problem is posed as a receding

horizon mixed–integer constrained quadratic optimal control problem. This problem is

subsequently partitioned into smaller subproblems and solved in a parallel and decentralized

manner using a distributed Nash-based game approach. The paper presents the development

of the proposed algorithm and discusses its properties. An application example is used to

further demonstrate the main characteristics of the proposed method.

1. Introduction

This paper considers the problem of allocating resources

and assigning tasks in a multi-agent system. Systems

of this type are characterized by their requirement for

coordination and cooperation between the agents

(Liu et al. 2003). However, whilst coordination and

cooperation between agents are desirable, it can be

complicated to implement in practice. To perform

missions that exhibit these features, acceptable algo-

rithms must be solved in real time, taking into account

the need for task precedence and coordination, timing

constraints and feasible trajectories (Tews and Wyeth

2000). One of the most difficult features of a cooperative

control problem is complexity, which results from the

size of the problem and interactions between agents and

tasks (Chandler et al. 2002a).

To solve these complex planning problems different

classes of methods have been proposed. These include:

mixed integer linear programming (MILP) methods

(Richards et al. 2002, Schumacher et al. 2004),

capacitated transshipment methods (Schumacher et al.

2002a) and iterative capacitated transshipment methods

(Chandler et al. 2002a). Due to the special character-

istics of the problem and the requirement for a tractable

solution, all of the proposed algorithms are suboptimal

in some sense. For example the MILP algorithm of

Richards et al. (2002) uses Euclidean distances while

that of Schumacher et al. (2004) uses piecewise

trajectories between targets and hence both do not

take into account of the need for feasible trajectories.

The single task assignment algorithm (Schumacher et al.

2002a) is only optimal for the current task and do not

take into account tasks that will be carried out when the

current task is completed. Although a variation on the

single task assignment algorithm (that utilize in essence

a greedy solver) (Schumacher et al. 2002b) provides a

solution to the multiple task assignment problem, it is

heuristic in nature and therefore is not optimal.

Note also that for most problems these algorithms

generally take a long time to set up and execute (Kang

et al. 2001).

Several cooperative control algorithms have also been

proposed, implemented, and simulated (Murphy 1999,

Nygard et al. 2001, Schumacher et al. 2001, Chandler

et al. 2002b, Guo and Nygard 2002, Alighanbari et al.

2003), but due complexity issues these have been

heuristic in nature. Many of these control algorithms

also do not meet all of the requirements of the*Corresponding author. Email: balderud@eee.strath.ac.uk
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assignment problem, i.e., assignment coordination, task

precedence, and feasible trajectories. An exception is

the tree generation algorithm (Rasmussen et al. 2003),

which produces optimal solutions to the assignment

problem based on piecewise optimal trajectories. The

algorithm generates a tree of feasible assignments

and then by exhaustive search finds the optimal assign-

ment. During generation of the tree all of the require-

ments of the mission are met, but since enumeration

of all of the feasible assignments is needed, direct use

of this approach is only practical for relatively low

dimensional problems and off-line applications. For

on-line applications a branch and bound algorithm

has been proposed (Rasmussen et al. 2004). This

deterministic search method has desirable qualities

such as providing feasible solutions, that monotonically

improves and, eventually, converges to the optimal

solution.

This paper proposes an algorithm for strategic

mission planning of missions where multiple unhabi-

tated underwater vehicles (UUVs) cooperate in order to

solve one or more mission tasks. The planning problem

is posed as a receding horizon mixed-integer constrained

optimal control problem, in which the mission tasks are

represented using a set of integer variables and set of

objective functions and in which the mission environ-

ment is represented using constraints.

Existing mission planning algorithms typically employ

centralized solution approaches (e.g., Schumacher et al.

(2002a) and Shima et al. (2005)). The proposed

algorithm by contrast employs a distributed Nash-

based solution approach (Neck and Dockner 1987,

Waslander et al. 2003), in which the planning problem

is divided into a set of subproblems that are distributed

between the mission agents. A partitioning scheme for

the planning problem is furthermore proposed that

reduces the interactions and dependence between the

subproblems.

The subproblems, when solved using the proposed

Nash-based solution approach yields a globally optimal

solution to the strategic planning problem. However,

each subproblem can also be solved independently,

in which case a sub-optimal solution is obtained. This

feature subsequently provides improved operational

robustness and autonomy for the system.

The paper is organized as follows: in x 2 the mission

planning problem is posed as a receding horizon mixed-

integer constrained optimal control problem; x 3

discusses a distributed solution approach for the

planning problem and outlines a distributed algorithm

for the solution of the mission planning problem;

the proposed algorithm is benchmarked in x 4

using an application case study; conclusions are

presented in x 7.

2. Optimal control problem

A strategic mission planning system, responsible for

coordination and supervision, is typically required

when several independent agents cooperate in order to

solve one or more mission tasks. The strategic

mission planning problem can in generic terms be

characterized by:

. a set of tasks and the requirements necessary to

complete the tasks;

. a set of objectives, constrains how the tasks are solved

(e.g., the most efficient way or the quickest way);

. a set of models that describes the behaviour of the

agents and their initial conditions;

. a representation of the environment where the mission

takes place.

Algorithms for strategic mission planning must conse-

quently be able to accommodate representations of these

characteristics and yield planning strategies that simul-

taneously satisfies the task requirements, meets the

objectives and does not violate the constraints.

The mission planning problem can be posed as a

discrete- and finite-time mixed-integer constrained

quadratic optimal control problem, where the objectives

and tasks are represented by a set of objective functions

and a set of binary variables. The state of the binary

variables indicate the assignment of a particular task to

a particular agent. For instance, if task n is assigned to

agent i the binary variable denoted Ii,n is set to 1.

The objective functions describe the cost incurred by a

particular agent when solving a particular set of tasks.

The structure and parameters of the objective functions

therefore depends on the values of the integer variables.

For instance, the objective function associated with the

ith agent, denoted Ji(�), depends on the values of Ii,1,

Ii,2, . . .. For a given combination of tasks a particular

objective function is uniquely identified. It is assumed

that this objective function, when minimized, ensures

that the tasks it represents are solved in the desired way.

The optimal solution, i.e., the planning strategy,

obtained by solving the optimal control problem is

expressed in terms of a set of control actions for each

of the agents.

The combinatorial nature of the problem means that

for missions that involves N agents and M tasks, N�M

binary variables and N�M�M objective functions are

required in order to fully characterize all possible

combinations of agent–task pairings.

It is assumed in the succeeding mathematical deriva-

tion that the state dynamics associated with the ith agent

can be characterized by a model of the form,

xiðkþ 1Þ ¼ AixiðkÞ þ BiuiðkÞ: ð1Þ

1170 L. Giovanini et al.
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It is furthermore assumed that the mission constraints

can be represented as a set of linear in-equality

constraints. Under these assumptions the optimal

control problem is defined by

min
�ðkÞ

X

N

i¼1

Ji Ii,1, . . . , Ii,M,XðkÞ,UðkÞ
� �

ð2aÞ

s.t.

xiðkþ jþ 1Þ ¼ Aixiðkþ jÞ þ Biuiðkþ jÞ, 8i ¼ 1 � � �N,

8j ¼ 0 � � �H� 1, ð2bÞ

X

N

i¼1

X

M

n¼1

Ii,n ¼ M ð2cÞ

X

N

i¼1

Ii,n ¼ 1, 8n ¼ 1 � � �M ð2dÞ

GðXðkÞ,UðkÞÞ � 0, ð2eÞ

where H is the time horizon and where,

XðkÞ¼ x1ðkÞ
T, . . . ,x1ðkþHÞT, . . . ,xNðkÞ

T, . . . ,xNðkþHÞT
� �T

ð3Þ

UðkÞ ¼
h

u1ðkÞ
T, . . . , u1ðkþH� 1ÞT, . . . , uNðkÞ

T, . . . ,

� uNðkþH� 1ÞT
iT

ð4Þ

�ðkÞ ¼ I1, 1, . . . , I1,M, . . . , IN, 1, . . . , IN,M,UðkÞT
� �T

: ð5Þ

The constraint function, G(X(k), U(k)) is assumed to be

linear. The constraints (2c) and (2d) ensures that all

tasks will eventually be completed and that responsi-

bility for completing each task rests with a single agent.

Finally note that the optimization problem is minimized

with respect to the control actions, U(k), and the binary

variables, I1,1, . . . , I1,M, . . . , IN,1, . . . , IN,M. The solution

obtained by solving the control problem is therefore not

only optimal with respect to the control actions but

also optimal with respect to how the tasks are assigned

to the agents.

The objective functions, Ji(�), quantify the cost of

allocating a combinations of tasks to a particular

agent, i. It includes the cost associated with each task

and the transition cost between successive tasks. The

objective functions are normally functions of an agent’s

states (position and speed) and the control inputs, but

may occasionally depend on other agents’ states and

control inputs. The minimization of the objective

function, possibly subjected to constraints, should

always lead to a solution that satisfactory solves the

tasks assigned to the agent. An example of an objective

function is one that correspond to the task of minimum

distance navigation to a pre-defined target (single task),

JiðXðkÞ,UðkÞÞ ¼
X

H

j¼1

xT � xiðkþ jÞ
�

�

�

�

2

Qi

þ ðxiðkþ jÞ � xiðkþ j� 1Þ
�

�

�

�

2

Qi

þ uiðkþ j� 1Þ
�

�

�

�

2

Ri
ð6Þ

where xT defines the destination point for the agent and

where H is the time horizon.

The optimization problem (2) distributes the tasks

between the mission agents and selects the control

actions for the agents such that the overall cost is

minimized within the constraints. If the optimization

problem is solved at time k, the solution obtained is

optimal with respect to the mission conditions at time k.

However, because of changing mission conditions, this

solution may no longer be optimal at time kþ 1.

In order to incorporate new information more effec-

tively the optimization is repeated at each sample

instance. This strategy is also referred to as receding

horizon optimal control.

3. Distributed receding horizon optimal control

The design requirements for a strategic mission planning

system depends on a wide variety of mission related

factors, and can therefore vary between different

mission scenarios. However, it is usually desired to

design the mission planning system such that it exhibit

some degree of autonomy and some level of operational

robustness. Autonomy here refers to the ability of the

system to adjust to disturbances whilst robustness refers

to the ability of the system to function in the event

of failures.

Adequate system autonomy can generally be achieved

by ensuring that new information is taken into account

when it becomes available and that the planning strategy

continously adjusted according to this information.

A receding horizon planning strategy, such as the one

in x 2, therefore generally exhibit good autonomy

characteristics.

The robustness of the planning system is considered

both at the system level (coordination and supervision)

as well as the subsystem level (sensor and actuator

failures). Satisfactory robustness against subsystem

failures is within the context of constrained optimal

control achieved through the use of constraints (IAEA

2004). These constraints serves to ensure that the

optimal controller selects a control strategy that does

not rely on the unavailable sensors and actuators.

Mission planning for clusters of UUVs 1171
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Satisfactory robustness against failures at the coordi-

nation and supervision level can be achieved by adding

redundancy to the system. However, adding redundancy

at this level unfortunately often means that multiple

instances of the same mission planning problem must be

solved simultaneously. Hence the computational

demand for the system may dramatically increase as a

result. This paper therefore proposes a distributed

approach, where the mission planning problem is

divided into smaller subproblems. This paper further

argues that by partitioning the planning problem and

distributing the subproblems between the mission agents

such that the interactions between subproblems and the

coupling between agents and subproblems are mini-

mized, the impact of failures can be decreased and the

overall robustness of the system improved.

The objective function in the optimization problem (2)

is defined as the sum of a set of functions that each

represents the cost associated with a particular set of

tasks being carried out by a particular mission agent.

Contextually, each function thus have a strong link to a

particular mission agent, and it is therefore reasonable

to assume that the associated cost strongly depends on

the actions of this agent. Consequently, for optimization

problems structured as problem (2) interactions and

couplings can be minimized by employing a agent-

centric partitioning approach.

In order to partition problem (2) the dependence of

the objective function on the decision variables asso-

ciated with each of the mission agents must first be

established. To better highlight this dependence the

objective function is expressed on the following equiva-

lent form,

J I�, �,XðkÞ,UðkÞ
� �

¼
X

N

i¼1

Ji Ii,�,XðkÞ,UðkÞ
� �

¼
X

N

i¼1

Ji Ii,�,XiðkÞ,UiðkÞ,U�iðkÞ,X�iðkÞ
� �

,

ð7Þ

where the variables, Xi(k) and Ui(k), denote the states

and decision variables associated with agent i.

The notation Ii,� denote {Ii,1, . . . , Ii,M}, I�,� denote

{I1,�, . . . , IN,�}, Ui(k) and Xi(k) denote

½uiðkÞ
T, . . . , uiðkþH� 1ÞT�T and ½xiðkÞ

T, . . . ,

xiðkþH� 1ÞT�T respectively and U�iðkÞ and X�iðkÞ

denote ½U1ðkÞ
T, . . . ,Ui�1ðkÞ

T, Uiþ1ðkÞ
T, . . . ,UNðkÞ

T�T

and ½X1ðkÞ
T, . . . ,Xi�1ðiÞ

T, Xiþ1ðkÞ
T, . . . ,XNðkÞ

T�T

respectively.

The original optimization problem (2) can then

be decomposed into N subproblems, each with the

following structure,

min
UiðkÞ, Ii,�

Ji Ii,�,XiðkÞ,UiðkÞ,U�iðkÞ,X�iðkÞ
� �

ð8aÞ

s.t.

xiðkþ jþ 1Þ ¼ Aixiðkþ jÞ þBiuiðkþ jÞ, 8j¼ 0 � � �H� 1,

X

N

i¼1

X

M

n¼1

Ii,n ¼ M ð8bÞ

X

N

i¼1

Ii,n ¼ 1, 8n ¼ 1 � � �M ð8cÞ

Gi XiðkÞ,UiðkÞ,U�iðkÞ,X�iðkÞ
� �

� 0: ð8dÞ

The ith subproblems is solved with respect to the

decision variables associated with the ith mission

agent. Thus, by solving the N subproblems an approx-

imation of the solution to (2) is obtained. Under certain

conditions the approximation can be gradually refined

by iteratively solving the N subproblems and between

each iteration exchange the solutions to the N

subproblems (thereby updating U�iðkÞ and X�iðkÞ between

iterations). If sufficient iterations are carried out the

solution to (2) is eventually obtained. The conditions

under which this method indeed converges to the

solution to (2) is governed by the Nash optimality

principle (Nash 1951).

Definition 1: A group of decision variables,

U
q
i ðkÞ, I

q
i,� for 8i ¼ 1 . . .N, given by the solutions to a

set of optimization problems of the form (8) is said to

converge toward a Nash optimal solution when,

Ji I
q
i,�,X

q
i ðkÞ,U

q
i ðkÞ,U

q
�i
ðkÞ,X

q
�i
ðkÞ

� �

� Ji I
q�1
i,� ,X

q�1
i ðkÞ,U

q�1
i ðkÞ,U

q�1
�i

ðkÞ,X
q�1
�i

ðkÞ
� �

ð9Þ

for 8i¼ 1 � � �N, where q denotes the iteration count. The

group of decision variables, U
q
i ðkÞ, I

q
i,� for 8i ¼ 1 � � �N, is

said to have converged to a Nash optimal point when,
�

�

�Ji I
q
i,�,X

q
i ðkÞ,U

q
i ðkÞ,U

q
�i
ðkÞ,X

q
�i
ðkÞ

� �

�Ji I
q�1
i,� ,X

q�1
i ðkÞ,U

q�1
i ðkÞ,U

q�1
�i

ðkÞ,X
q�1
�i

ðkÞ
� ��

�

� � �f

ð10Þ

�

�U
q
i ðkÞ �U

q�1
i ðkÞ

�

� � �U ð11Þ

�

�I
q
i,�ðkÞ � I

q�1
i,� ðkÞ

�

� � �I ð12Þ

for 8i¼ 1 � � �N and for sufficiently small values of �f, �U
and �I.

The definition above essentially states that if, at each

iteration, the solutions associated with each of the

subproblems are selected such that condition (9) holds,

the solutions generated by iteratively solving the

1172 L. Giovanini et al.
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subproblems converge toward the solution of (2).

A geometric representation of the relation between

the optimal solution to each subproblem and

the iterations toward the Nash equilibrium point is

illustrated in figure 1.

The proposed Nash-based distributed receding hor-

izon constrained optimal control algorithm for strategic

mission planning purposes can be summarized by the

following steps,

Algorithm 1

Step 1: At sampling time instant k, the subproblems

are solved by the agents, possibly using information

from time instant k� 1, such that an initial estimate of

the decision variables can distributed amongst the

agents. The iterative index, q, is set to q¼ 0.

Step 2: Using the initial estimate of the decision

variables, each agent solves their corresponding sub-

problem (8) whilst ensuring that the following condition

hold,

Ji I
q
i,�,X

q
i ðkÞ,U

q
i ðkÞ,U

q
�i
ðkÞ,X

q
�i
ðkÞ

� �

� Ji I
q�1
i,� ,X

q�1
i ðkÞ,U

q�1
i ðkÞ,U

q�1
�i

ðkÞ,X
q�1
�i

ðkÞ
� �

:

Step 3: Each agent checks if its terminal iteration

condition is satisfied

�

�

�Ji I
q
i,�,X

q
i ðkÞ,U

q
i ðkÞ,U

q
�i
ðkÞ,X

q
�i
ðkÞ

� �

� Ji I
q�1
i,� ,X

q�1
i ðkÞ,U

q�1
i ðkÞ,U

q�1
�i

ðkÞ,X
q�1
�i

ðkÞ
� ��

�

� � �f

�

�U
q
i ðkÞ �U

q�1
i ðkÞ

�

� � �U

�

�I
q
i,�ðkÞ � I

q�1
i,� ðkÞ

�

� � �I:

If the above conditions are satisfied for all agents the

algorithm jumps to Step 5; otherwise it jumps to Step 4.

Step 4: Each agent distributes the solution obtained

at iteration q to the other agents. The iteration count is

updated to q¼ qþ 1 and the decision variables are

updated according to,

UqðkÞ ¼ Uq�1ðkÞ:

The algorithm returns to Step 2.

Step 5: Each agent applies the control actions corre-

sponding to time instant k.

Step 6: The agents wait for the next sample instant,

k¼ kþ 1 and thereafter returns to Step 1.

In distributed systems, each subsystem can work

independently to achieve its local objective, but cannot

accomplish the global objective on its own. For this

purpose, the subsystems must communicate, coordinate

and negotiate with each other. The proposed algorithm

is therefore reliant upon the existence of a communica-

tion network, which may be viewed as a limitation of the

proposed algorithm. However, for online multi-agent

mission planning systems communication is inevitable.

Both distributed and centralized solution approaches

have a need to communicate the solution to the planning

problem to the mission agents. The existence of a

communication network is therefore a general require-

ment for online multi-agent mission planning systems,

regardless of the algorithm employed.

It should be noted that the dependence on the

reliability and performance of the communication

network is high for the proposed algorithm. Unless the

communication network can provide high speed com-

munication the iterative nature of the proposed algo-

rithm means that the algorithm will converge slowly

toward the Nash optimal solution. The reliability of the

communication network can also impact the length of

time required to reach the Nash optimal solution.

A discussion on the stability and convergence

(feasibility due to condition (9)) properties of the

proposed algorithm can be found in Giovanini and

Balderud (2006).

4. Simulations and results

In this section the main features and characteristics of

the proposed algorithm is demonstrated by applying the

algorithm to a typical mission planning problem. The

problem under consideration features a cluster of UUVs

deployed on a search and exploration mission in an

environment where there are non-penetrable obstacles

and hidden hazards. The UUVs are expected to advance

u2

u1

J1

J2

Pareto set

Iterates

Equilibrium point

Figure 1. Trajectories in decision space traced by two

subsystems.
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along a pre-defined search path that crosses this

environment whilst searching the area in the vicinity

of the search path. Under this mission scenario the

objective for the strategic mission planning system is to

ensure that the UUVs avoid the obstacles and that the

area searched by the UUVs is maximized.

4.1 Assumptions

In order to obtain a mission planning problem that more

clearly demonstrates the main features and character-

istics of the proposed algorithm it is assumed that the

UUVs advance along the pre-defined search path in a

line formation and that the formation line remains

orthogonal to the direction of the search path. It is

furthermore assumed that the UUV formation advances

at a constant speed of one unit of distance per unit of

time. As a result of these assumptions the degrees of

freedom of the mission planning problem is significantly

reduced. This subsequently reduces the mission planning

problem to the relatively simple problem of ensuring

that the UUVs, at all times, remain optimally spaced

along the formation line.

It is also assumed that each UUV is equipped with

an on board navigational control system that responds

sufficiently fast to set-point changes such that the

position (xi(k), yi(k)), of the ith UUV can be modelled

using a low order dynamic model of the form,

xiðkþ 1Þ ¼ xiðtÞ þ uxiðkÞ þ vxiðkÞ ð13Þ

yiðkþ 1Þ ¼ yiðkÞ þ uyi ðkÞ þ vyiðkÞ, ð14Þ

where uxi ðkÞ and uyiðkÞ denote the set-points for the

navigational control system, vxi ðkÞ and vyiðkÞ denote

zero mean stochastic disturbances and where the

positions, (xi(kþ 1), yi(kþ 1)) and (xi(k), yi(k)), are

expressed in terms of 2-D Cartesian coordinates.

The depth of the UUVs are assumed constant.

In order for the on board navigational control system

to provide sufficient tracking capabilities it is assumed

that the set-points must satisfy the following set of

constraints,

uxiðkÞ
�

�

�

� � 1 ð15Þ

uyiðkÞ
�

�

�

� � 1 ð16Þ

uxi ðkÞ
�

�

�

�þ uyiðkÞ
�

�

�

� � 1:2, ð17Þ

where the above constraints can be interpreted to denote

conservative estimates of the maximum distance the

UUVs can travel each unit of time.

It is also assumed about the UUVs that the UUVs

sensor capability for search and exploration purposes

reaches 0.5 units of distance in all directions and that

the UUVs sensor capability for detecting non-

penetrable obstacles reaches 20 units of distance in all

directions.

It is finally assumed that the pre-defined search

path is a straight line that starts at (xs, ys)¼ (0, 0) and

extends to (xe, ye)¼ (1, 0), that the starting positions,

at time k¼ 0, for the UUVs are (xi(0), yi(0))¼ (0, 0)

and that the formation line remain centred on the

search path.

4.2 Mathematical characterization of the mission

planning problem

In order to maximize the area searched by the UUVs the

mission planning system must ensure that the UUVs

remain optimally spaced on the formation line. By

considering N UUVs, each with a search range of L

units of distance, and by planning the movements of

these UUVs H time steps into the future, the UUVs

optimal positions relative to the centre point of the

formation line, p1ðkþ 1Þ � � � p1ðkþHÞ � � � pNðkþ 1Þ � � �

pNðkþHÞ, can be obtained by solving the following

optimization problem,

min
pnðkþmÞ,

8n¼1���N
8m¼1���H

X

H

j¼1

�1

X

N�1

i¼1

ð2L�ðpiðkþ jÞ�piþ1ðkþ jÞÞÞ2

 !"

þ�1

X

N

i¼1

piðkþ jÞ

 !2

þ�2

X

N

i¼1

ðpiðkþ jÞ�piðkþ j�1ÞÞ2

3

5

ð18aÞ

s.t.

Â p1ðkþ 1Þ � � �p1ðkþHÞ � � �pNðkþ 1Þ � � �pNðkþHÞ½ �T� b̂,

ð18bÞ

where the first term of the cost-function above ensures

that the UUVs are spaced 2L units of distance apart

during optimal conditions, where the second term

ensures that the UUVs are symmetrically positioned

around the centre point of the formation line and where

the third term ensures that the resulting search trajectory

for each UUV remain smooth. The optimi-

zation variables, p1ðkþ 1Þ � � � p1ðkþHÞ � � � pNðkþ 1Þ � � �

pNðkþHÞ, denote the UUVs positions relative to the

angle and position of the formation line at time instants

kþ 1 � � � kþH. The scalar constants �1 and �2 denote

tuning parameters. The constraints in the optimization

problem serves to ensure that the optimal trajectories

for the UUVs are selected such that the UUVs avoids

non-penetrable obstacles and such that the UUVs

on-board navigational control system can adequately

track the trajectories.
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Since the optimal trajectories obtained by solving (18)

are expressed in terms of coordinates that are relative

to the angle and position of the formation line a method

for converting between relative coordinates and

Cartesian coordinates is needed—particularly for the

purpose of defining the optimization constraints. By

denoting the position (the centre point) of the formation

line (xf (k), yf (k)), and the angle of the formation line

�(k)þ�/2 the Cartesian coordinates, ðxciðkÞ, yciðkÞÞ,

corresponding to a point on the formation line, pi(k),

can be computed using,

xci ðkÞ ¼ xf ðkÞ � sinð�ðkÞÞpiðkÞ ð19Þ

yciðkÞ ¼ yf ðkÞ þ cosð�ðkÞÞpiðkÞ: ð20Þ

Since it is in this instance assumed that (i) the formation

line is centred on the search path, (ii) the search path is a

straight line extending from (0, 0) to (1, 0) and (iii) the

formation advances one unit of distance per unit of time

along the search path, the position of the formation line

can be modelled using,

xf ðkþ 1Þ ¼ xf ðkÞ þ 1, xf ð0Þ ¼ 0 ð21Þ

yf ðkþ 1Þ ¼ yf ðkÞ þ 0, yf ð0Þ ¼ 0: ð22Þ

The angle of the formation line remains constant at �/2.

By solving the above system of difference equations and

combining the results with equations (19) and (20) the

following relations are obtained,

xciðkÞ ¼ k ð23Þ

yciðkÞ ¼ piðkÞ ð24Þ

The next step is to define the constraints that ensures

that the optimal trajectories produced by (18) can be

tracked by the UUVs on-board navigational control

system. To this end, note that the set-points delivered to

the UUVs on-board navigational control system can be

expressed as

uxi ðkÞ ¼ ðkþ 1Þ � xiðkÞ ð25Þ

uyi ðkÞ ¼ piðkþ 1Þ � yiðkÞ, ð26Þ

where (xi(k), yi(k)) denote the measured or predicted

position of the ith UUV at time instant k. Since the set-

points must satisfy the constraints defined by (15)–(17)

the optimal positions obtained by solving (18) must

satisfy the following set of constraints,

jpiðkÞ � yiðk� 1Þj � 1 ð27Þ

jðkÞ � xiðk� 1Þj þ jpiðkÞ � yiðk� 1Þj � 1:2, ð28Þ

where (xi(k� 1), yi(k� 1)) denote the measured or

predicted position of the ith UUV at time instant

k� 1. By combining equations (25)–(26) and (13)–(14)

the predicted position of the ith UUV at time instant

kþ 1 can be expressed as,

xiðkþ 1Þ ¼ ðkþ 1Þ ð29Þ

yiðkþ 1Þ ¼ piðkþ 1Þ: ð30Þ

Consequently, over the full length of the prediction

horizon, H, the optimal positions for the ith UUV,

piðkþ 1Þ � � � piðkþHÞ must satisfy the following set of

constraints,

jpiðkþ 1Þ � yiðkÞj � 1 ð31Þ

jðkþ 1Þ � x̂iðkÞj þ jpiðkþ 1Þ � ŷiðkÞj � 1:2 ð32Þ

jpiðkþ 1þ jÞ þ piðkþ jÞj � 1 8j ¼ 1 � � �H� 1 ð33Þ

jpiðkþ 1þ jÞ � piðkþ jÞj � 1:2� jðkþ 1þ jÞ � ðkþ jÞj

8j ¼ 1 � � �H� 1, ð34Þ

where x̂iðkÞ and ŷiðkÞ denote measurements of the

position of the ith UUV at time instant k. Note that

the constraint defined by (33) is made redundant by the

constraint defined by (34). Note also that the right hand

side of the constraint defined by (34) simplifies to 0.2.

The remaining constraints, i.e., those that ensure that

the optimal trajectories produced by (18) does not cross

path with the obstacle boundaries, are defined by

employing the following procedure.

(i) At time instant k, prior to solving the optimization

problem defined by (18) collect measurements of

the positions of the N UUVs.

(ii) Then, for each UUV, carry out the following steps.

(a) Based on the position of the UUV and the

range of the UUVs sensor capability construct

a virtual mission environment populated with

the obstacle boundaries that the UUV can

‘‘see’’.

(b) Since the angle and position of the formation

line is assumed known at future time instants

(recall that the angle and position is given by

pre-defined search trajectory) the formation

line can be projected onto the virtual mission

environment at time instants ðkþ 1Þ � � �

ðkþHÞ.

(c) By recording the intersections between the

projected formation lines and the obstacle

boundaries at the different time instants the

necessary constraints can be constructed. For

instance, if, for the ith UUV, the projected

formation line corresponding to time instant

Mission planning for clusters of UUVs 1175

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
, J

 B
al

de
ru

d 
&

 R
 K

at
eb

i; 
"A

ut
on

om
ou

s 
an

d 
D

ec
et

nr
al

iz
ad

 M
is

si
on

 P
la

nn
in

g 
fo

r 
C

lu
st

er
 o

f 
U

nh
ab

ita
te

d 
U

nd
er

w
at

er
 V

eh
ic

le
s"

In
te

rn
at

io
na

l J
ou

rn
al

 o
f 

C
on

tr
ol

. V
ol

. 8
0,

 N
o.

 7
, p

p.
 1

16
9-

-1
17

9,
 2

00
7.



D
o
w

n
lo

a
d
e
d
 B

y
: 
[U

n
iv

e
rs

it
y
 o

f 
S

tr
a
th

c
ly

d
e
] 
A

t:
 1

8
:0

1
 2

5
 S

e
p
te

m
b
e
r 

2
0
0
7
 

kþ n intersects with obstacle boundaries at �þ

and �
� the following constraints results:

piðkþ nÞ � �þ

�piðkþ nÞ � ��:

Note that the intersection points should be

expressed in terms coordinates relative to the

position and angle of the formation line.

(d) Repeat the above steps for time instants

ðkþ 1Þ � � � ðkþHÞ and organize the constraints

on the form,

Ai piðkþ 1Þ � � � piðkþHÞ½ �T� bi:

(iii) Construct a matrix A and a vector b such that,

A¼

A1 0

.
.

.

0 AN

2

6

4

3

7

5
, b¼

b1

.

.

.

bN

2

6

4

3

7

5

A½p1ðkþ1Þ � � �p1ðkþHÞ � � �pNðkþ1Þ � � �pNðkþHÞ�T � b

ð35Þ

By combining the constraint definitions, (31)–(34) and

(35), and the problem (18) the following optimization

problem finally results,

min
pnðkþmÞ,

8n¼1���N
8m¼1���H

X

H

j¼1

�1

X

N�1

i¼1

ð2L�ðpiðkþ jÞ�piþ j ðkþ1ÞÞÞ2

 !"

þ�1

X

N

i¼1

piðkþ jÞ

 !2

þ�2

X

N

i¼1

ðpiðkþ jÞ�piðkþ j�1ÞÞ2

3

5

ð36aÞ

s.t.

A½p1ðkþ 1Þ � � �p1ðkþHÞ � � �pNðkþ 1Þ � � �pNðkþHÞ�T � b

ð36bÞ

jpiðkþ 1þ jÞ � piðkþ jÞj � 0:2

8i ¼ 1 � � �N, 8j ¼ 1 � � �H� 1 ð36cÞ

jpiðkþ 1Þ � yiðkÞj � 1 8i ¼ 1 � � �N ð36dÞ

jðkþ 1Þ � xiðkÞj þ jpiðkþ 1Þ � yiðkÞj � 1:2 8i ¼ 1 � � �N:

ð36eÞ

The optimization problem defined by (36) represents a

centralized quadratic optimization problem that can be

solved by a quadratic programming approach. In this

paper, however, the centralized problem is decomposed

into a set of smaller subproblems and solved using the

proposed iterative approach. By employing a UUV

centred decomposition scheme the following subprob-

lem results:

min
piðkþmÞ,8m¼1���H

X

H

j¼1

�1ð2L�ðpiðkþ jÞ�piþjðkþ1ÞÞÞ2
�

þ�1

X

N

i¼1

piðkþ jÞ

 !2

þ�2

X

N

i¼1

ðpiðkþ jÞ�piðkþ j�1ÞÞ2

3

5

ð37aÞ

s.t.

Ai½piðkþ 1Þ � � � piðkþHÞ�T � bi ð37bÞ

jpiðkþ 1þ jÞ � piðkþ jÞj � 0:2 8j ¼ 1 � � �H� 1 ð37cÞ

jpiðkþ 1Þ � yiðkÞj � 1 ð37dÞ

jðkþ 1Þ � xiðkÞj þ jpiðkþ 1Þ � yiðkÞj � 1:2: ð37eÞ

By letting the UUVs iteratively solve the problem above

a solution that is equivalent to that obtained by solving

the centralized problem results.

4.3 Simulation scenarios

Three slightly different simulation scenarios, demon-

strating slightly different aspects of the proposed

algorithm, are considered. These can be briefly summar-

ized by scenarios 1–3.

. Scenario 1. The purpose of the first simulation

scenario is to demonstrate the main characteristics

of the proposed algorithm. This simulation scenario is

used in particular to demonstrate the ability of the

proposed algorithm to yield trajectories that avoids

obstacles and maximizes the area searched by the

UUVs and to demonstrate the number of iterations

required for the algorithm to reach an optimal

solution at each sample instance. The mission

environment considered is rectangular shaped and

stretches from (0,�5) (lower left corner) to 150,

5 (upper right corner). It includes 3 non-penetrable

obstacles that the UUVs must negotiate.

. Scenario 2. The purpose of the second simulation

scenario is to demonstrate that the search trajectories

generated when the proposed algorithm is prevented

from performing more than 1 iterations at each

sample instance is only marginally different from

when the algorithm is allowed to perform unlimited

number of iterations. The mission environment

considered is equivalent to that considered in

Scenario 1.

. Scenario 3. The purpose of the third simulation

scenario is to demonstrate the ability of the proposed
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algorithm to adapt and compensate for failures.

At time instant k¼ 150 one of the UUVs suddenly

fails and can no longer move. The mission environ-

ment considered is near equivalent to that considered

in Scenario 1, however, in this case the environment is

assumed to stretch from (0,�5) (lower left corner) to

200, 5 (upper right corner).

The following set of simulation parameters have been

used (for all simulations),

N ¼ 4, H ¼ 20, L ¼ 0:5, �1 ¼ 0:1, �2 ¼ 10:

The disturbance sequences, vxiðkÞ and vyi ðkÞ, are

assumed to be zero mean white noise sequences with a

standard deviation of 0.018.

When carrying out the simulations the solution

obtained at time k have been used as an initial guess

of the solution at time kþ 1.

4.4 Simulation results

The obstacle filled mission environment in which the

UUVs operate is depicted in figure 2. The mission

environment includes 3 non-penetrable obstacles that

the UUVs must negotiate as they advance along the

search path. The search path, which is not shown in the

figure, extends from (0, 0) to (1, 0).

The optimal search trajectories shown in figure 2

corresponds to those computed by the proposed

algorithm when the algorithm is allowed to iterate

at each sample instance until its solution have con-

verged. At optimal search conditions the distance in the

y-direction between the UUVs should be 1. As shown in

figure 2, the algorithm achieves these optimal conditions

in between the mission obstacles. The non-smooth

nature of the trajectories is due to the influence from

the disturbance sequences vxi ðkÞ and vyiðkÞ.

The number of iterations performed at each sample

instance by the proposed algorithm is shown in figure 3.

Figure 3 shows that the number iterations performed

varies widely and depends on the amount of information

the algorithm needs to take into account of. The two

peaks shown in figure 3 corresponds to the set of sample

instants when the UUVs negotiates the obstacles in the

mission environment.

In general, the number of iterations performed also

depends on the problem size. Accordingly, if more

UUVs are deployed number of iterations increase.

Figure 3 reveals that the proposed algorithm on

average performs approximately 8 iterations each

sample instant. Based on this observation it is perhaps

reasonable to assume that if significantly fewer itera-

tions were to be performed at each sample instant

the accuracy of the algorithm would severely suffer.

However, since only small adjustments are made to the

decision variables between subsequent iterations the

accuracy of the algorithm remains relatively unaffected

by the number of iterations actually performed. This

fact is verified by figure 4 which shows the trajectories

generated by the algorithm when limited to 1 iteration

per sample instant. By comparing figure 2 and figure 4 it

can be concluded that the errors introduced by limiting

the number of iterations performed by the algorithm are

of such small magnitude that the trajectories shown in

figure 4 are near indistinguishable from the trajectories
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Figure 3. Simulation scenario 1: number of iterations

required for the proposed algorithm to compute the optimal

solution at each sample instance.
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Figure 2. Simulation scenario 1: optimal search trajectories

for the four UUVs.
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shown in figure 2. A better illustration of the errors

is shown in figure 5, which shows the norm of the

differences between the trajectories shown in figure 2

and those shown in figure 4. Figure 5 verifies that the

errors indeed remain small. Figure 5 furthermore

suggests that the errors are independent and does not

depend on problem specific parameters, as is the case for

the number of iterations shown in figure 3.

The results shown in figure 6 corresponds to simula-

tion scenario 3 and illustrates the ability of the proposed

algorithm to adapt and maintain optimal search

conditions despite failures in individual UUVs.

5. Conclusions

A distributed algorithm for strategic mission planning

have been developed. This has been achieved by posing

the strategic mission planning problem as a receding

horizon mixed-integer constrained quadratic optimal

control problem. This problem have subsequently been

partitioned into smaller subproblems and a distributed

iterative solution approach have been derived.

The proposed algorithm sports many tractable

features. For instance, its receding horizon behaviour

means that it operates completely autonomously once

given its set of tasks. Moreover, the inherent constraint

handling features can be exploited to improves the

robustness against sensor and actuator failures. The

distributed nature of the algorithm finally means that

it can be easily reconfigured on-line.

The main characteristics of the algorithm have been

demonstrated by applying the algorithm in the context

of a typical mission scenario. For the selected mission

scenario the algorithm require an average of 8 iterations

each sample instance to compute the solution to the

planning problem. However, the simulation results also

show that the loss of optimality is minimal if the

iterations are limited to 1.
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for the four UUVs.
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