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Abstract

Hidden Markov models have been found very useful for a wide range of applications in artificial intelligence.
The wavelet transform arises as a new tool for signal and image analysis, with a special emphasis on non-
linearities and nonstationarities. However, learning models for wavelet coefficients have been mainly based
on fixed-length sequences. We propose a novel learning architecture for sequences analyzed on a short-term
basis, but not assuming stationarity within each frame. Long-term dependencies are modeled with a hidden
Markov model which, in each internal state, deals with the local dynamics in the wavelet domain using a
hidden Markov tree. The training algorithms for all the parameters in the composite model are developed
using the expectation-maximization framework. This novel learning architecture can be useful for a wide
range of applications. We detail experiments with real data for speech recognition. In the results, recognition
rates were better than the state of the art technologies for this task.

Keywords: Sequence Learning, EM Algorithm, Hidden Markov Models, Hidden Markov Trees, Wavelets,
Speech Recognition.
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1 Introduction

In the last two decades, Hidden Markov models
(HMM) have been used in many application ar-
eas of artificial intelligence [19, 1, 13, 14]. On
the other hand, from its early applications the
wavelet transform has been a very interesting rep-
resentation for signal and image analysis [15].

Models for wavelet coefficients were initially
based on the traditional assumptions of indepen-
dence and Gaussianity. Statistical dependence at
different scales and non-Gaussian statistics were

considered in [6] with the introduction of the hid-
den Markov trees (HMT). Training algorithms for
these models were based in a previous develop-
ment of an expectation-maximization (EM) algo-
rithm for dependence tree models [18]. In the
last years, the HMT model was improved in sev-
eral ways, for example, using more states within
each HMT node and developing more efficient al-
gorithms for initialization and training [10, 9].

A discrete HMM defines a probability distribu-
tion over sequences of symbols arriving from a
finite set. On the other hand, continuous HMM
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provides a probability distribution over sequences
of continuous data in RY. A general model for the
continuous observation densities is the Gaussian
mixture model (GMM) [5]. The HMM-GMM ar-
chitecture was a widely used model, for example,
in speech recognition [17]. Nevertheless, more ac-
curate models have been proposed for the obser-
vation densities [3]. In both, discrete and continu-
ous models, the most important advantage of the
HMM lies in that they can deal with sequences of
variable length. However, if the whole sequence is
analyzed by the standard discrete wavelet trans-
form (DWT), like in the case of HMT, a repre-
sentation whose structure is dependent on the se-
quence length is obtained. Therefore, the learning
architecture should be trained and used only for
this sequence length or, otherwise, a warping pre-
processing is required (to fit the sequence length
to the model structure). On the other hand, in
HMM modeling, stationarity is generally assumed
withing each observation in the sequence. This
stationarity assumption can be removed when ob-
served features are extracted by the DWT, but
a suitable statistical model for learning this fea-
tures in the wavelet domain would be needed.

Combining the advantages of the HMM to deal
with variable length sequences and the HMT to
model DWT representations, in this paper we
propose an EM algorithm to train a composite
model in which each state of the HMM uses the
observation density provided by an HMT. In this
HMM-HMT composite model, the HMM handle
the long term dynamics in the sequence while the
local dynamics are well captured in the wavelet
domain by the set of HMT models.

Fine et al. [11] proposed a recursive hierarchi-
cal generalization of discrete HMM. They apply
the model to learn the multiresolution structure
of natural English text and cursive handwriting.
Some years later, Murphy and Paskin [16] derived
a simpler inference algorithm by formulating the
hierarchical HMM as a special kind of dynamic
Bayesian network. A wide review about multires-
olution Markov models was provided in [22], with
special emphasis on applications to signal and im-
age processing. Dasgupta et al. [7] proposed a
dual-Markov architecture, similar to the one pro-
posed in the present work. This model is trained
by means of an iterative process where the most
probable sequence of states is identified, and then
each internal model is adapted with the selected
observations. However, in this case the model
consists of two separated and independent enti-
ties, that are forced to work in a coupled way.

By the contrary, Bengio et al. derived an EM
algorithm for the full model [2], composed of an
external HMM in which for each state an internal
HMM provides the observation probability distri-
bution [21]. In the following, we derive an EM al-
gorithm for a composite HMM-HMT architecture
that observes sequences of DWTs in RY. This al-
gorithm can be easy generalized to sequences in
RV XN with 2-D HMTs like the used in [4] or [12].

In the next section we introduce the notation for
HMM and HMT. Using this notation we present
the proposed model, defining the joint likelihood
and then deriving the training formulas for sin-
gle observation sequences (the generalization to
multiple observation sequences being straightfor-
ward). In Section 3, the experimental results for
speech recognition using real data are presented
and discussed. In the last section we present the
main conclusions and many ideas that are opened
to future works using this novel learning architec-
ture.

2 The Model

The architecture proposed in this work is a com-
position of two Markov models: the long term
dependencies are modeled with an external HMM
and each pattern in the local context is modeled
with an HMT.

2.1 Basic Definitions

To model a sequence W = w!, w2, ..., w’ with

w! € RV, a continuous HMM is defined with the
structure ¥ = (Q, A, m, B), where:

i) @={Q €[1...Ng]} is the set of states.

i) A = [a;; =Pr(Q' =4 |Q" ' =1i)].Vi,j €
Q, is the matrix of transition probabilities,
where Q! € Q is the model state at time
te [].T], A4 ZOVZ,j and Zjaij =1 Vi.

iii) # = [r; = Pr(Q' = j)] is the initial state
probability vector. In the case of left-to-right
HMM this vector is w = 7.

iv) B={b, (W) =Pr(Wi=w|Q' =k)},Vk e
Q, is the set of observation (or emission)
probability distributions.
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Let be w = [wy, wa, ..., wy] resulting of a DWT
analysis with J scales and without including wy,
the approximation coefficient at the coarsest scale
(that is, N = 27 — 1). The HMT can be defined
with the structure § = (U, R, 7, €, F), where:

1) U ={u € [1...N]} is the set of nodes in the
tree.

ii) R = {Rel...NM]} is the set of states
in all the nodes of the tree, denoting with
R. = {Ry €[1...M]} the set of states in
the node wu.

iii) e = [eu’mn = Pr(Ry = m|R,) = n)], Vm €
Ru,Vn € R, is the array whose elements
hold the conditional probability of node u be-
ing in state m given that the state in its par-
ent node p(u) is n, where Y €y mn = 1.

iv) # = [, =Pr(R1 =p)], Vp € Ry are the
probabilities for the root node being on state
p.

v) F o= {fum(wy) =Pr(Wy = wy|Ry, =m)}
are the observation probability distributions.
This is, fu,m(w,) is the probability of observ-
ing the wavelet coefficient w,, with the state
m (in the node u).

In the following, we will simplify the notation
for random variables. For example, we write
Pr(wy|ry,) rather than Pr(W, = wy|Ry = r4).

2.2 Joint Likelihood

Let be ©® an HMM like the one defined above but
using a set of HMTs to model the observation
densities within each HMM state:

bqt (Wt) = Z H Ez,rurp(u) g,ru (’LUZ)7 (1)

Vr Vu

with r = [ry,79,...,7N] & combination of hidden
states in the HMT nodes. To extend the notation
in the composite model, we have added a super-
script in the HMT variables to make reference
to the state in the external HMM. For example,

ek will be the conditional probability that, in

u,mn
the state k of the external HMM, the node u is
in state m given that the state of its parent node

p(u) is n.

Thus, the complete joint likelihood for the HMM-
HMT can be obtained as

3
Lo(W) =
S| [CFR%) ) | EAPER )
q r u
= Z Z H Qgt—14t H 63:7‘37';(“) 5:“5 (wi)
vq VR t Yu
£ Y > Le(W.qR), (2)
Vq VR

where we simplify ag; = m; = 1, Vq is over all
possible state sequences q = ¢',¢%,...,¢" and
VR are all the possible sequences of all the pos-
sible combinations of hidden states r!,r?,... rT

in the nodes of each tree.

2.3 Training Formulas

In this section we will obtain the maximum like-
lihood estimation of the model parameters. For
the optimization, the auxiliary function can be
defined as

D(@7 é) £ Z Z ‘C@) (Wa qQ, R) IOg (‘Cé (Wa q, R))
Vq VR
(3)

and using (2)

D(0,0) =
= vq vk Lo(W,q,R) - {3, log(ag-14) +

e () el )

t  VYu
(4)

For the estimation of the transition probabilities
in the HMM, a;;, no changes from the standard
formulas will be needed. However, on each in-
ternal HMT we hope that the estimation of the
model parameters will be affected by the proba-
bility of being in the HMM state k at time t.

Let be ¢ = k, r!, = m and rf)(u) = n. To ob-
tain the learning rule for eﬁ’mn the restriction

S €k =1 should be satisfied. If we use

m Su,mn

D(©,0) £D(0,0)+ Y A ( € m — 1) :
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the learning rule results

Zv (k)& (m,m)
€l = (6)

e ZW IO

where 7t (k) is computed as usual for HMM and
Vhtwy () and £ (m, n) can be estimated with the
upward-downward algorithm [9].

For the observation dlstrtlbutions we use
¢' ( t) = N(wu,u From (4) we

have
D(©,0) =
= ZZE@(W,C[, R) . [Z log(aqulqt) +
Vq VR t

+ lo +
T CH
log (2m) 7
D) tos (o1,) -
t
N
(1= i)
S
2 (UZ rt )
Thus, the training formulas result

> AR m)w!
k _ t (8)

o,
Y A )
t

N A ket (m) (wl, — ik )
o > A (k)yiEm

These results can be easily extended to multiple
observation sequences.

3 Experimental Results and
Discussion

In this section we test the proposed model in the
context of automatic speech recognition with the
TIMIT corpus [23].

TIMIT is a well known corpus that has been
used extensively for research in automatic speech
recognition. From this corpus five phonemes that
are difficult to classify were selected. The voiced
stops /b/ and /d/ have a very similar articu-
lation (bilabial/alveolar) and different phonetic
variants according to the context (allophones).
Vowels /eh/ and /ih/ were selected because their
formants are very close. Thus, these phonemes
are very confusable. To complete the selected
phonemes, the affricate phoneme /jh/ was added
as representative of the voiceless group [20]. In
the next experiments we used 1145 patterns for
train and 338 for test, that is, all the phoneme
realizations in the geographical region 1 of the
TIMIT corpus.

Regarding practical issues, the training formulas
were implemented in logarithmic scale to make
a more efficient computation of products and to
avoid underflow errors in the probability accu-
mulators [9]. In addition, underflow errors are
reduced because in the HMM-HMT architecture
each DWT is in a lower dimension than the di-
mension resulting from a unique HMT for the
whole sequence. All learning algorithms and
transforms used in the experiments were imple-
mented in C++ from scratch!.

Frame by frame, each local feature is extracted
using a Hamming window of width N,,, shifted in
steps of N, samples [17]. The first window begins
N, samples out (with zero padding) to avoid the
information loss at the beginning of the sequence.
The same procedure is used to avoid information
loss at the end of the sequence.

Then a DWT is applied to each windowed frame.
The DWT was implemented by the fast pyra-
midal algorithm [15], using periodic convolutions
and the Daubechies-8 wavelet [8]. Preliminary
tests were carried out with other wavelets of the
Daubechies and Splines families but not impor-
tant differences in results were found.

A separate model is trained for each phoneme
and the recognition is made by the conventional
maximum-likelihood classifier.

In the first study, different recognition architec-
tures are compared, but setting they to have the
total number of trainable parameters in the same
order of magnitude. Table 1 shows the recogni-
tion rates (RR) for: GMM with 4 Gaussians in
the mixture (2052 trainable parameters),

IThe source code can be downloaded from http://fich.unl.edu.ar/sinc
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Ny — 128 256 Gaussians Total of Recognition
Ns — 64 128 64 128 per GMM  parameters rate [%)]
GMM 36.98 28.99 34.64 29.88 HMM-GMM 2 3087 17.75
HMT 40.53 31.36 | 44.08 36.39 4 6165 37.87
HMM-GMM 25.44 35.21 24.85 37.87 8 12321 29.59
HMM-HMT 39.64 47.34 42.90 39.64 16 24633 33.43
32 49257 27.51
. 64 98505 26.92
Table 1. Recognition rates (RR%) for TINMNCEMT 512 6921 39.64
TIMIT phonems using models with a sim-
ilar number of trainable parameters (see Table 2. Recognition results for TIMIT
more details in the text). Each learning phonemes. HMM-GMM was trained and

architecture was trained and tested with
two frame sizes, N,,, and two frame steps,
Ny, in the feature extraction.

HMT with 2 states per node and one Gaussian
per state (2304 trainable parameters), HMM-
GMM with 3 states and 4 Gaussians in each mix-
ture (6165 trainable parameters), HMM-HMT
with 3 HMM states, 2 states per HMT node
and one Gaussian per node state (6921 train-
able parameters)?. For HMM-GMM and HMM-
HMT the external HMM have connections i — 1,
i — (i+ 1) and ¢ — (i +2). The last link al-
lows to model the shortest sequences, with less
frames than states in the model. In both, GMM
and HMM-GMM, the Gaussians in the mixture
are modeled with diagonal covariance matrices.

The maximum number of train iterations used for
all experiments was 10, but also, as finalization
criteria, the training process was stopped if the
average (log) probability of the model given the
training sequences was improved less than 1%.
In most of the cases, the training converges af-
ter 4 to 6 iterations, but HMM-GMM models ex-
perienced several convergence problems with the
DWT data. When a convergence problem was ob-
served, the model corresponding to the last esti-
mation with an improvement in the average prob-
ability of the model given the sequences was used
for testing.

The results in Table 1 always favor the HMM-
HMT model or, when there are more frames in
the sequence, results favor the HMT model. This
may be due to the use of an HMM with 3 states in
the HMM-HMT. However, for a window step of 64
samples, 5 or 6 HMM states could have been bet-
ter (in any case, when HMT was the best, HMM-
HMT was the closest second one). Considering
the global maximum and average RR, the HMM-
HMT was the best recognition architecture.

tested for different number of Gaussians in
the mixtures.

The next experiments were focused to compare
the two main models related with this work, that
is, HMM using observation probabilities provided
for GMMSs or HMTs. In this context, the best rel-
ative scenario for HMM-GMM is using N,, = 256
and N; = 128 (see Table 1). Nevertheless, as we
remarked above, several problems of convergence
were observed in the training of HMM-GMM. As
it is well known, the non-Gaussianity and the cor-
related information in the wavelet coefficients are
important issues.

In Table 2 we present a fine tuning for the HMM-
GMM model. Note that comparable architec-
tures for HMM-HMT are HMM-GMM with be-
tween 2 to 8 Gaussians in the mixtures, because
they have a similar number of trainable parame-
ters. In relation to the HMM architectures, the
HMM-HMT is still providing the best recognition
rates.

The computational cost is one of the major hand-
icaps of the proposed approach, mainly because
of the double Baum-Welch process required in the
training. To provide an idea of the computational
cost, results reported in Table 1, with N,, = 256
and Ny = 128, demand 30.20 s of training for the
HMM-GMM whereas the same training set de-
mands 240.89 s in the HMM-HMT?3. In the future
it would be interesting to work in the optimiza-
tion of the algorithms, for example, developing a
Viterbi algorithm for the composite model.

4 Conclusions and Future

Work

A novel Markov architecture for learning se-
quences in the wavelet domain was presented.

2All these counts are for Ny, = 256. Recall that Gaussians in GMM and HMM-GMM are in RVv while Gaussians in HMT

and HMM-HMT are in R1.

3Using a Intel Core 2 Duo E6600 processor (running in one core only).



D. H. Milone & L. Di Persia; "Learning hidden Markov models with hidden Markov trees as observation distributions"

sinc(i) Research Center for Signals, Systems and Computational Intelligence (fich.unl.edu.ar/sinc)
Revista |beroamericana de Inteligencia Artificial, No. 37, pp. 7-13, 2008.

Inteligencia Artificial Vol. XX, N°YY, 2007

The proposed architecture is a composite of an
HMM in which the observation probabilities are
provided by a set of HMTs. With this struc-
ture, the HMM captures the long-term dependen-
cies and the HMTs deal with the local dynam-
ics. The HMM-HMT allows learning from long
or variable-length sequences, with potential ap-
plicability to real-time processing. The training
algorithms were derived using the EM framework,
resulting in a set of learning rules with a simple
structure.

Empirical results were obtained concerning the
application of speech recognition with real data.
The recognition rates obtained for speech recog-
nition were very competitive, even in comparison
with the state-of-the-art technologies in this ap-
plication domain.

From this novel architecture, we believe that
many topics can be addressed in future works.
For example, alternative architectures can be de-
veloped with links directly between the HMT
nodes (without the external HMM). Moreover,
different tying schemes can be used to reduce the
total number of trainable parameters, reducing
the computational cost and improving the gener-
alization capabilities. More tests would be neces-
sary for the HMT model, with different numbers
of states per node and using other observation
models within the states (for example, GMM or
Laplacian distributions). Concerning to the ex-
periments, in the future we plan to extend our
work to continuous speech recognition and us-
ing speech contaminated by real non-stationary
noises.
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