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Abstract. The purpose of this work is to evaluate different feature extraction alternatives to 
detect the event related evoked potential signal on brain computer interfaces, trying to 
minimize the time employed and the classification error, in terms of sensibility and specificity 
of the method, looking for alternatives to coherent averaging. In this context the results 
obtained performing the feature extraction using discrete dyadic wavelet transform using 
different mother wavelets are presented. For the classification a single layer perceptron was 
used. The results obtained with and without the wavelet decomposition were compared; 
showing an improvement on the classification rate, the specificity and the sensibility for the 
feature vectors obtained using some mother wavelets. 

1. Introduction 
The technique most commonly employed to improve the Signal to Noise Ratio (SNR), and estimate 
the Evoked Potential signal (EP), is coherent averaging. It consists on applying successive stimuli and 
average the electrical activity registered synchronized with the time instant in which the stimulus is 
applied. 
Nevertheless coherent averaging is of massive use, it presents some issues that make desirable the 
finding of alternatives to this technique. One of these issues is the time required to achieve an accurate 
estimation of the EP, another one is that it assumes that the EP remains stationary from trial to trial 
and that the noise is white with zero mean, which is not completely true in general. As a consequence 
the result obtained from the coherent averaging is a bad estimation of the EP signal [1]. 
On the other hand there are situations in which it is not necessary to estimate the signal but rather to 
detect if it is present or not. This is the case of Brain Computer Interfaces (BCI). There are many BCI 
paradigms that can be initially classified in two groups: a) Invasive: in this case the signals are 
provided by intracranial or intracortical registers and b) Non invasive: using surface registers, from 
which the most common are the ones based on electroencephalography (EEG). To this last group 
belongs the paradigm based on Event Related Potentials (ERP) [2]. 
ERP are potentials of latencies larger than 100 ms, and their manifestation depends of psychological 
and cognitive processes. The most studied ERP is the P300 signal. When visual, auditory or 
somatosensory infrequent or particularly meaningful stimuli are mixed with frequent stimuli, the first 
evoke a potential over the parietal cortex with a positive peak close to the 300 ms that can be si
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registered on the EEG. To estimate the ERP signal it is necessary to improve the initial SNR by means 
coherent averaging. 
Donchin et al [3] were the first to use the p300 on a BCI with visual stimuli organized by rows and 
columns over a character matrix that allowed its spelling. The most outstanding advantage of this 
technique is that it does not require the user to train, and on the same time it results natural on target 
selection tasks e.g. word spelling, direction selection, menu selection, among others. Many works 
suggest that P300 based BCIs can achieve a data communication rate of 25 bits/min working online 
[4]. 

 
Figure 1. General architecture of a BCI for device control. 

 
In Figure 1 is shown the general architecture of a BCI proposed by Millán et al [5], were its functional 
blocks are described, in which a subject controls a device, e.g. a wheelchair, a robotic arm or a 
joystick. The user can also check the device state trough feedback that allows him to acknowledge the 
result of his efforts to control it. 
Recently, with the advance in algorithms on machine learning and technologies of digital processing, a 
part of the investigation on BCI is the exploration of feature extraction techniques and signal 
classification.   

On a BCI like the one described the following blocks can be clearly distinguished: 
a) Instrumentation block: is the acquisition and conditioning system for the electroencephalogram. 
b) Feature extraction block: its objective is to generate a suitable representation of the original 

signal (pattern in the context of Pattern Recognition) that allows improving the performance of the 
classifier. 

c) Classifier block: its function is to identify to which class does a pattern belongs to. 
In this particular problem the last two blocks are a pattern recognition system where the 

classification problem to solve has two possible classes: registers with ERP and registers without ERP. 
The objective of this work is to evaluate different feature extraction alternatives to detect the ERP 
signal in BCI minimizing the time employed, and maximizing as well the accuracy, sensitivity and 
specificity of the method. We present here some preliminary results of applying a signal 
decomposition technique based on dictionaries of time-frequency atoms, which are generated using 
Wavelet multiresolution decomposition. 

2. Methodology 

2.1. ERP registers 
In this work there were used registers obtained with amplifiers Grass® model 8-18-36, the acquisition 
parameters of the EEG signals are displayed on table I. The BCI2000 software developed in the 
Wadsworth Center (Albany, New York) [6] was used.  
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Table 1. EEG acquisition parameters. 
Parameter Description 

Channels Fz, Cz, Pz, Oz, C3, C4, M1 (reference) y M2 (ground) 
Sample Frequency 1024 Hz 

 
To minimize the amount of information presented to the classifier successive decimations were 
performed over the temporal patterns, with the objective of setting the amount by which the number of 
samples could be reduced without reducing the performance of the classifier. Care was taken to avoid 
the aliasing by applying a Chebyshev filter. The decimations were made by multipliers of two for 
convenience. 
For the stimulation, the Donchin speller [3] was used, although the alphabet characters were replaced 
by icons that control the movement of a wheelchair [7]. 

2.2. Feature Extraction 
There are many alternatives for the feature extraction block, some more suitable than others depending 
on the signal and the features that are intended to be emphasized. In this work we propose to use 
approximation methods of approximation based on dictionaries of discrete signals like the used in 
[8],[9]. In these methods the signal of interest is considered as an element of a signal space that can be 
represented in terms of a dictionary or base that remark meaningful features. In this context the signal 
x ∈ RN can be expressed as a function of an appropriate orthogonal base using the equation a = φ.x 

where a ∈ RN is the vector expressed in the new base and φ ∈ RNxN is a matrix which columns are the 
elements of the new base, also called atoms [8],[9]. In this work the vector a was built by means of a 
multiresolution decomposition produced by the Discrete Dyadic Wavelet Transform (DDWT) using 
mother wavelets of different families which were selected by their “visual” resemblance with the P300 
peak. In this process, the signal is separated in a portion of high frequencies (called detail) and a 
portion of low frequencies (called approximation), each with half of samples of the original signal, 
which represent the first level of decomposition. The decomposition in each posterior level is made 
only over the approximation of the previous one, obtaining another detail and approximation portions, 
with half the samples of the previous approximation.  
Previous to the application of the DDWT the registers (signals) were filtered using a low pass 
Chebyshev digital filter of order eight with a cutoff frequency that depended on the subsequent 
subsampling, after this the registers were subsampled. After the DDWT different levels of details were 
selected with the approximation, with these coefficients there were formed vectors, one corresponding 
to each trial. These vectors formed the groups of patterns to present to the classifier. The coefficient 
groups were selected taking into account that the ERPs are formed by low frequency components, 
therefore the approximations were always kept and the amount of detail levels used were varied, 
always keeping the details of the bigger scales and adding detail coefficients of the smaller scales to be 
able to define which of the detail scales have useful information for the classification process.  

2.3. Classifier 
Assuming that the problem classes are linearly separable a single layer perceptron was used.  

2.4. Performance 
The indices chosen to evaluate the performance of classification were the accuracy, sensitivity and 
specificity, defined as follows: 
 

patterns of Total
 patterns classifiedCorrectly Accuracy =

FNTP
TPySensibilit
+

=  
FPTN

TNtyEspecifici
+

=  
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where TP are true positives values, TN are true negatives values, FP are false positives values and FN 
are false negatives values. 

3. Results 

3.1. Registers 
In Figure 2 are shown the 300 trials averages ERP obtained in simultaneous registers on positions Fz, 
Cz, Pz, Oz, C3 y C4 in their respective positions. It can be seen that the morphology of ERP depends on 
the position of the electrodes on which the signal is acquired, and that in some positions it manifests 
better than in others. From the six were selected two channels on which the P300 peak is manifested 
with a different polarity, this were channels Cz and Oz. On them it was evaluated how does the amount 
of trials to average influence the time frequency analysis. 

 

Figure 2. ERP waveform in different positions of the scalp. 
 
Figure 3 shows the scalograms that result from applying Continuous Wavelet Transform (CWT), using 
Biorthogonal 3.9 as mother wavelet, in averages of 10, 5 and 1 trials to patterns with and without ERP 
from channels Cz and Oz. It can be seen that the scalograms show differences between the patterns 
with and without ERP, even though it is clearer on channel Oz. This situation is maintained noticeably 
for averages of up to three trials (not shown in this work) for channel Oz. Due to these we worked with 
data from channel Oz. 
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Figure 3. Scalograms of Cz and Oz channels with different amount of averaged trials 
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In Figure 4 the averages obtained from registers corresponding to channel Oz are shown; on blue line 
the average of tree hundred trials with ERP while on red line is displayed the average of tree hundred 
trials without ERP. 
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Figure 4. Averages with and without ERP on channel Oz. 

3.2. Subsample 
Table II summarizes the performance presenting single trial temporal decimated registers to the 
classifier. It can be seen that systems performance was maximum when decimating by four. Because 
of that decimation by four was set to be used previously to the application of the DDWT. 
 

Table II. Systems performance for different decimation levels 

Decimation Accuracy Sensitivity Specificity 
No decimation 63 % 0,7 0,56 

x 2 63 % 0,72 0,54 
x 4 64,75 % 0,755 0,54 
x 8 61,75 % 0,69 0,54 

x 16 62 % 0,7 0,53 
x 32 62 % 0,69 0,55 

3.3. ERP detection 
Considering the results obtained in the time-scale analysis previously described, and the performance 
of the system for the decimated temporal patterns, sets of temporal patterns that consisting of single 
trials corresponding to the Oz channel were generated, all decimated four times. Resultant from the 
multiresolution decomposition of each one of the temporary decimated patterns, there were generated 
patterns consisting the wavelet coefficients corresponding to the approximation of level six and the 
details of levels one to six. Approximation of level six was always conserved, because by frequency 
considerations it was assumed that the in that level of scale, the patterns contained information on the 
presence or not of the ERP. Considering each detail and approximation has half the samples of the 
approximation in the previous level, starting with a signal of 256 samples, is arrived, the sixth 
approach has only four samples. In table III the amount of samples of the approximation in the sixth 
level and of each one of the details in different levels is detailed for the decimated patterns of 256 
samples. 
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Table III. Amount of samples for different decomposition levels 

Decomposition depth Number of samples 
Level 1 Detail 128 
Level 2 Detail 64 
Level 3 Detail 32 
Level 4 Detail 16 
Level 5 Detail 8 

Detail 4 
Level 6 

Approximation 4 
 
From the decimated single trial patterns the decomposition was made with different wavelet families, 
obtaining in this form the wavelet coefficients corresponding to the approximation in the sixth level 
and the details of levels one to six. Then the coefficients corresponding to the sixth level 
approximation and to the details of different levels were taken, to form with these the patterns that 
were presented to the classifier. 
The table IV presents the performance of the single layer perceptron in the detection of patterns 
corresponding to decompositions of the patterns with some representative mother wavelets of, taking 
in each case different amount of details. 
 

Table IV. System performance for different wavelets and details coefficients combinations 

                 Wavelet: Biortogonal 3.9 Wavelet: Daubechies 9 

Details 
Accuracy 

[%] 
Sensitivity Specificity 

Accuracy 
[%] 

Sensitivity Specificity 

1-6 61.00 0.68 0.54 63.25 0.71 0.55 
2-6 61.50 0.71 0.52 63.75 0.72 0.55 
3-6 59.50 0.69 0.5 65.25 0.70 0.60 
4-6 63.75 0.75 0.53 66.25 0.72 0.60 
5-6 65.00 0.77 0.53 69.25 0.74 0.64 

              Wavelet: Coiflets 4 Wavelet: Symlets 8 

Details 
Accuracy 

[%] 
Sensitivity Specificity 

Accuracy 
[%] 

Sensitivity Specificity 

1-6 61.00 0.70 0.52 63.00 0.73 0.53 
2-6 64.25 0.75 0.54 64.5 0.73 0.56 
3-6 66.75 0.75 0.58 62.50 0.72 0.53 
4-6 64.00 0.76 0.52 65.75 0.76 0.55 
5-6 64.75 0.75 0.55 60.50 0.72 0.49 

4. Conclusions 
 

From the analysis of results it can be seen that the best performance is superior when using 
Daubechies 9 as mother wavelet for the decomposition, this can be seen in general for every mother 
wavelet belonging to this family that were used. It can also be noticed that the system performance is 
lower when performing the decomposition with some wavelet families than using a temporal base. It is 
also important to highlight that the sensibility was in general bigger than the specificity, result that in 
case of being consistent must be taken into account on the brain computer interface design with the 
objective of improving its efficiency. 
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A similar analysis was also made using averages of 2, 3, 4, 5, 6, 7, 8, 9 and 10 trials reaching accuracy 
values of about 75% with averages of ten trials applying DDWT and almost of 70% presenting to the 
SLP the ten trial averages of temporal registers. 
In spite of being an initial step in this line of work encouraging results have been achieved, since using 
a simple and probably not optimal classifier and using registers of only one channel with averages of 
two trials acceptable classification rates were achieved. 
However, to achieve a practically exploitable development the performance of the system should be 
improved; to achieve this goal some possible directions to consider are the inclusion of information 
obtained from other channels and the experimentation with other classifiers. Another possibility 
consists in designing a method to estimate an optimal discriminative dictionary. 
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