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Abstract— In this work, a first approach to

a robust speech recognition task by means of a

biologically-inspired feature extraction method

is presented. The proposed technique provides

an approximation to the speech signal represen-

tation at the auditory nerve level. It is based on

an optimal dictionary of atoms, estimated from

auditory spectrograms, and the Matching Pur-

suit algorithm to obtain the activations. This

provides a sparse coding with some basic degree

of noise robustness that can be exploited in the

application. The recognition task consisted in

the classification of a set of 5 highly confusing

English phonemes, on clean and noisy condi-

tions. Multilayer perceptrons were trained as

phoneme classifiers and the performance was

compared to that obtained by a classic param-

eterization in this task, the Mel frequency cep-

stral coefficients. Results showed an improve-

ment in the recognition rate using the approxi-

mated auditory cortical representation for both

the clean case and in the presence of additive

white noise.

Keywords— robust speech recognition, au-

ditory cortical representation, phoneme classi-

fication, sparse coding

1. INTRODUCTION

For years, the classic techniques of signal analysis have
been applied to automatic speech recognition (ASR)
with relatively good results in controlled conditions.
At present, however, there is an increasing need to
tackle with real problems working with complex sig-
nals, for example the robust speech recognition in
noisy environments. The ability to solve this and other
challenging problems could be improved by the devel-
opment of new signal representation techniques.

In the speech analysis field, based on the biologi-
cal time-frequency analysis the inner ear carries out,
an auditory representation of the speech at cochlea

level has been widely studied. Different mathematical
and computational models have been developed that
allow to approximately estimate the auditory spectro-
grams [3]. These investigations enabled the modeling
of the discharge patterns of the auditory nerve, with
significant connections between the brain processing
and some of the principles that support these new ap-
proaches.

More precisely, given a speech utterance, a pattern
of activation can be found at the primary auditory
cortex that encodes a series of meaningful cues con-
tained in the signal. This behavior of the cortical neu-
rons is emulated using the notion of spectro-temporal
receptive fields (STRF), which are defined as the re-
quired optimal stimulus so that an auditory cortical
neuron responds with the largest possible activation
[19]. Using discrete dictionaries, an approximated au-
ditory cortical representation (AACR) can be estab-
lished by means of techniques related to independent
component analysis (ICA) and sparse representations
[15].

A very challenging task in ASR is to build systems
that perform well on real environments and conditions,
where the speech could be registered with background
noise, reverberance, other mixing voices, etc. [7]. Dur-
ing the last years, the sparse coding scheme had been
applied to speech analysis and representation (for a
review of these techniques and applications see [11]).
Among other applications like speech enhancement,
speaker recognition and speech separation, regarding
the ASR task very few studies were presented. In a
recent work, a first exploration to the continuous ASR
with a system that obtains a sparse spike train from
the spectrograms was presented [18]. On a contin-
uous digits recognition task with only clean speech,
it obtained worse results than a baseline system with
cepstral coefficients and hidden Markov models as clas-
sifiers, showing the actual limitations of the approach.

In this work, by making use of the time-frequency
representations of the auditory spectrograms of speech
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signals, a dictionary of two-dimensional optimal atoms
is estimated. Based on this STRF dictionary, a sparse
representation that emulates the cortical activation is
computed. This representation is then applied to a
phoneme classification task in clean and noisy condi-
tions, designed to evaluate the advantages and robust-
ness of the representation.

The organization of the paper is as follows. Section
2 presents the method for the speech signal represen-
tation that is used in this work. Section 3 presents
the information about the clean speech data and the
noise corpus, along with details about the AACR. Sec-
tion 4 presents the results obtained in the preliminary
tuning of the method and the phoneme classification,
compared with a classic parameterization in ASR. Fi-
nally, Section 5 summarizes the contributions of this
paper and outlines future research.

2. SPARSE REPRESENTATION

2. 1. Representations based on discrete

dictionaries

There are different ways of representing a signal us-
ing general discrete and finite dictionaries. For the
case where the dictionary forms a basis, in particular
for the orthonormal or unitary cases, the techniques
are quite simple. This is because, among other as-
pects, the representation is unique. However, in the
general case, a signal can have many different repre-
sentations for the same dictionary. In these cases, it is
possible to find a suitable representation if additional
criteria are imposed. For our problem, these criteria
can be motivated by obtaining a representation with
characteristics such as sparseness and independence.
Furthermore, it is possible to find an optimal dictio-
nary using these criteria that resembles phisiological
properties [16].

A sparse code is one which represents the informa-
tion in terms of a small number of descriptors taken
from a large set. This means that a small fraction of
the elements from the code are used actively to rep-
resent a typical pattern. In numerical terms, this sig-
nifies that the majority of the elements are zero, or
‘almost’ zero, most of the time [8].

It is possible to define measures or norms that allow
us to quantify how sparse a representation is; one way
is using either the �0 or the �1 norms. An alternative
way is to use a probability distribution. In general
one uses a distribution with a large positive kurtosis.
This results in a distribution with a large thin peak
at the origin and long tails on either side. One such
distribution is the Laplacian. In the statistical context
it is relatively simple to include aspects related to the
independence of the coefficients, which connect this
approach with ICA [15].

In the following subsection a formal description is
given of a statistical method which estimates an opti-

mal dictionary and the corresponding representation1.

2. 2. Optimal sparse and factorial

representations

Let �x ∈ RN be a signal to represent in terms of a
dictionary �Φ, with size N×M , and a set of coefficients
�a ∈ RM . In this way, the signal is described as:

�x =
∑
γ∈Γ

�φγaγ + �ε = �Φ�a + �ε , (1)

where �ε ∈ RN is the term for additive noise and M ≥
N . The dictionary �Φ is composed of a collection of
waveforms or parameterized functions (�φγ)γ∈Γ, where

each waveform �φγ is an atom of the representation.

Although (1) appears very simple, the main prob-

lem is that for the most general case �Φ, �a and �ε are
unknown, thus there can be an infinite number of pos-
sible solutions. Even in the noiseless case (when �ε = �0)

and given �Φ, if there are more atoms than samples of �x

then non-unique representations of the signal are pos-
sible. Therefore, an approach that allows us to select
one of these representations has to be found. In this
case –although this is a linear system– the coefficients
chosen to be part of the solution generally have a non-
linear relation with the data �x [2]. For the complete
and noiseless case the relationship between the data
and the coefficients is linear and it is given by �Φ−1. For
classical transformations, such as the discrete Fourier
transform, this inverse is simplified because �Φ−1 = �Φ∗

(with �Φ ∈ C
N×N and Φ∗(i, j) = Φ(j, i)).

When �Φ and �x are known, an interesting way to
choose the set of coefficients �a from among all the pos-
sible representations, consists of finding those ai which
make the representation as sparse and independent as
possible (in the sense that ai be i.i.d. variables). In
order to obtain a sparse representation, a distribution
with positive kurtosis can be assumed for each coef-
ficient ai. Further, assuming the statistical indepen-
dence of the ai, the imposed joint a priori distribution
satisfies:

P (�a) =
∏

i

P (ai) . (2)

The system (1) can also be seen as a generative
model. Following the terminology used in the ICA
field, this means that signal �x ∈ RN is generated
from a set of sources ai (in the form of a state vec-

tor �a ∈ RM ) using a mixture matrix �Φ, and including
an additive noise term �ε (Gaussian, in most cases).

The state vector �a can be estimated from the poste-
rior distribution [13]:

P (�a|�Φ, �x) =
P (�x|�Φ,�a)P (�a)

P (�x|�Φ)
. (3)

1Although two-dimensional patterns are used, for clearness

we only describe the one-dimensional case.
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Thus, a maximum a posteriori estimation of �a would
be:

�̂a = argmax
�a

[
log P (�x|�Φ,�a) + log P (�a)

]
. (4)

When P (�a|�Φ, �x) is sufficiently smooth, the maxi-
mum can be found by the method of gradient ascent.
The solution depends on the functional forms assigned
to the distributions for the noise and the coefficients,
giving rise to different methods for finding the coeffi-
cients. Lewicki and Olshausen [12] proposed the use of
a Laplacian a priori distribution with parameter βi:

P (ai) = α exp (−βi |ai|) , (5)

where α is a normalization constant. This distribu-
tion, with the assumption of Gaussian additive noise
�ε, results in the following updating rule for �a:

Δ�a = �ΦT �Λ�ε�ε− �βT |�a| , (6)

where �Λ�ε is the inverse of the noise covariance matrix

E
[
�εT �ε

]
, with E [·] denoting the expected value.

To estimate the value of �Φ, the following objective
function can be maximized [12]:

�̂
Φ = arg max

�Φ

[
L(�x, �Φ)

]
, (7)

where L = E
[
log P (�x|�Φ)

]
P (�x)

is the likelihood of the

data. This likelihood can be found by marginalizing
the following product of the conditional distribution
of the data, given the dictionary and the a priori dis-
tribution of the coefficients:

P (�x|�Φ) =

∫
RM

P (�x|�Φ,�a)P (�a) d�a , (8)

where the integral is over the M -dimensional state
space of �a.

The objective function in (7) can be maximized us-
ing gradient ascent with the following update rule for
the matrix �Φ:

Δ�Φ = η�Λε E
[
�ε�aT

]
P (�a|�Φ,�x)

, (9)

where η, in the range (0, 1), is the learning rate.

In this iterative way, the dictionary �Φ and the coef-
ficients �a were obtained.

2. 3. Matching Pursuit

Mallat and Zhang [14] proposed the Matching Pursuit
(MP) algorithm. MP is a general method to approx-
imate the solution of the signal representation prob-
lem, once the dictionary was provided or estimated.
Sparsity is directly included by choosing an appropri-
ate number of terms. Given an initial approximation
�x(0) = �0 and an initial residual �R(0) = �x, a sequence

of approximations is iteratively constructed. At step
k the parameter γ = γ̂ is selected, such that the atom
�φ
(k)
γ̂ best correlates with the residual �R(k), and a scalar

multiple of this atom is added to the approximation at
step k − 1, obtaining:

�x(k) = �x(k−1) + a
(k)
γ̂

�φ
(k)
γ̂ , (10)

where a
(k)
γ̂ = 〈�R(k−1), �φ

(k)
γ̂ 〉, and �R(k) = �x − �x(k). Af-

ter m steps an approximation to (1) is obtained, with

residue �R = �R(m). It is said that MP constitutes a
greedy solution to the sparse representation problem;
thereof it has the same advantages and disadvantages
of this type of optimization methods2.

2. 4. Approximated auditory cortical

representations

The properties of sensorial systems should coincide
with the statistics of their perceived stimuli [1]. If
a simple model of these stimuli is assumed, as the one
outlined in (1), it is possible to estimate their prop-
erties from the statistical approach presented in the
previous section.

The early auditory system codes important cues for
phonetic discrimination, such as the ones found in the
auditory spectrograms [3]. In these representations –of
a higher level than the acoustic one– some non-relevant
aspects of the temporal variability of the sound pres-
sure signal that arrives at the eardrum have been elimi-
nated. Hence, following this biological simile, the rep-
resentation becomes a good starting point to attain
more complex ones.

The obtainment of a dictionary of two-dimensional
atoms �Φ using (7), corresponding to time-frequency
features estimated from the auditory spectrogram of
�x, is equivalent to the STRF of a group of cortical
neurons [9]. Therefore, the activation level of each
neuron can be assimilated with the coefficients aγ in
(1).

3. MATERIALS AND METHODS

The feasibility to build a robust ASR system based on
the described scheme was studied for an initial task
of phoneme classification. The classifiers were trained
with the approximated auditory cortical patterns cal-
culated from clean speech and then tested with pat-
terns obtained from noisy speech, where controlled
amounts of white noise were added. The task consisted
in the classification of the set of five highly confusing
phonemes in English: /b/, /d/, /jh/, /eh/, /ih/.

For the estimation of the dictionaries, an auditory
spectrogram from the original clean signals sampled at
16 KHz was obtained by means of an early auditory
model [21]. In order to work with a simpler version of

2Greedily minimizes

‚
‚
‚�x− �Φ�a

‚
‚
‚
2
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the data, the frequency resolution was reduced. Thus,
auditory spectrograms with 64 frequency coefficients
per frame of 32 ms were obtained. After that, a sliding
window of one frame in length at intervals of 8 ms, was
applied to obtain the set of spectro-temporal patterns.

In a previous work [17] we trained different dic-
tionaries of two-dimensional atoms from the spectro-
temporal patterns using (9), with exhaustive tests for
both the complete and overcomplete cases. The best
performance was obtained with a dictionary size of 256
atoms (complete case), which is the configuration used
in this work.

In order to obtain the patterns that would feed the
classifiers, a speech utterance is processed by the au-
ditory model and its spectrogram is obtained. Then,
using the dictionary previously computed, the activa-
tion coefficients are calculated. This operation is car-
ried out using the MP algorithm explained in Section
2.3, obtaining patterns of 256 coefficients (recall that
only a subset of them is different from zero).

The noisy version of the corpus was obtained by
corrupting the clean data with white noise taken from
the NOISEX-92 database [20]. Noise was first conve-
niently re-sampled at 16 kHz with a resolution of 16
bits and then mixed additively at different signal-to-
noise levels.

The feasibility to build a robust ASR system based
on this scheme was studied by comparing the per-
formance in classification against a standard param-
eterization used in speech recognition, the mel fre-
quency cepstral coefficients (MFCC) [4]. The MFCC
was calculated with 12 coefficients plus the energy
(MFCC+E), as usual in speech recognition. The first
derivative of each coefficient was added in the common
way for two consecutive frames, resulting patterns in
R

26.
The classification experiments were carried out by

means of an artificial neural network, namely a multi-
layer perceptron (MLP). The training of the networks
was carried out with the standard backpropagation al-
gorithm with momentum term [6]. The architecture
of the MLPs consisted of one input layer, where the
number of input units depended on the dimension of
the patterns; one hidden layer with variable number
of units and one output layer of 5 units.

4. EXPERIMENTS AND RESULTS

The clean speech data was extracted from TIMIT cor-
pus, which contains a total of 6,300 sentences recorded
from 630 speakers (10 sentences each) [5]. In this work,
the train (38 speakers) and test (11 speakers) data cor-
responding to region DR1 was used.

Figure 1 shows some of the STRF corresponding to
the complete estimated dictionary �Φ ∈ R

256x256 using
patterns of 64x4 with 4 kHz in height and 32 ms in
width. The obtained STRFs present some character-
istics of typical behaviors. It can be observed that they
act like detectors of diverse significant phonetic clues

Figure 1: Example of spectro-temporal receptive fields
(STRF) calculated from the early auditory represen-
tation of phoneme utterances. Each STRF has 64 co-
efficients with 4 kHz in height and 4 coefficients with
32 ms in width. Two examples of biological STRF as
found in animals are shown to the left and compared
(in red) with similar patterns as estimated in the dis-
crete dictionary.

in the spectrogram: unique frequencies, stable speech
formant patterns, changes in the speech formants, un-
voiced or fricative components, and well-located pat-
terns in time and/or frequency. The similarities with
the STRF patterns found in mammals are also exposed
by comparing a pair of them with the estimated pat-
terns, as can be seen to the left of Fig. 1 [10].

The first series of experiments was devoted to find
the optimum number of coefficients in the Match-
ing Pursuit feature extraction scheme. Here, the ex-
ploration was carried out with 64, 128 and 192 se-
lected coefficients, corresponding to a quarter, a half
and three-fourths of the vector dimension (256 coeffi-
cients). Also, the best network architecture was found
by varying the number of hidden units with a powers-
of-two distribution, from 4 up to 1024 units. A subset
of the train partition of TIMIT region DR1 was used,
where a reduced training set was built from 5 sen-
tences of each speaker and a corresponding validation
set was built from other 2 sentences. Each experi-
ment consisted on 3 runs with different initial weights
of the networks at random, reporting the mean value
obtained on the validation set.

The results of the initial tuning are presented on
Fig. 2. It can be observed that the best performance,
a recognition rate of 79.73%, is achieved by holding
128 selected coefficients in the MP scheme. In these
conditions, from the total of atoms in the dictionary,
half of them would be encoding the important cues in
the auditory spectrogram. Also, this representation is
better processed by the neural network when it has the
same dimension in the hidden layer, in this case 256
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Figure 2: Initial tuning of number of selected coef-
ficients in the Matching Pursuit and number of hid-
den units in the MLPs, on a reduced training and
test data set. The best performance is obtained for
128 coefficients with a MLP of size 256/256/5 (in-
put/hidden/output units).

nodes, than atoms in the complete dictionary. There-
fore, this configuration of the MP algorithm and MLP
architecture is set for the following experiments.

With the aim to evaluate the performance of the
AACR in the presence of noise and to compare its ro-
bustness with a standard parameterization, the next
series of experiments consisted on the training and
evaluation of MLPs using the complete TIMIT region
DR1 (with the train and test partitions, respectively).
The MFCC feature extraction was fixed to 12 coeffi-
cients with frame energy and delta coefficients added,
in a vector of dimension 26. The architectures of the
MLPs were: 256/256/5 for the cortical patterns and
26/26/5 in the MFCC case.

In each experiment, a series of 10 runs with different
initial network weights at random was done and the
mean test value was reported. The obtained results
are shown in Fig. 3.

As can be seen, the correct classification rates on
the test data are better for the AACR than those ob-
tained with the MFCC parameterization. The perfor-
mance obtained at several SNR reveals an increasing
difference between both representations, from 0.71%
with clean speech up to 15.64% at 0 dB of SNR. This
behavior is given by the intrinsic robustness of the cor-
tical approach, where the more important activations
are retained with the Matching Pursuit algorithm.

5. CONCLUSIONS

In this paper, an approach to a robust speech recog-
nition task by means of a biologically-inspired feature
extraction method was presented. This technique cal-
culates an optimal dictionary of atoms from the au-

clean 50 25 15 10 5 0
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20

30

40

50

60

70

80

SNR (dB)

R
ec

og
ni

tio
n 

ra
te

 (%
)

AACR
MFCC

Figure 3: Recognition rate in percent for the set of 5
phonemes in the presence of different signal-to-noise
ratios (SNR), from clean speech up to equal energy
levels of noise and speech.

ditory spectrograms. The feature vectors consist of
the activation coefficients obtained with the Matching
Pursuit algorithm, which selects the more representa-
tive ones. In this way, a sort of thresholding of noisy
components is applied. The proposed method was ap-
plied to the classification of highly confusing phonemes
in English.

The recognition experiments were carried out using
multilayer perceptrons. The obtained results showed
that the AACR improves the recognition rate over a
standard MFCC parameterization, for both the clean
case and in the presence of additive white noise.

The feasibility to build a robust speech recognizer
based on the cortical representation was explored here
using a simple thresholding technique on the parame-
terization. Future direction in this investigation could
be devoted to optimize the denoising of the speech
activation patterns and to extend these ideas to the
continuous speech recognition task.
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