
 
Abstract: Techniques for the visualization of high-
dimensional data are common in exploratory data 
analysis and can be very useful for gaining an 
intuition into the structure of a data set. The classical 
method of principal component analysis is the one 
most often employed, however in recent years a 
number of other nonlinear techniques have been 
introduced. In the present paper, principal component 
analysis, and two newer methods, are applied to a set 
of speech data and their results are compared. 
Keywords :  PCA, LLE, Kernel PCA 
 

I. INTRODUCTION 
 

Techniques which transform a high-dimensional space 
into a space of fewer dimensions, often with one, two or 
three-dimensions, are collectively known as 
dimensionality reduction techniques. They can be very 
useful in helping us visualize data sets which we are 
trying to analyze, often providing clues about properties 
of the data, such as possible clusters within the data.  

The most commonly used classical method for 
dimensionality reduction is perhaps principal component 
analysis (PCA), also known as the Karhunen-Loève 
transform, or singular value decomposition [1]. PCA 
performs a linear mapping of the data to a lower 
dimensional space in such a way, that the variance of the 
data in the low-dimensional representation is maximized. 
A disadvantage of PCA is that the embedded subspace 
has to be linear. For example, if the data are located on a 
circle in a 3-dimensional Euclidean space, R3, PCA will 
not be able to identify this structure. Another 
disadvantage is that PCA depends critically on the units 
in which the features are measured.  

In recent years, a number of other visualization 
techniques have become available, and their application 
to data sets, such as those involving speech, is just being 
conducted [2,3,4]. Among these methods, those of kernel 
PCA (KPCA) [5] and local linear embedding (LLE) [6,7] 
are particularly relevant for our purposes in the present 
paper.  

KPCA is a (usually) nonlinear extension of PCA using 
kernel methods. Kernel methods have been successfully 
applied in the fields of pattern analysis and pattern  
recognition [8], often providing better classification 
performance than other methods, and frequently playing a 

vital part in the nonlinear extension of classical 
algorithms.. LLE, on the other hand, provides low-
dimensional, neighborhood-preserving embeddings. This 
means that points which are ‘close’ to one another in a 
data space will also be close when projected onto the 
low-dimensional space.  
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In the paper, our aim is to briefly describe these 
methods, and then apply and compare them on a set of 
normal and pathological speech data.  
 

II. METHODOS 
 

PCA is an unsupervised learning algorithm that 
attempts to efficiently represent the data by finding 
orthonormal axes which maximally decorrelate the data. 
The data is then projected onto these orthogonal axes. 
The principal components are precisely this set of q 
orthonormal vectors, where q is often 2 or 3. 

There are several equivalent ways to find the principal 
components, one being that of finding the first q 
eigenvectors w of the covariance matrix C of the data set, 
corresponding to the q largest eigenvalues. 
Mathematically, if {x1,…,xN} is a zero mean data set from 
the Euclidean space Rn, then the covariance matrix is 
given by: 
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and the corresponding eigenvalue equation is 
 

wCw λ=                                    (2) 
 

PCA provides a linear mapping of the data onto the 
lower q-dimensional space, and suffers from several 
problems, some of which have been mentioned in the 
introduction. In order to define a nonlinear extension of 
PCA, KPCA has been introduced. KPCA uses the notion 
of a kernel to modify the corresponding algorithm. 
Generally, if X is a data set, then a (positive-definite) 
kernel k on XxX is defined as a real-valued function: 

 
k:XxX→ R                                  (3) 

 
such that: 
(i)  k is symmetric: k(x,y) = k(y,x)   ∀ x,y ∈ X, and  
(ii) k is positive definite: ∀ n ≥ 1 
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∀ a1,…,aN ∈ R and x1,…,xN ∈ X 

It can be shown that given a kernel k, there exists a 
(Reproducing Kernel) Hilbert space H and a 
transformation φ: X→ H such that 

 
 k(x,y) = <φ(x),φ(y)>                          (5) 

 
holds. H is often referred to as feature space and is often 
infinite-dimensional.  

The most commonly used kernels are the polynomial 
and radial base function kernels defined on Rmx Rm by: 
 

k(x,y) = (<x,y> + 1)d                          (5) 
 

k(x,y) = exp(-||x-y||2/2σ2)                      (6) 
 
respectively, where d = 1,2,… and σ ∈ R. For these 
kernels the transformation φ is not defined explicitly, and 
the kernels are applied directly in the original data space. 
This is known as the ‘kernel trick’.  

For the kernels of Eq (5) and (6), it can be shown that 
KPCA is conceptually the same as performing standard 
PCA with the data set {φ(x1),…, φ(xN)} in the feature 
space H (with the above notation). Fortunately, the kernel 
trick, referred to above, can also be applied in this case 
and the explicit use of φ avoided. Instead, the NxN kernel 
matrix K, is defined through Kij = k(xi,xj), and the 
equation: 
 

aNKa λ=                                  (7) 
 
is solved for  λ ∈ R and a = (a1,…,aN)T ∈ RN. 

A projection p of a pattern y in data space onto a 
principal component in feature space can be found using: 
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In order to use KPCA, we have to decide on a kernel 

function and, as for PCA, the number of dimensions on 
which to project. 

LLE is an unsupervised learning algorithm that 
computes low-dimensional, neighborhood-preserving 
embeddings of high-dimensional inputs. LLE does this by 
applying three steps. First, for each point in the data, it’s 
k nearest neighbors to the other points in the data are 
found (usually using Euclidean distance, although in the 
present paper other distance metrics are also tried). Then, 
each point is approximated by convex combinations of 
it’s k nearest neighbors, to obtain a matrix of 
reconstruction weights W. Finally, low-dimensional 

embeddings Yi (usually in a space of one or two-
dimensions) are found such that the local convex 
representations are preserved. Mathematically, this 
process can be expressed by: If {x1,…,xN} is the dataset, 
and for each vector xi we let Ni denote the indices of it’s k 
nearest neighbors, then the second step, of finding the 
reconstruction weights W, corresponds to minimizing the 
objective function: 
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subject to  ∑ =

j
ijW 1. 

The embeddings {y1,…,yN} of the original data, 
corresponding to the third step, are obtained by 
minimizing the following objective function: 
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An advantage of LLE is that it has few free parameters 

to set and a non-iterative solution thus avoiding 
convergence to a local minimum. 

Interesting relationships have recently been found 
between KPCA and LLE, as well as other well-known 
dimensionality reduction techniques c.f. [10]. 
 

III. DATA 
 

In the present paper, the data used consisted of real 
voice samples of the sustained vowel ‘ah’ for both 
normal patients and those with dysphonic speech 
disorders. The voice samples were taken from the 
“Disordered Voice Database” [11], acquired at the 
Massachusetts Eye and Ear Infirmary Voice and Speech 
Laboratory and distributed by Kay Elemetrics. The 
clinical information includes diagnostic information 
along with patient identification, age, sex, smoking 
status, and more. The files on normal subjects were 
collected at Kay.  

The eight variables used in the paper are the same as 
those chosen in [12], namely: degree of voice breaks, 
three variables related to jitter (local, relative average 
perturbation, five-point period perturbation quotient), 
three related to shimmer (local, three-point amplitude 
perturbation, eleven-point amplitude perturbation), and 
harmonics-to-noise ratio. 

For completeness, we include their definitions (c.f. 
[12] for more details): 
1) Degree of voice breaks is the total duration of the 
breaks between the voiced parts of the signal, divided  by 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 G

od
da

rd
, F

. M
. M

ar
tín

ez
, G

. S
ch

lo
tth

au
er

, H
. M

. T
or

re
s 

&
 H

. L
. R

uf
in

er
; "

V
is

ua
liz

at
io

n 
of

 N
or

m
al

 a
nd

 P
at

ho
lo

gi
ca

l S
pe

ec
h 

D
at

a"
Pr

oc
. o

f 
th

e 
5t

h 
In

te
rn

at
io

na
l W

or
ks

ho
p 

on
 M

od
el

s 
an

d 
A

na
ly

si
s 

of
 V

oc
al

 E
m

is
si

on
s 

fo
r 

B
io

m
ed

ic
al

 A
pp

lic
at

io
ns

 (
M

A
V

E
B

A
 2

00
7)

, d
ec

, 2
00

7.



the total duration of the analyzed part of signal. Silences 
at the beginning and at the end of the signal are not 
considered breaks. 
2) Jitter or period perturbation quotient  
a) Jitter ratio (local) or jitt is defined as: 
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where Pi is the period of the ith cycle, in ms, and n is the 
number of periods in the sample. 
b) Relative average perturbation (RAP): 
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c) Five-point period perturbation quotient (ppq5): 
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3) Shimmer or amplitude perturbation quotient 
a) Shimmer (shimm): 
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where Ai is the amplitude of the ith cycle, and n is the 
number of periods in the sample. 
b) Three-point amplitude perturbation quotient (apq3): 
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c) Eleven-point ampitude perturbation quotient (apq11). 
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4) Harmonics-to-noise ratio: This parameter quantifies 
the amount of glottal noise in the vowel waveform. In 
contrast to perturbation measures, it attempts to resolve 
the vowel waveform into signal and noise components, 
computing their energies ratio. 
 

In total there were 34 subjects with dysphonic speech 
disorders, and a further 53 normal subjects. For each 
subject, an 8-variable vector was associated. The 
minimum, maximum and standard deviation for each of 
the eight variables is given in Table 1. 
 
Table 1. minimum, maximum and standard deviation for each of 
the 8 variables for the normal and pathological data 

Normal  
0.105 0.048 0.070 0.064 0.375 0.567 0 17.52 
0.682 0.368 0.447 0.463 3.011 3.770 0 30.37 
0.11 0.069 0.067 0.088 0.589 0.744 0 2.941 
Pathological  
0.131 0.064 0.074 0.119 0.654 0.937 0 2.515 
6.061 3.701 4.783 1.756 10.80 16.63 0.164 28.04 
1.4233 0.8221 1.0783 0.431 2.524 3.304 0.035 6.83 
 
 

IV. RESULTS 
 

PCA, KPCA, and LLE were applied to the real voice 
samples described in the previous section. Software for  
 

 
Fig. 1 PCA, LLE, and KPCA applied to the data with 2 dimensions.  si
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these techniques has been developed by [13,14]. Fig.1 
shows the three techniques applied to the data and 
projected onto two-dimensions. In this case, k=8 was 
chosen for LLE, and a radial base function kernels with 
σ=1 for KPCA. 

In Fig.2, the same parameters are used but with the 
data projected onto three-dimensions.    

 
Fig 2. PCA, LLE, and KPCA applied to the data with 3 dimensions. 

 
In order to obtain a simple comparison between the 

three methods, a k-nearest neighbor classifier was applied 
to the projected data using k=1,3. For this, the data was 
split randomly into training and test sets subsets with 
sizes of 66% and 33%, respectively. The classification 
results are shown in Table 2, where in the first row, LLEn 
means that k=n was taken, and Gn means that σ=n was 
used. 
Table 2. Results of applying knn to the projected data  

 PCA LLE3 LLE5 LLE8 G0.5 G1 G5 
Two-dimensions 
k=1 68.97 55.17 68.97 79.31 68.97 65.52 75.86 
k=3 79.31 68.97 79.31 72.41 65.52 75.86 68.97 
Three-dimensions 
k=1 79.31 55.17 68.97 72.41 65.52 75.86 75.86 
k=3 65.52 65.52 79.31 72.41 65.52 75.86 72.41 
 

V. CONCLUSIONS 
 

In the present paper, the dimensionality reduction 
techniques of PCA, KPCA, and LLE were applied to 
speech data from both normal and pathological subjects. 
The data has been projected onto both two and three-
dimensional Euclidean spaces, and different parameters 
occurring in KPCA and LLE have been varied. The 
projected data is shown in Figs.1 and 2. 

In order to obtain a simple comparison between the 
three methods, a k-nearest neighbor classifier was 
introduced and applied to the projected data. In Table 2 it 
can be seen that LLE, along with PCA, achieve the best 
classification performances. Whilst this is obviously not a 
definitive result, and will depend on the data set and 

parameters employed, it is encouraging and provides 
motivation to continue the exploration of alternative 
methods to PCA in the case of speech data.    
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