
  

J. Vander Sloten, P. Verdonck, M. Nyssen, J. Haueisen (Eds.): ECIFMBE 2008, IFMBE Proceedings 22, pp. 252–255, 2008 
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2009 

Empirical mode decomposition.  
Spectral properties in normal and pathological voices  

M.E. Torres1,2, G. Schlotthauer1, H.L. Rufiner2,3 and M.C. Jackson-Menaldi4 

1 Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina. 
2 Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina. 

3 Lab. de Señales e Inteligencia Computacional, Fac. de Ing. y Cs. Hídricas, Universidad Nacional del Litoral, Sta. Fe, Argentina. 
4 Dept. of Otolaryngology, School of Medicine, Wayne State University, Detroit, Michigan, USA. 

 

Abstract— Empirical Mode Decomposition is a data driven 
technique proposed by Huang. In this work, we explore 
spectral properties of the intrinsic mode functions and apply 
them to speech signals corresponding to real and simulated 
sustained vowels. For the synthetic sustained vowels we 
propose a phonation model that includes perturbations implied 
in common laryngeal pathologies. We extract features from 
each signal using the Burg’s standard spectral analysis of their 
intrinsic mode functions. Due to its well-known theoretical 
properties, the classic K-nearest neighbor’s classification rule 
is applied to real and synthetic data. We show that even using 
this basic pattern classification algorithm, the selected spectral 
features of only three intrinsic mode functions are enough to 
discriminate between normal and pathological voices. We have 
obtained a 99.00% of correct classifications between normal 
and pathological synthetic voices (K=1, sensitivity=0.990, 
specificity=0.990); while in the case of real voices the 
percentage of correct classification was 93.40% (K=3, 
sensitivity=0.925, specificity=0.926). These results strongly 
suggest that spectral properties of Empirical Mode 
Decomposition provide useful discriminative information for 
this task. Additionally we consider two pathologies of different 
etiology and treatment, which, given the similarity of their 
voice characteristics, are frequently misdiagnosed in clinical 
practice: muscular tension dysphonia and adductor spasmodic 
dysphonia. Preliminary results with a reduced real data base 
suggest that this approach could provide useful orientation to 
physicians and voice pathologists. 

Keywords— Empirical mode decomposition, speech analy-
sis, pathological voices, spectral analysis. 

I. INTRODUCTION  

Empirical Mode Decomposition (EMD) has been 
recently proposed by Huang et al. [1] for adaptively 
decomposing nonlinear and non stationary signals in a sum 
of well-behaved AM-FM components, called Intrinsic Mode 
Functions (IMFs). This new technique has received the 
attention of the scientific community, both in biological 
applications [1, 2, 3] and interpretations [4, 5]. The method 
consists in a local and fully data-driven splitting of a 
(possibly non-stationary) signal in fast and slow 
oscillations.  

In this work, we explore some spectral properties of the 
IMFs. The comparison with the spectra of real data and its 
IMFs allows us to present preliminary results of an 
application of this method to the analysis and discrimination 
between normal and pathology-cal speech signals. We also 
study a couple of dysphonias: Adductor Spasmodic 
Dysphonia (AdSD) and Muscular Tension Dysphonia 
(MTD), two voice disorders with  different etiology [6], 
frequently confused and not easily identified by local 
clinicians.  

The primary treatment for MTD is voice therapy, which 
is only of limited benefit to patients with AdSD when used 
as a sole treatment modality. Although these disorders have 
been described in the literature, the symptoms have not been 
well defined and may appear similar, and those of AdSD 
might be confused with those of essential vocal tremor or of 
muscle tension dysphonia (MTD).  

A recent review on symptoms for AdSD and MTD [7] 
confirm multifactorial etiologies contributing to hoarseness 
in the patients identified with MTD, concluding that an 
interdisciplinary approach to treating all contributing factors 
portends the best prognosis. Therefore, patients might not 
be easily identified by local clinicians for treatment [8]. In 
spite that a classical Fourier-based analysis would be useful 
to detect hoarseness, it should not provide good information 
given that this symptom can be present in both pathologies. 
Therefore, it is mandatory to provide appropriate new tools 
that could help physicians and voice pathologists to 
discriminate between these two pathologies. 

 In recent years, the use of acoustical measures, in 
combination with pattern recognition techniques, has 
motivated the appearance of several works concerning the 
automatic discrimination between pathological and normal 
voices. In [9], a database with 89 records of the sustained 
vowel /a/ corresponding to normal and pathological (MTD 
and AdSD) cases were separated into three classes with a 
93.26% of correct classifications, and into two classes 
(normal and pathological) reaching a 98.94%, overcoming 
the best reported results in the literature. The authors used a 
pattern recognition scheme with eight acoustical parameters 
and neural networks.  
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In this paper we show that the spectral properties of the 
IMFs could be useful to discriminate between normal and 
pathological voices. These preliminary results suggest that 
they might provide also clues in order to differentiate 
between AdSD and MTD. The paper is organized as 
follows. In Sec. II basic concepts to be used are described. 
In Sec. III materials are described. In Sect. IV we present 
the results. Finally, in Sec. V conclusions are presented.  

II. BASIC CONCEPTS 

The Empirical Mode Decomposition (EMD) is a method 
developed to deal with data from nonstationary and 
nonlinear processes [1].  The decomposition is based on the 
intuitive assumption that any data consists of different 
simple intrinsic modes of oscillations. Each intrinsic mode, 
linear or nonlinear, represents a simple oscillation, which 
will have the same number of extrema and zero-crossings. 
Furthermore, the oscillation will also be symmetric with 
respect to the “local mean”. Each of these oscillatory modes 
is represented by an IMF with the following definition [2]: 
(i) in the whole data set, the number of extrema and the 
number of zero-crossings must be either equal or differ at 
most by one, and (ii) at any point, the mean value of the 
envelope defined by the local maxima and the envelope 
defined by the local minima is zero. Therefore a signal x(t) 
can be decomposed as follows [1]:  
1. Identify all its local extrema. 
2. Interpolate between minima (resp. maxima), obtaining an 

“envelope” emin(t) (resp.  emax(t).) 
3. Compute the local trend r(t)=(emin(t)+ emax(t))/2  
4. Extract the local detail d(t)=x(t)-r(t) 
5. Iterate 1-4 on r(t), until some stopping criterion. 

The above procedure has to be refined by a sifting 
process [4]. The obtained local details d(t) are the IMFs.  

III. MATERIALS  

We have used real and simulated voices for our 
experiments. Signals have been Hamming windowed to 
perform the EMD analysis and the formants estimation. 

Simulated voices. In order to explore the discrimination 
power of the proposed technique, experiments with normal 
and pathological synthetic voices have been carried out. 
These signals have been generated using a phonation model 
that incorporates the perturbations implied in common 
laryngeal pathologies. This allowed us to maintain 
controlled experimental conditions, making possible the 
discussion of the technique and the selection of the 
appropriate parameters.  

The speech signal y[n] was modeled using the classical 

linear prediction model P
p=1y[n]=- y[n-p]a[p]+x[n],∑ where 

a[p] are the linear predictor coefficients, and x[n] is the 
input representing the glottal pulses. The input is modeled 
by a train of pulses, with variable period and amplitude: 

1 1 ,[ ] [ ] [ ]K k
k ix n G k n P i= =

 
 
 

= δ −∑ ∑  

where G[k] are the corresponding gain coefficients and P 
the periods' values. Different stochastic models for jitter and 
shimmer have been proposed in the literature. In this work 
we assume, for a pulse train with a jitter jitt%, a normal 
probability distribution for each period P: 

( ) ( )0
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where P0 is the mean period and 0 %
200P

P jitt
σ = . In order to 

avoid period approximation problems, a uniform 
randomized roundness function and a sampling frequency 
of 50 KHz have been used. 

In a similar way, the gain coefficients distribution is 
given by: 
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Taking into account statistics obtained with real signals, 
we have simulated 400 signals, corresponding to 100 male 
and 100 female, for each group of normal and pathological 
voices. We adopted a fundamental frequency with a 
distribution N(144,22.5) for male voices and N(245,24.5) 
for female voices; a N(0.4,0.1) jitter distribution for normal 
voices and N(5,1) for pathological voices; and a shimmer 
with distribution N(1,0.2) and N(8,1) respectively.  

Real voices. A corpus of sustained vowels /a/ was used. 
The speech utterances from this corpus were registered in 
an anechoic room (global reverberation time < 30 msec.) 
Each subject was requested to phonate the sustained vowels 
as steadily as possible toward an electrodynamic 
unidirectional microphone Shure SM58 at a distance of 
about 15 cm from the mouth. Each vowel had a duration of 
1 to 5 sec. The data was digitized with a professional Turtle 
Beach Multisound FIJI sound card, at 44 KHz, 16 bits and 
no compression has been used. The data was then low-pass 
filtered and down-sampled to 22 KHz. All the voices were 
classified by an experienced voice pathologist. 

We considered a first set of 106 voice (half normal and 
half of diverse pathologies, randomly selected from a larger 
data base), here named Data Base DB1, and a second one of 
14 normal voices, 13 of AdSD, and 6 of MTD, here named 
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Fig. 1 Sustained vowel /a/ in the first row and IMFs 2-8 of its EMD. 

Data Base DB2. Patients affected with AdSD may attempt 
to prevent their symptoms by increasing the tension in their 
laryngeal muscles in an effort to compensate them. The 
consequence is the appearance of additional physical 
disturbances similar to MTD along with AdSD. The over-
riding symptoms of MTD can escalate over time making 
difficult to discern the underlying symptoms of AdSD [8]. 

IV. RESULTS  

The EMD algorithm of the vowels stopped in average at 
IMF 12±1. As an example a sustained normal vowel /a/ and 
the first eight IMFs of its EMD are shown in Fig.1. Inspired 
by Fig. 2 here we propose to consider the maxi-mum Psd of 
the IMFs 2-4 and the corresponding frequencies as new 
features to be used for our classification purposes. 

 
A. Simulated normal and pathological voices 

In order to study the classification capability of the new 
tools here presented, we have constructed the feature 
vectors with the maximum Psd (log2) and the corresponding  

 

Fig. 2 Log-log power spectrum density, estimated with Burg algorithm, 
corresponding to each of the IMFs of a Spanish sustained vowel /a/ 

 

Fig. 3: Frequency (log2) corresponding to the maximum Psd of three 
IMFs, of normal (stars) and pathological (diamonds – MTD – and squares 

– ASD) voices (DB2). 

frequencies, of IMF(i), i=2,3,4, for each of the simulated 
voices. The K-nearest neighbors’ classification rule was 
applied and a K-fold cross validation method, with 20 
subsamples, was used in order to estimate the classifier 
performance.  

With this simple and general-purpose classifier, the best 
performance has been obtained using K=1, reaching a 99% 
of correct classifications. In Table 1.a we present the 
obtained confusion matrix. This result confirms that the 
IMFs’ spectrum provides relevant features that can be used 
as descriptors for the proposed classification task. The 
importance of this experiment is based on the fact that both 
normal and pathological synthetic voices have been 
simulated without added noise, and that the difference 
between them is only due to short-term perturbations of 
their fundamental frequency and intensity. Therefore, the 
proposed method is able to distinguish between normal and 
altered voices with very similar Fourier spectra.  

 
B. Real normal and pathological voices 

 Following the same procedure as in Sec. IV, with the 
real voices DB1 described in Sec. III., we obtained, with 
K=3 a 93.40% of true positive classifications. In Table 1.b 
we present the corresponding confusion matrix, were we 
can appreciate that we have obtained a 94.34% of correct 
classifications of the normal voices and a 92.45% in the 
pathological case. Taking into account that in Medicine, a 
pathological case is considered the positive one, these 
results indicate that the proposed method has a sensitivity of 
0.925 and a specificity of 0.926. 

In the case of discrimination between MTD and AdSD, 
we show some preliminary results that suggest that the new 
tools here presented could also be useful. Unfortunately the 
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amount of data available at the present time is not enough to 
perform an appropriate statistical study from the point of 
view of signal analysis, even if from the Medical point of 
view it is encouraging. Plotting for each voice the log2 
values of the frequencies at which the maximum value of 
Psd is obtained for IMFs 2, 3, and 4, we can appreciate in 
Fig. 3 that it seems to be possible to separate AdSD from 
the normal and MT. Plotting the maxima of the Psd (in 
log2), we see in Fig. 4 that it is possible to separate most of 
the MTD from the other pathology and the normal ones. 

V. CONCLUSIONS  

In this paper we have introduced a new method to 
discriminate between normal and pathological speech 
signals based on the spectral analysis of the IMFs obtained 
by means of EMD. We have applied this new tool to the 
analysis of speech signals corresponding to sustained 
vowels of different data sets: real and simulated voices. 
Inspired by the analysis of real data, we have performed an 
automatic classification of simulated voices (normal and 
pathologic), with a high accuracy rate (99%). In the case of 
discrimination between normal and pathological real voices 
we have obtained a performance of (93.40%). We consider 
that it could be possible to overcome the best reported value 
by refining the proposed method. 

The preliminary results strongly suggest that spectral 
tools based on EMD are useful for the discrimination 
between normal and pathological voices. Moreover, they 
suggest that it could be possible to develop an automatic 
tool for differentiation between pathologies. Future works 
of this group include the application of these results to a 
wider data base of real signals, in continue collaboration 
with voice pathologists, and the analysis and discussion of 
other classification techniques. 

Table 1 : Confusion matrix  

(a) Simulated voices 

Class  Classifications
Pathologic 

 
Normal 

Correct 
Classifications 

Pathologic 198   2 99% 
Normal 2 198 99% 

 (b) Real voices (DB1) 

Class  Classifications
Pathologic 

 
Normal 

Correct 
Classifications 

Pathologic 49  4 92.45% 
Normal 3 50 94.34% 

 

 

Fig. 4 : Maxima Psd (log2) corresponding to three IMFs of normal (stars) 
and pathological (diamonds – MTD – and squares – ASD) voices (DB2) 
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