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Abstract. Hidden Markov models have been found very useful for a
wide range of applications in machine learning. The wavelet transform
arises as a new tool for signal and image analysis, with a special empha-
sis on nonlinearities and nonstationarities. Learning models for wavelet
coefficients have been mainly based on fixed-length sequences, but many
real applications require to model variable-length, very long or real-time
sequences. In this paper, we propose a novel learning architecture for
sequences analyzed on a short-term basis, but not assuming stationarity
within each frame. Long-term dependencies are modeled with a hidden
Markov model which, in each internal state, deals with the local dy-
namics in the wavelet domain using a hidden Markov tree. The training
algorithms for all the parameters in the composite model are developed
using the expectation-maximization framework. This novel learning ar-
chitecture can be useful for a wide range of applications. We detail exper-
iments with real data for speech recognition. In the results, recognition
rates were better than the state of the art technologies for this task.

Key words: Sequence Learning, EM Algorithm, Hidden Markov Mod-
els, Hidden Markov Trees, Wavelets, Speech Recognition.

1 Introduction

Hidden Markov models (HMM) have been widely used in different areas of ma-
chine learning and pattern recognition, such as computer vision, bioinformatics,
speech recognition, medical diagnosis and many others [1-4]. On the other hand,
from its early applications, wavelet transform has been a very interesting repre-
sentation for signal and image analysis [5].

Learning algorithms for wavelet coefficients were initially based on the tra-
ditional assumptions of independence and Gaussianity. Statistical dependence
at different scales and non-Gaussian statistics were considered in [6] with the
introduction of the hidden Markov trees (HMT). Training algorithms for these
models were based in a previous development of an expectation-maximization
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(EM) algorithm for dependence tree models [7]. In the last years, the HMT model
was improved in several ways, for example, using more states within each HMT
node and developing more efficient algorithms for initialization and training [8,
9].

A discrete HMM defines a probability distribution over sequences of symbols
arriving from a finite set. On the other hand, continuous HMM provides a prob-
ability distribution over sequences of continuous data in RV. A general model
for the continuous observation densities is the Gaussian mixture model (GMM)
[10]. The HMM-GMM architecture was a widely used model, for example, in
speech recognition [11]. Nevertheless, more accurate models have been proposed
for the observation densities [12]. In both, discrete and continuous models, the
most important advantage of the HMM lies in that they can deal with sequences
of variable length. However, if the whole sequence is analyzed by the standard
discrete wavelet transform (DWT), like in the case of HMT, a representation
whose structure is dependent on the sequence length is obtained. Therefore, the
learning architecture should be trained and used only for this sequence length
or, otherwise, a warping preprocessing is required (to fit the sequence length
to the model structure). On the other hand, in HMM modeling, stationarity is
generally assumed withing each observation in the sequence. This stationarity
assumption can be removed when observed features are extracted by the DWT,
but a suitable statistical model for learning this features in the wavelet domain
would be needed.

Combining the advantages of the HMM to deal with variable length sequences
and the HMT to model DWT representations, in this paper we propose an EM
algorithm to train a composite model in which each state of the HMM uses
the observation density provided by an HMT. In this HMM-HMT composite
model, the HMM handle the long term dynamics in the sequence while the local
dynamics are well captured in the wavelet domain by the set of HMT models.

Fine et al. [13] proposed a recursive hierarchical generalization of discrete
HMM. They apply the model to learn the multiresolution structure of natural
English text and cursive handwriting. Some years later, Murphy and Paskin [14]
derived a simpler inference algorithm by formulating the hierarchical HMM as a
special kind of dynamic Bayesian network. A wide review about multiresolution
Markov models was provided in [15], with special emphasis on applications to
signal and image processing. Dasgupta et al. [16] proposed a dual-Markov archi-
tecture, similar to the one proposed in the present work. This model is trained
by means of an iterative process where the most probable sequence of states is
identified, and then each internal model is adapted with the selected observa-
tions. However, in this case the model consists of two separated and independent
entities, that are forced to work in a coupled way. By the contrary, Bengio et al.
derived an EM algorithm for the full model [17], composed of an external HMM
in which for each state an internal HMM provides the observation probability
distribution [18]. In the following, we derive an EM algorithm for a composite
HMM-HMT architecture that observes sequences of DWTs in R™. This algo-
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rithm can be easy generalized to sequences in RV*¥ with 2-D HMTs like the
used in [19] or [20].

In the next section we introduce the notation for HMM and HMT. Using
this notation we present the proposed model, defining the joint likelihood and
then deriving the training formulas for single observation sequences (the gener-
alization to multiple observation sequences being straightforward). In Section 3,
the experimental results for speech recognition using real data are presented and
discussed. In the last section we present the main conclusions and many ideas
that are opened to future works using this novel learning architecture.

2 The Model

The architecture proposed in this work is a composition of two Markov models:
the long term dependencies are modeled with an external HMM and each pattern
in the local context is modeled with an HMT.

2.1 Basic Definitions

To model a sequence W = w!, w2, ..., wl, with w! € RV, a continuous HMM
is defined with the structure ¥ = (Q, A, m, B), where:

i) @ ={Q €[1...Ng]} is the set of states.

i) A = [a;; =Pr (Q"=7|Q"™' =i)],Vi,j € Q, is the matrix of transition
probabilities, where Q' € Q is the model state at time t € [1...7], a;; >
0Vi,jand ), a;; =1Vi

iii) m = [r; = Pr(Q' = j)] is the initial state probability vector. In the case of
left-to-right HMM this vector is 7w = 4.

iv) B = {bp (w!)=Pr (W =w!|Q! =k)},Vk € Q, is the set of observation
(or emission) probability distributions.

Let be w = [wy, wa, ..., wy] resulting of a DWT analysis with J scales and
without including wy, the approximation coefficient at the coarsest scale (that
is, N =27 —1). The HMT can be defined with the structure § = (U, R, m, €, F),
where:

i) U ={u € [l...N]} is the set of nodes in the tree.

ii) R = {Re€l...NM]} is the set of states in all the nodes of the tree,
denoting with R,, = {R, € [1... M]} the set of states in the node u.

iii) € = [eu,mn = Pr(Ry = m|R,) = n)], Vm € Ru,Vn € Ry, is the array
whose elements hold the conditional probability of node u being in state m
given that the state in its parent node p(u) is n, where > €, mn = 1.

iv) w = [m, = Pr(Ry = p)], Vp € R1 are the probabilities for the root node
being on state p.

v) F = {fum(wy) = Pr (W, = wy|R, =m)} are the observation probability
distributions. This is, fy m(w,) is the probability of observing the wavelet
coefficient w, with the state m (in the node u).

In the following, we will simplify the notation for random variables. For
example, we write Pr(w,|r,) rather than Pr(W,, = wy,|Ry = ).
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2.2 Joint Likelihood

Let be © an HMM like the one defined above but using a set of HMTs to model
the observation densities within each HMM state:

ZH UTqu(u) u7u(wZ)a (1)

Vr Vu

with r = [ry,79,...,7N] a combination of hidden states in the HMT nodes. To
extend the notation in the composite model, we have added a superscript in
the HMT variables to make reference to the state in the external HMM. For
example, eu mn Will be the conditional probability that, in the state k of the
external HMM the node u is in state m given that the state of its parent node
p(u) is n.

Thus, the complete joint likelihood for the HMM-HMT can be obtained as

ZH <aqt tqt ZH €u TuTp(u) u?u(w5)>

Vr Vu
:Zznaqt_lqtﬂggjr " fﬁr (wh)
Vq VR t Yu
= Zzﬁ@(wacL R)’ (2)
Vq VR

where we simplify ap; = m = 1, Vq is over all possible state sequences q =

g, ¢%,...,q¢" and VR are all the possible sequences of all the possible combina-

tions of hidden states r',r2,...,rT in the nodes of each tree.

2.3 Training Formulas

In this section we will obtain the maximum likelihood estimation of the model
parameters. For the optimization, the auxiliary function can be defined as

D(O,0) 23" Lo(W.q,R)log (Ls(W, q, R)) (3)

Vq VR

and using (2)

D(O,0) = ZZE@(W,q, R)- {Zlog(aqtht) +

Vq VR
+ ;% [1og <ef_’%ri(u > + log ( ot (wi))] } : (4)

For the estimation of the transition probabilities in the HMM, a;;, no changes
from the standard formulas will be needed. However, on each internal HMT
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we hope that the estimation of the model parameters will be affected by the
probability of being in the HMM state k£ at time ¢.
Let be ¢* =k, r}, = m and 7/, = n. To obtain the learning rule for € ,,,

the restriction > ¢* = 1 should be satisfied. If we use

m -u,mn

D(O,6) £ D(O,6) +ZA ( umn—l), (5)
the learning rule results

S A (R)E ()
R , (6)

Y A R ()
t

where ~!(k) is computed as usual for HMM and Vzl(cu)(n) and &% (m,n) can be

estimated with the upward-downward algorithm [9].
t t t
For the observation distributions we use f! . (w}) = N (wtu,uz O rt>‘

From (4) we have

- ZZEQ(W, q, R) ! lz 1Og(aqt—1qt) —+

VYq VR

+ZZlog(m » > +

u’ p(u)

log : (wu — )2
+ Z Z —log (Uzyrf") - ||. (7

Thus, the training formulas result
D A k)i mywl,
Hom = —
’ D oAk
t

and

> A k)i

These results can be easily extended to multiple observation sequences.
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Phonemes /b/ /d/ Jeh/ /ih/ [ih/
Train patterns 155 274 283 338 95
Test patterns 53 82 &84 100 19
Duration min. 93 81 480 300 315
[samples] ave. 292 363 1417 1234 942

max. 1229 1468 3280 3595 2194

Table 1. Selected phonemes from TIMIT speech corpus. The duration values give an
idea of the length variability in the sequences.

3 Experimental Results and Discussion

In this section we test the proposed model in the context of automatic speech
recognition with the TIMIT corpus [21].

TIMIT is a well known corpus that has been used extensively for research
in automatic speech recognition. From this corpus five phonemes that are diffi-
cult to classify were selected. The voiced stops /b/ and /d/ have a very similar
articulation (bilabial/alveolar) and different phonetic variants according to the
context (allophones). Vowels /eh/ and /ih/ were selected because their formants
are very close. Thus, these phonemes are very confusable. To complete the se-
lected phonemes, the affricate phoneme /jh/ was added as representative of the
voiceless group [22]. Table 1 shows the number of train and test samples for each
phoneme in the Region 1 of the TIMIT corpus. Also in this table the minimum,
maximum and average duration of the phonemes is shown to give an idea of the
length variability in the patterns to recognize.

Regarding practical issues, the training formulas were implemented in log-
arithmic scale to make a more efficient computation of products and to avoid
underflow errors in the probability accumulators [9]. In addition, underflow er-
rors are reduced because in the HMM-HMT architecture each DWT is in a lower
dimension than the dimension resulting from a unique HMT for the whole se-
quence. All learning algorithms and transforms used in the experiments were
implemented in C++ from scratch?.

Frame by frame, each local feature is extracted using a Hamming window
of width N, shifted in steps of Ny samples [11]. The first window begins N,
samples out (with zero padding) to avoid the information loss at the beginning
of the sequence. The same procedure is used to avoid information loss at the end
of the sequence.

Then a DWT is applied to each windowed frame. The DWT was imple-
mented by the fast pyramidal algorithm [5], using periodic convolutions and the
Daubechies-8 wavelet [23]. Preliminary tests were carried out with other wavelets
of the Daubechies and Splines families but not important differences in results
were found.

! The source code can be downloaded from http://fich.unl.edu.ar/sinc
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Ny — 128 256 Average
Ny — 64 128 64 128 RR%
GMM 36.98 28.99|34.64 29.88 | 32.62
HMT 40.53 31.36 (44.08 36.39| 38.09

HMM-GMM 25.44 35.21|24.85 37.87| 30.84
HMM-HMT 39.64 47.34|42.90 39.64| 42.38

Table 2. Recognition rates (RR%) for TIMIT phonems using models with a similar
number of trainable parameters (see more details in the text). Each learning architec-
ture was trained and tested with two frame sizes, N,,, and two frame steps, INs, in the
feature extraction.

A separate model is trained for each phoneme and the recognition is made
by the conventional maximum-likelihood classifier.

In the first study, different recognition architectures are compared, but setting
they to have the total number of trainable parameters in the same order of
magnitude. Table 2 shows the recognition rates (RR) for: GMM with 4 Gaussians
in the mixture (2052 trainable parameters), HMT with 2 states per node and
one Gaussian per state (2304 trainable parameters), HMM-GMM with 3 states
and 4 Gaussians in each mixture (6165 trainable parameters), HMM-HMT with
3 HMM states, 2 states per HMT node and one Gaussian per node state (6921
trainable parameters)?. For HMM-GMM and HMM-HMT the external HMM
have connections ¢ — 4, ¢ — (i + 1) and ¢ — (i + 2). The last link allows
to model the shortest sequences, with less frames than states in the model. In
both, GMM and HMM-GMM, the Gaussians in the mixture are modeled with
diagonal covariance matrices.

The maximum number of train iterations used for all experiments was 10,
but also, as finalization criteria, the training process was stopped if the average
(log) probability of the model given the training sequences was improved less
than 1%. In most of the cases, the training converges after 4 to 6 iterations, but
HMM-GMM models experienced several convergence problems with the DWT
data. When a convergence problem was observed, the model corresponding to
the last estimation with an improvement in the average probability of the model
given the sequences was used for testing.

The results in Table 2 always favor the HMM-HMT model or, when there
are more frames in the sequence, results favor the HMT model. This may be due
to the use of an HMM with 3 states in the HMM-HMT. However, for a window
step of 64 samples, 5 or 6 HMM states could have been better (in any case,
when HMT was the best, HMM-HMT was the closest second one). Considering
the global maximum and average RR, the HMM-HMT was the best recognition
architecture.

2 All these counts are for N, = 256. Recall that Gaussians in GMM and HMM-GMM
are in RV while Gaussians in HMT and HMM-HMT are in R!.
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Gaussians Total of Recognition
per GMM parameters —rate [%]

HMM-GMM 2 3087 17.75
4 6165 37.87
8 12321 29.59
16 24633 33.43
32 49257 27.51
64 98505 26.92
HMM-HMT 512 6921 39.64

Table 3. Recognition results for TIMIT phonemes. HMM-GMM was trained and tested
for different number of Gaussians in the mixtures.

The next experiments were focused to compare the two main models related
with this work, that is, HMM using observation probabilities provided for GMMs
or HMTs. In this context, the best relative scenario for HMM-GMM is using
N, = 256 and Ns; = 128 (see Table 2). Nevertheless, as we remarked above,
several problems of convergence were observed in the training of HMM-GMM.
As it is well known, the non-Gaussianity and the correlated information in the
wavelet coefficients are important issues.

In Table 3 we present a fine tuning for the HMM-GMM model. Note that
comparable architectures for HMM-HMT are HMM-GMM with between 2 to
8 Gaussians in the mixtures, because they have a similar number of trainable
parameters. In relation to the HMM architectures, the HMM-HMT is still pro-
viding the best recognition rates.

The computational cost is one of the major handicaps of the proposed ap-
proach, mainly because of the double Baum-Welch process required in the train-
ing. To provide an idea of the computational cost, results reported in Table 2,
with N, = 256 and N, = 128, demand 30.20 s of training for the HMM-GMM
whereas the same training set demands 240.89 s in the HMM-HMT?3. In the
future it would be interesting to work in the optimization of the algorithms, for
example, developing a Viterbi algorithm for the composite model.

4 Conclusions and Future Work

A novel Markov architecture for learning sequences in the wavelet domain was
presented. The proposed architecture is a composite of an HMM in which the
observation probabilities are provided by a set of HMTs. With this structure,
the HMM captures the long-term dependencies and the HMTs deal with the
local dynamics. The HMM-HMT allows learning from long or variable-length
sequences, with potential applicability to real-time processing. The training al-
gorithms were derived using the EM framework, resulting in a set of learning
rules with a simple structure.

3 Using a Intel Core 2 Duo E6600 processor (running in one core only).
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Empirical results were obtained concerning the application of speech recog-
nition with real data. The recognition rates obtained for speech recognition were
very competitive, even in comparison with the state-of-the-art technologies in
this application domain.

From this novel architecture, we believe that many topics can be addressed
in future works. For example, alternative architectures can be developed with
links directly between the HMT nodes (without the external HMM). Moreover,
different tying schemes can be used to reduce the total number of trainable
parameters, reducing the computational cost and improving the generalization
capabilities. More tests would be necessary for the HMT model, with different
numbers of states per node and using other observation models within the states
(for example, GMM or Laplacian distributions). Concerning to the experiments,
in the future we plan to extend our work to continuous speech recognition and
using speech contaminated by real non-stationary noises.
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