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N universally accepted solution to the adaptive control 

problem has been an elusive search. In spite of several 

decades of research an accepted design methodology 

for reliable adaptive control, based on sound theoretical is-

sues and suitable for real implementation, has not been found 

yet. A common problem in many adaptive control ap-

proaches is the instability originated by the presence of un-

certainties that arise from different causes: 

� Interactions between the identification and controller 

design processes: when adaptation and plant dynamics 

time scales are similar, the closed-loop system behavior 

can result in chaos [1], [2] and instability [3]. 

� Abrupt controller changes: the modification of the con-

troller can introduce new behavior in the overall system 

that is not present in any of the composite subsystems. 

� Poor estimates of parameters: the presence of non-

measurable disturbances and noises lead to poor estimates 

of parameters and consequently system instabilities [4]. 

It is clear that there is a need for adaptive control algorithms 

with the attributes of non-adaptive robust feedback systems: 

robust stability and robust performance. 

Traditional multiple-models switching and tuning is an 

adaptive control strategy based on the idea of describing the 

dynamics of the system, using different models for different 

operating regimes and devise a suitable strategy to find the 

model that is closest (in behavioral sense) to the current plant 

dynamics in order to select the appropriate controller [5], 

[6]. The adaptive control approach proposed in this work is 

based on the assumption that a set of m LTI models Σl 

l = 1,…,m (W) can approximate a dynamical system in a 

bounded domain D with accuracy ε [7]. Then, a LTV model, 

which is employed to design the control law, is built from W 

using switching techniques at every sample. In this way, the 

LTV model will be defined by a set of the closest models LTI 

models to the current dynamic 

{ }min( ) / ( ) ( ) ( ) ( ) 0l lk I k I k k kδ δ= Σ ≤ + > ⊆M W,  (1) 

which characterizes the system dynamic at each sample. In 

this adaptive scheme the monitor signals Il(k) are employed 

to decide which model is active during the design stage 

and { }min [1, ] ( )( ) minl m lk I kI ∈= . They are generated from the 

estimation error el(k)=yl(k)–y(k). The parameter δ(k) is em-

ployed to describe the region of D that will be used to design 

the control law, defining the robustness of the closed-loop 

system (see Figure 1). In the first few samples several mod-
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els can have similar behavior and it is difficult to distinguish 

between them. Therefore, M(k) will include more models 

than those ones required to represent the system, providing 

robustness according to the information available at each 

sampling time. As the time goes by, the indexes Il(k) will 

clearly differentiate and M(k) will reduce its size until only 

the models required to represent the system with the desired 

accuracy δ(k) = ε are selected (Figure 2). At this stage, M(k) 

will include, at least, the two closest models to the current 

dynamic. Consequently, the control law designed with M(k) 

will stabilize the actual system's operating region, and their 

neighborhood. Following the behavior of M(k), as the time 

advances the control law will change as the stabilization re-

gion is moving through D, until the steady-state is achieved. 

The behavior of M(k) is equivalent to a dynamical partition 

of the operating domain [8], [9] being carried out during the 

model selection trough the switching rule. 

The set M(k) is employed to design the control law K(k) 

using the following multi-objective optimization problem 

( )
( )

min ( ), ( )

( ) ( ) 1, , , [0,1)

K k

l l l l l

J K k k

S k A B K k l mσ σ+ ≤ = ∈

S

…

 
(2.a) 

(2.b) 

where the optimization variable K(k) is the controller gain 

associated to time instant k, S(k) = [S1(k),…, Sm(k)] is the 

vector of switching variables and J(K,S) is a general index 

that measure the closed-loop performance. The switching is 
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Fig. 1.  Geometrical interpretation of set definition (1). 

 

M(k ) 

M(k+1 ) 
• 

• 
• 

M(k+j) 
• 

• 
• 

M(k+N) 

W 

 
Fig. 2.  Time evolution of model subset M (k). 
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performed in the objective function J(K,S) and in the con-

straints of the optimization problem (2). This optimization 

problem is convex in the control law's parameters, and al-

lows the inclusion of additional constraints on the system 

states and the controller structure. It turn up that the objec-

tive function J(K,S) is a general index of the form 

( ) ( )
{ }

min

1
1 ( ) 1 1

min
[1, ]

, ( ) 1 ( ) 0,

( ) min .

m

l l lk l

l
l m

J K S k K k

k

σ
α α

σ σ

− =

∈

= + ≥

=

∑S
 (3) 

The performance index (3) corresponds to the Linear Linear 

Regulator problem, which arises in control applications [10] 

and in some specific problems in l1–optimization [11]. The 

variables Sl(k) are used to switch-in the appropriate compo-

nent of the index J(K,S) and are obtained by comparing the 

monitor signals  

( )

( ) {
min( ) ( ) ( ) ,

1 0,
0 .

l lS k I k I k

x
x

x

δ

δ
δ δ
δ

= −

≤ ≥
=

>

H

H
 (4) 

Therefore, the controller gain K(k) is designed employing the 

closest models to the current plant dynamic. These models 

are used to measure the closed-loop performance and evalu-

ate the system’s constraints. In the mean time, the supersta-

bility [12] of the models included in M(k) is guaranteed 

through constraints (2.b), such that the stability of the closed-

loop system for any switching sequence is ensured [13]. 

The structure of the proposed robust adaptive controller is 

shown in Figure 3. The estimators, monitoring signals gen-

eration and switching logic block generates the vector of 

switching variables S(k)  independently of the controller de-

sign. Then, at every sample, the control law is designed by 

solving the optimization problem (2). 

The approach to adaptive control described up to now is 

equivalent to have an infinite number of controllers in the 

standard switching multiple-model adaptive scheme [6], with 

the additional benefit of constraint handling. Implementing 

these ideas lead to two possible robust adaptive control algo-

rithms: 

1. A robust adaptive control algorithm that employs the 

same set of models (M(k)) to measure the performance 

and stabilize the system. Implying the use of one set of 

switching variables S l

S
(k) for the stabilization and the per-

formance measure (S(k) = [ S l

S
(k)]) with the objective 

function  

( ) ( )

( )

1 1

1

( ) min

, ( ) 1 ( ) ,

( ) ( ) 1, , ,

( ) ( ) ( ) .

m S

S l ll

S

l l l l

S

l k l

J K S k K k

S k A B K k l m

S k H I k I kδ

α

σ

=
= +

≥ + =

= −

∑S

…
(5) 

2. A robust adaptive control algorithm that employees two 

different sets: the subset M(k) to stabilize the system 

and the closest model (I j (k) = Imin(k)) to measure the per-

formance. It follows that, the adaptive control algorithm 

uses the set of switching variables S l

S
(k) for the stabiliza-

tion and another set S l

P
(k) for the performance evaluation 

(S(k) = [ S l

S
(k), S l

P
(k)]) with the objective function 

( ) ( )

( )

1 1

1

0 min

, ( ) ( ) 1 ( ) ,

( ) ( ) 1, , ,

( ) ( ) ( ) .

m P

P l l ll

S

l l l l

P

l l

J K S k S k K k

S k A B K k l m

S k H I k I k

α

σ

=
= +

≥ + =

= −

∑S

… (6) 
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Fig. 3.  Structure of the proposed adaptive controller. 
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