
Evolutionary cepstral coefficients

Leandro D. Vignolo∗, Hugo L. Rufiner, Diego H. Milone

Centro de Investigación y Desarrollo en Señales, Sistemas e Inteligencia Computacional,
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Abstract

Evolutionary algorithms provide flexibility and robustness required to find
satisfactory solutions in complex search spaces. This is why they are success-
fully applied for solving real engineering problems. In this work we propose
an algorithm to evolve a robust speech representation, using a dynamic data
selection method for reducing the computational cost of the fitness compu-
tation while improving the generalisation capabilities. The most commonly
used speech representation are the mel-frequency cepstral coefficients, which
incorporate biologically inspired characteristics into artificial recognizers. Re-
cent advances have been made with the introduction of alternatives to the
classic mel scaled filterbank, improving the phoneme recognition performance
in adverse conditions.

In order to find an optimal filterbank, filter parameters such as the central
and side frequencies are optimised. A hidden Markov model is used as the
classifier for the evaluation of the fitness for each individual. Experiments
were conducted using real and synthetic phoneme databases, considering
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different additive noise levels. Classification results show that the method
accomplishes the task of finding an optimised filterbank for phoneme recog-
nition, which provides robustness in adverse conditions.

Key words:

Automatic speech recognition, evolutionary computation, phoneme
classification, cepstral coefficients

1. Introduction

Automatic speech recognition (ASR) systems require a preprocessing
stage to emphasize the key features of phonemes, thereby allowing an im-
provement in classification results. This task is usually accomplished using
one of several different signal processing techniques such as filterbanks, linear
prediction or cepstrum analysis [1]. The most popular feature representation
currently used for speech recognition is mel-frequency cepstral coefficients
(MFCC) [2]. MFCC is based on a linear model of voice production together
with the codification on a psychoacoustic scale.

However, due to the degradation of recognition performance in the pres-
ence of additive noise, many advances have been conducted in the devel-
opment of alternative noise-robust feature extraction techniques. Moreover,
some modifications to the biologically inspired representation were intro-
duced in recent years [3, 4, 5, 6]. For instance, Slaney introduced an al-
ternative [7] to the feature extraction procedure. Skowronski and Harris
[8, 9] introduced the human factor cepstal coefficients (HFCC), consisting in
a modification to the mel scaled filterbank. They reported results showing
considerable improvements over the MFCC. The weighting of MFCC accord-
ing to the signal-to-noise ratio (SNR) on each mel band was proposed in [10].
For the same purpose, the use of Linear Discriminant Analysis in order to
optimise a filterbank has been studied in [11]. In other works the use of evolu-
tive algorithms have been proposed to evolve features for the task of speaker
verification [12, 13]. Similarly, in [14] an evolutive strategy was introduced
in order to find an optimal wavelet packet decomposition.

Then, the question arises if any of these alternatives is really optimal for
this task. In this work we employ an evolutionary algorithm (EA) to find
a better speech representation. An EA is an heuristic search algorithm in-
spired in nature, with proven effectiveness on optimisation problems [15]. We
propose a new approach, called evolved cepstral coefficients (ECC), in which
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Figure 1: General scheme of the proposed method.

an EA is employed to optimise the filterbank used to calculate the cepstral
coefficients (CC). The ECC approach is schematically outlined in Figure 1.
To evaluate the fitness of each individual, we incorporate a hidden Markov
model (HMM) based phoneme classifier. The proposed method aims to find
an optimal filterbank, meaning that it results in a speech signal parameter-
isation which improves standard MFCC on phoneme classification results.
Prior to this work, we obtained some preliminary results, which have been
reported in [16].

A problem arises in this kind of optimisation because over-training might
occur and resulting filterbanks could highly depend on the training data
set. This problem could be overcome by increasing the amount of data,
though, much more time or computational power would be needed for each
experiment. In this work, instead, we incorporate a training subset selection
method similar to the one proposed in [17]. This strategy enables us to train
filterbanks with more patterns, allowing generalisation without increasing
computational cost.

This paper is organized as follows. First we introduce some basic con-
cepts about EAs and give a brief description of mel-frequency cepstral coef-
ficients. Subsequently, the details of the proposed method are described and
its implementation is explained. In the last sections, the results of phoneme
recognition experiments are provided and discussed. Finally, some general
conclusions and proposals for future work are given.

1.1. Evolutionary algorithms

Evolutionary algorithms are search methods based on the Darwinian the-
ory of biological evolution [18]. This kind of algorithms present an implicit
parallelism that may be implemented in a number of ways in order to increase
the computational speed [14]. Usually an EA consists of three operations:
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selection, variation and replacement [19]. Selection gives preference to bet-
ter individuals, allowing them to continue to the next generation. The most
common variation operators are crossover and mutation. Crossover com-
bines information from two parent individuals into offspring, while mutation
randomly modifies genes of chromosomes, according to some probability, in
order to maintain diversity within the population. The replacement strat-
egy determines which of the current members of the population, should be
replaced by the new solutions. The population consists of a group of indi-
viduals whose information is coded in the so-called chromosomes, and from
which the candidates are selected for the solution of a problem. Each in-
dividual performance is represented by its fitness. This value is measured
by calculating the objective function on a decoded form of the individual
chromosome (called the phenotype). This function simulates the selective
pressure of the environment. A particular group of individuals (the parents)
is selected from the population to generate the offspring by using the vari-
ation operators. The present population is then replaced by the offspring.
The EA cycle is repeated until a desired termination criterion is reached
(for example, a predefined number of generations, a desired fitness value,
etc.). After the evolution process the best individual in the population is the
proposed solution for the problem [20].

1.2. Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients are the most commonly used alterna-
tive to represent speech signals. This is mainly because the technique is
well-suited for the assumptions of uncorrelated features used for the HMM
parameter estimation. Moreover, MFCC provide superior noise robustness
in comparison with the linear-prediction based feature extraction techniques
[21].

The voice production model commonly used in ASR assumes that the
speech signal is the output of a linear system. This means that the speech
is the result of a convolution of an excitation signal, x(t), with the impulse
response of the vocal tract model, h(t),

y(t) = x(t) ∗ h(t), (1)

where t stands for continuous time. In general only y(t) is known, and it is
frequently desirable to separate its components in order to study the features
of the vocal tract response h(t). Cepstral analysis solves this problem by
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Figure 2: Magnitude spectrums of the excitation signal X(f) and the vocal tract impulse
response H(f) from simulated voiced phonemes.

taking into account that if we compute the Fourier transform (FT) of (1)
then the equation in the frequency domain is a product:

Y (f) = X(f)H(f), (2)

where variable f stands for frequency, X(f) is the excitation spectrum and
H(f) is the vocal tract frequency response. Then, by computing the loga-
rithm from (2), this product is converted into a sum, and the real cepstrum
C(t) of a signal y(t) is computed by:

C(t) = IFT{loge |FT{y(t)}|}, (3)

where IFT is the inverse Fourier transform. This transformation has the
property that its components, which were nonlinearly combined in time do-
main, are linearly combined in the cepstral domain. This type of homomor-
phic processing is useful in ASR because the rate of change of X(f) and
H(f) are different from each other (Figure 2). Because of this property,
the excitation and the vocal tract response are located at different places
in the cepstral domain, allowing them to be separated. This is useful for
classification because the information of phonemes is given only by H(f).

In order to combine the properties of the cepstrum and the results about
human perception of pure tones, the spectrum of the signal is decomposed
into bands according to the mel scale. This scale was obtained through hu-
man perception experiments and defines a mapping between the physical
frequency of a tone and the perceived pitch [1]. The mel scaled filterbank
(MFB) is comprised of a number of triangular filters whose center frequencies
are determined by means of the mel scale. The magnitude spectrum of the
signal is scaled by these filters, integrated and log compressed to obtain a log-
energy coefficient for each frequency band. The MFCC are the amplitudes
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Figure 3: Mel scaled filterbank in the frequency range from 0 to 8kHz.

resulting from applying the IFT to the resulting sequence of log-energy co-
efficients [22]. However, because the argument of the IFT is a real and even
sequence, the computation is usually simplified with the cosine transform
(CT). Figure 3 shows a MFB comprised of 26 filters in the frequency range
from 0 to 8 kHz. As it can be seen, endpoints of each filter are defined
by the central frequencies of adjacent filters. Bandwidths of the filters are
determined by the spacing of filter central frequencies which depend on the
sampling rate and the number of filters. That is, if the number of filters
increases, the number of MFCC increases and the bandwidth of each filter
decreases.

2. MATERIALS AND METHODS

This section describes the proposed evolutionary algorithm, the speech
data and the preprocessing method. First, the details about the speech
corpus are given and the ECC method is explained. In the next subsection
some considerations about the HMM based classifier are discussed and finally
the data selection method for resampling training is explained.

2.1. Speech corpus and processing

For the experimentation, both synthetic and real phoneme databases have
been used. In the first case, five Spanish vowels were modelled using the clas-
sical linear prediction coefficients [1], which were obtained from real utter-
ances. We have generated different train, test and validation sets of signals
which are 1200 samples in length and sampled at 8 kHz. Every synthetic
utterance has a random fundamental frequency, uniformly distributed in the
range from 80 to 250 Hz. In this way we simulate both male and female
speakers. First and second resonant frequencies (formants) were randomly
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Figure 4: Synthetic phoneme database. a) First and second formant frequency distribu-
tion. b) Phoneme examples.

modified, within the corresponding ranges, in order to generate phoneme
occurrences.

Our synthetic database included the five Spanish vowels /a/, /e/, /i/,
/o/ and /u/, which can be simulated in a controlled manner.

Figure 4 shows the resulting formant distribution and some synthetic
phoneme examples. White noise was generated and added to all these syn-
thetic signals, so that the SNR of each signal is random and it varies uniformly
from 2 dB to 10 dB. As these vowels are synthetic and sustained, the frames
were extracted using a Hamming window of 50 milliseconds length (400 sam-
ples). The use of a synthetic database allowed us to maintain controlled
experimental conditions, in which we could focus on the evolutive method,
designed to capture the frequency features of the signals while disregarding
temporal variations.

Real phonetic data was extracted from the TIMIT speech database [23].
Speech signals were selected randomly from all dialect regions, including both
male and female speakers. Utterances were phonetically segmented to obtain
individual files with the temporal signal of every phoneme occurrence. White
noise was also added at different SNR levels. In this case, the sampling fre-
quency was 16 kHz and the frames were extracted using a Hamming window
of 25 milliseconds (400 samples) and a step-size of 200 samples. All possible
frames within a phoneme occurrence were extracted and padded with zeros
where necessary. The English phonemes /b/, /d/, /eh/, /ih/ and /jh/ were
considered. The occlusive consonants /b/ and /d/ are included because they
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are very difficult to distinguish in different contexts. Phoneme /jh/ presents
special features of the fricative sounds. Vowels /eh/ and /ih/ are commonly
chosen because they are close in the formant space. This group of phonemes
was selected because they constitute a set of classes which is difficult to
classify [24].

For simplicity we introduced the steps for the computation of CC in the
continuous time and frequency domains. Although, in practice we use digital
signals and the discrete versions of the transforms mentioned in Section 1.2.
For both MFCC and ECC the procedure is as follows. First, the spectrum
of the frame is normalised and integrated by the triangular filters, and every
coefficient resulting from integration is then scaled by the inverse of the
area of the corresponding filter. As in the case of Slaney’s filterbank [7], we
give equal weight to all coefficients because this is shown to improve results.
Then the discrete cosine transform (DCT) is computed from the log energy
coefficients. As the number of filters nf in each filterbank is not fixed, we set
the number of output DCT coefficients to [nf/2] + 1.

2.2. Evolutionary cepstral coefficients

The MFB shown in Figure 3, commonly used to compute cepstral coeffi-
cients, reveals that the search for an optimal filterbank can involve adjusting
several of its parameters, such as: shape, amplitude, position and size of each
filter. However, trying to optimise all the parameters together is extremely
complex, so we decided to maintain some of the parameters fixed.

We carried out this optimisation in two different ways. In the first case,
we considered non-symmetrical triangular filters, determined by three param-
eters each. These three parameters correspond to the frequency values where
the triangle for the filter begins, where the triangle reaches its maximum, and
where it ends. This is depicted in Figure 5, where the mentioned parameters
are called ai, bi and ci respectively. They are coded in the chromosome as
integer values, indexing the frequency samples. The size and overlap between
filters are left unrestricted in this first approach. The number of filters was
also optimised by adding one more gene to the chromosome (nf in Figure
5). This last element in the chromosome indicates that the first nf filters are
currently active. Hence, the length of each chromosome is three times the
maximum number of filters allowed in a filterbank, plus one.

In a second approach, we decided to reduce the number of optimisation
parameters. Here, triangular filters were distributed along the frequency
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Figure 5: Scheme of the chromosome codification.

band, with the restriction of half overlapping. This means that only the cen-
tral positions (parameters ci in Figure 5) were optimised, and the bandwidth
of each filter was adjusted by the preceding and following filters. In this case,
the number of filters was optimised too.

In other approaches [13], polynomial functions were used to encode the
parameters which were optimised. Here, in contrast, all the parameters are
directly coded in the chromosome. In this way the search is simpler and the
parameters are directly related to the features being optimised.

Each chromosome represents a different filterbank, and they are initialized
with a random number of active filters. In the initialization, the position of
the filters in a chromosome is also random and follows a discrete uniform
distribution over the frequency bandwidth from 0 Hz to half the sampling
frequency. The position, determined in this way, sets the frequency where
the triangle of the filter reaches its maximum. Then, in the case of the three-
parameter filters, a binomial distribution centred on this position is used to
initialize the other two free parameters of the filter.

Before variation operators are applied, the filters in every chromosome
are sorted by increasing order with respect to their central position. A chro-
mosome is coded as a string of integers and the range of values is determined
by the number of samples in the frequency domain.

The EA uses the roulette wheel selection method [25], and elitism is
incorporated into the search due to its proven capabilities to enforce the
algorithm’s convergence under certain conditions [18]. The elitist strategy
consists in maintaining the best individual from one generation to the next
without any perturbation. The variation operators used in this EA are mu-
tation and crossover, and they were implemented as follows. Mutation of a
filter consists in the random displacement of one of its frequency parameters,
and this modification is made using a binomial distribution. This mutation
operator can also change, with the same probability, the number of filters in
a filterbank. Our one-point crossover operator interchanges complete filters
between different chromosomes. Suppose we are applying the crossover op-
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erator on two parents, for instance A and B. Then, if parent B contains more
active filters than parent A, the crossover point is a random value between 1
and the nf value of parent A. All genes (filters and nf) beyond that point in
either chromosome string are swapped between the two parents, resulting in
an offspring with the same nf of the first parent and an offspring with the
same nf of the second parent.

The selection of individuals is also conducted by considering the filterbank
represented by a chromosome. The selection process should assign greater
probability to the chromosomes providing the better signal representations,
and these will be those that obtain better classification results. The proposed
fitness function consists of a phoneme classifier, and the recognition rate will
be the fitness value for the individual being evaluated.

2.3. HMM based classifier

In order to compare the results to those of state of the art speech recog-
nition systems, we used a phoneme classifier based on HMM with Gaussian
mixtures (GM). This fitness function uses tools from the HMM Toolkit [26]
for building and manipulating hidden Markov models. These tools rely on
the Baum-Welch algorithm [27] which is used to find the unknown parame-
ters of an HMM, and on the Viterbi algorithm [28] for finding the most likely
state sequence given the observed events in the recognition process.

Conventionally, the energy coefficients obtained from the integration of
the log magnitude spectrum are transformed by the DCT to the cepstral
domain. Besides the theoretical basis given on Section 1.2, this has the effect
of removing the correlation between adjacent coefficients. Moreover, it also
reduces the feature dimension.

Even though DCT has a fixed kernel and cannot decorrelate the data as
thoroughly as data-based transforms [29], MFCC are close to decorrelated.
The DCT produces nearly uncorrelated coefficients [30], which is desirable for
HMM based speech recognizers using GM observation densities with diagonal
covariance matrices [31].

2.4. Dynamic subset selection for training

A problem in evolutionary optimisation is that it requires enormous com-
putational time. Usually, fitness evaluation takes the most time since it re-
quires the execution of some kind of program against problem specific data.
In our case, for instance, we need to train and test an HMM based classifier
using a phoneme database. This implies that the time for the evolution is
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Figure 6: Scheme of the dynamic subset selection method.

proportional to the size of the data needed for fitness evaluation, as well as
the population size and the number of generations. On the other hand, the
data used for fitness evaluation dramatically influences the generalisation ca-
pability of the optimised solution. Hence, there is a trade off between the
generalisation capability and the computational time.

In this work we propose the reduction of computational costs and the
improvement of generalisation capability by evolving filterbank parameters
on a selected subset of train and test patterns, which is changed during
each generation. The idea of active data selection in supervised learning was
originally introduced by Zhang et al. for efficient training of neural networks
[32, 33]. Motivated by this work, Gathercole et al. introduced some training
subset selection methods for genetic programming [17]. These methods are
also useful in evolutionary optimisation, allowing us to significantly reduce
the computation time while improving generalisation capability.

While in [17] only one training data set was considered, our subset se-
lection method consists in changing the test subset, as well as the training
subset, in every generation of the EA. For the test set, the idea is to focus
the EA attention onto the cases that were mostly misclassified in previous
generations and the cases that were not used recently.

In order to illustrate this, an example with two classes of two-dimensional
patterns is outlined in Figure 6. The subset is selected from the original data
set according to the classification results. The algorithm randomly selects
a number of cases from the whole training and test sets every generation,
and a test case has more probability to be selected if it is difficult or has not
been selected for several generations. Another difference with the method
proposed in [17] is that the size of test and train subsets remains strictly the
same for all generations. In the first generation the testing subset is selected
assigning the same probability to all cases. Then, during generation g, a
weight Wi(g) is determined for each test case i. This weight is the sum of
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the current difficulty of the case, Di(g), raised to the power d, and the age
of the case, Ai(g), raised to the power a,

Wi(g) = Di(g)d + Ai(g)a. (4)

The difficulty of a test case is given by the number of times it was mis-
classified and its age is the number of generations since it was last selected.
Exponents d and a determine the importance given to difficult and unse-

lected cases respectively. Given the sample size and other characteristics of
the training data, these parameters are empirically determined. Each test
case is given a probability Pi(g) of being selected. This probability is given
by its weight, multiplied by the size of the selected subset, S, and divided by
the sum of the weights of all the test cases:

Pi(g) =
Wi(g) ∗ S
∑

j Wj(g)
. (5)

When a test case i is selected, its age Ai is set to 1 and, if it is not selected,
its age is incremented. While evaluating the EA population, difficulty Di is
incremented each time the case i is misclassified.

However, a problem arises when using an elitist strategy together with this
method. As train and test subsets change, the best individual at a given time
may no longer be the best one for the next generation. Although, probably it
is still a good individual, we decided to maintain the best chromosome from
the previous generation and assign the classification result from the current
subset as its fitness.

3. Results and discussion

3.1. Synthetic Spanish phonemes

We conducted different EA runs and we found the best results when we
evolved only the central filter positions and the number of filters, which we
allowed to vary from 17 to 32. For the EA, the population size was set to 100
individuals and crossover rate was set to 0.8. The mutation rate, meaning
the probability of a filter to have one of its parameters changed, was set to
0.1.

During the EA runs we used a set of 500 training signals and a different set
of 500 test signals to compute the fitness for every individual. In this case,
training and testing sets remained unchanged during the evolution. Each
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Table 1: Average classification rates (percent) for synthetic phonemes.

FB # filters # coeff
Validation test
DCM FCM

EFB 1 17 9 95 .20 97.00

EFB 2 18 10 95.40 96 .80
EFB 3 18 10 93.00 96 .40
EFB 4 17 9 94.60 96.20
MFB 23 13 94.80 96.20
MFB 17 9 93.00 95.20

run was terminated after 100 generations without any fitness improvement.
When a run was finished, we took the twenty best filterbanks according to
their fitness, and we made a validation test with another set of 500 signals.
From this validation test we selected the two best filterbanks, discarding those
that were over-optimised (those with higher fitness but with lower validation
result).

Table 1 summarizes the validation results for filterbanks from two dif-
ferent optimisations, and includes the classification results obtained using
the standard MFB on the same data sets. The fourth column contains the
classification results obtained when using an HMM with diagonal covariance
matrices (DCM), and the fifth column contains the results obtained when us-
ing an HMM with full covariance matrices (FCM). Evolved filterbanks (EFB)
1 and 2 were obtained using HMM with DCM as fitness during the optimi-
sation, while EFBs 3 and 4 were obtained using HMM with FCM. It can be
observed that we obtained filterbanks that perform better than MFB when
using FCM-HMM. Also, it is important to notice that MFB also performs
better using FCM-HMM.

Figure 7 shows these four EFBs. One feature they all have in common is
the high density of filters from approximately 500 to 1000 Hz, which could be
related to the distribution of the first frequency formant (Figure 4). More-
over, considering the second formant frequency, it can be noticed that these
groups of filters could distinguish phonemes /o/ and /u/ from the others.
Another common trait in these four filterbanks is that the frequency range
from 0 to 500 Hz is covered by only two filters, although, in EFB 3 there is
a narrow filter from 0 to 40 Hz, besides these two. This narrow filter isolates
the peaks at zero frequency from the phoneme information. Another likeness
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Figure 7: Filterbanks optimised for phonemes /a/, /e/, /i/, /o/ and /u/ from our synthetic
database.

is that, in the band from approximately 1000 to 2500 Hz, the four filterbanks
show similar filter distribution. On the other hand, a feature which is present
only in the second filterbank is the attention given to high frequencies, as
opposed to MFB, and taking higher formants into account.

3.2. Real English phonemes

In the second group of experiments the best results were obtained when
considering non-symmetrical triangular filters, determined by three param-
eters each. Also in this case, the number of filters in the filterbanks was
allowed to vary from 17 to 32. For the fitness computation we used a dy-
namic data partition of 1000 training signals and 400 test signals, and an
HMM based classifier with FCM. The data partition used during the EA
runs was changed every generation according to the strategy described in
Section 2.4, and phoneme samples were dynamically selected from a total of
6045 signals available for training and 1860 signals available for testing. As
mentioned in Section 2.4, some preliminary experiments were carried out in
order to set difficulty and age exponents (parameters d and a in equation
4). Given the sample size and using different combinations, we found that a
good choice is to set both parameters d and a to 1.0.

As in the experiments with synthetic phonemes, a EA run was ended
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Table 2: Classification rates for English phonemes (percent). Average over ten train/test
partitions. Filterbanks optimised at 0 dB SNR.

FB # filters # coeff -5dB 0dB 20dB clean Diff
A0 32 17 24.76 32.62 58.26 65.54 0.44
A1 17 9 20.26 26.02 62.16 62.62 −9.68
A2 21 11 20.16 21.34 59.56 60.00 −19.68
A3 29 15 24.34 32.92 66.08 64.32 6.92
A4 19 10 20.38 26.32 63.64 61.22 −9.18
A5 19 10 20.52 26.24 60.62 60.26 −13.10
A6 21 11 31.10 35.78 61.52 60.80 8.46

A7 29 15 22.58 30.52 63.90 64.58 0.84
A8 25 13 22.94 30.76 62.10 62.08 −2.86
A9 22 12 23.60 31.54 63.54 66.14 4.08

MFB 23 13 20.00 23.18 68.40 69.16

after 100 generations without any fitness improvement, and we took the ten
best filterbanks according to their fitness. The settings for the parameters of
the EA were also the same values given in Section 3.1. We made validation
tests with ten different data partitions consisting of 2500 train patterns and
500 test patterns each. Moreover, these validation tests were made using test
sets at different SNR levels.

Here we show the classification results of filterbanks obtained from three
EA runs which only differ in the noise level used for train and test sets for the
fitness computation. Table 2 shows average classification results comparing
filterbanks optimised for signals at 0 dB SNR against standard MFB, using
DCM-HMM. We tested the best ten EFBs at different SNR, always training
the classifier with clean signals. Each one of these results were obtained as
the average of the classification with ten different data partitions. The last
column gives the accumulated difference between each of the first ten rows
and the last row, the higher values indicate the best filterbanks. For example,
in Table 2, we obtain the value 0.44 in the first row by adding the difference
of the values from column 4 to column 7 in the first row, from those in row
11. As the number of filters is one of the optimised parameters, we compare
all the EFBs against a MFB composed of 23 filters, which is a standard setup
in speech recognition. It can be seen that when testing at −5 and 0 dB SNR
the EFB A6 performs much better than MFB. From this we can assume that
the distribution of filters in EFB A6 allows to distinguish better the formant
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Table 3: Classification rates for English phonemes (percent). Average over ten train/test
partitions. Filterbanks optimised at 20 dB SNR.

FB # filters # coeff -5dB 0dB 20dB clean Diff
B0 20 11 20.04 22.24 62.30 63.06 −13.10
B1 19 10 22.18 30.06 53.76 64.12 −10.62
B2 22 12 22.44 30.24 60.68 64.96 −2.42
B3 19 10 21.38 27.84 68.08 67.80 4.36
B4 19 10 21.10 26.72 62.40 64.52 −6.00
B5 19 10 22.06 34.54 55.56 64.46 −4.12
B6 18 10 20.22 31.92 68.44 66.64 6.48

B7 19 10 22.88 31.98 64.44 67.26 5.82
B8 18 10 21.58 27.90 64.04 61.88 −5.34
B9 19 10 22.82 31.08 64.28 68.04 5.48

MFB 23 13 20.00 23.18 68.40 69.16

frequencies from the noise frequency components. This means that the use
of the evolved filterbank results in features which are more robust than the
standard parameterisation.

The same comparison is made in Tables 3 and 4 for filterbanks optimised
using signals at 20 dB SNR and clean signals respectively. Again, we can see
that some EFBs perform considerably better than the MFB with noisy test
signals, and there is even an improvement at 20 dB SNR in these cases.

From these three groups of EFBs we selected some of the best EFBs and
further tested them at 5, 10, 15 and 30 dB SNR. The average results from ten
data partitions can be found in Table 5, as well as the results for the MFB,
HFCC and Slaney filterbanks. For the HFCC 30 filters were considered,
one filter was added to the filterbank proposed in [34] because the sampling
frequency used in our experiments is higher. The bandwiths of the filters
in HFCC are controlled by a parameter called E-factor, which was set to 5,
based on the recognition results shown in [34]. As suggested, the first 13
cepstral coefficients were considered. The Slaney filterbank was comprised
of 40 filters, as proposed in [7], and 20 cepstral coefficients were computed.

It can be seen that the EFBs perform better than the standard MFB
when the SNR in testing signals is lower than the SNR in the training sig-
nals. Moreover, EFB C4 and EFB B6 outperform the Slaney filterbank in all
noise conditions considered except in the case of −5 dB SNR. On the other
hand, the EFBs perform better than the HFCC filterbank at the lower SNRs,
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Table 4: Classification rates for English phonemes (percent). Average over ten train/test
partitions. Filterbanks optimised for clean signals.

FB # filters # coeff -5dB 0dB 20dB clean Diff
C0 21 11 20.56 27.94 64.14 63.48 −4.62
C1 18 10 20.08 34.20 61.26 60.66 −4.54
C2 19 10 20.28 27.74 62.62 60.72 −9.38
C3 18 10 21.94 30.32 62.70 64.36 −1.42
C4 18 10 20.56 36.88 69.82 68.08 14.60

C5 18 10 22.26 30.42 65.14 63.40 0.48
C6 19 10 20.30 30.16 64.82 62.62 −2.84
C7 18 10 20.16 30.66 63.22 61.96 −4.74
C8 18 10 26.52 33.56 56.62 64.00 −0.04
C9 18 10 20.40 26.68 66.88 66.22 −0.56

MFB 23 13 20.00 23.18 68.40 69.16

this is from −5 dB to 15 dB SNR. These improvements may be better visu-
alized in Figure 8, where it is easy to appreciate that EFB C4 outperforms
MFB in the range from 0 dB to 15 dB SNR. It can be seen that MFB is
not outperformed for 30 dB SNR and clean signals, however this behaviour
is common to most robust ASR methods [35]. For instance, the HFCC fil-
terbank outperform MFB for noisiest cases, however, above 20 dB SNR the
improvements are smaller. Moreover, the degradation of recognition perfor-
mance is proportional to the mismatch between the SNR of the training set
and the SNR of the test set [36, 4].

Figure 9 shows the selected EFBs from Table 5. As we stated before,
one feature they all have in common is the wide bandwidth of most of the
filters, compared with the MFB. This coincides with the study in [34] about
the effect of wider filter bandwidth on noise robustness. In all the EFBs we
can also see high overlapping between different filters, as there was not any
constraint about this in the optimisation. However, this high overlapping
which results in correlated CC could be beneficial for classification with full
covariance matrix HMM. We can observe the grouping of a relatively high
number of filters in the frequency band from 0 Hz to 4000 Hz in the case of
EFB C4, which gives the best results for noisy test signals.

In order to analyse what information these representations are captur-
ing, we recovered an estimate of the short-time magnitude spectrum using
the method proposed in [37]. Which consists in scaling the spectrogram of
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Table 5: Classification rates for English phonemes (percent). Average over ten train/test
partitions.

FB -5dB 0dB 5dB 10dB 15dB 20dB 30dB clean
A3 24.34 32.92 37.68 46.36 52.98 66.08 65.04 64.32
A6 31.10 35.78 44.38 46.88 53.12 61.52 60.36 60.80
B6 20.22 31.92 55.12 67.20 68.84 68.44 67.20 66.64
B7 22.88 31.98 36.86 44.42 49.64 64.44 67.58 67.26
C4 20.56 36.88 60.30 68.32 68.70 69.82 67.42 68.08
C5 22.26 30.42 34.38 44.32 57.28 65.14 63.52 63.40

MFB 20.00 23.18 37.90 44.68 51.42 68.40 69.80 69.16
HFCC 20.24 25.98 47.26 62.78 67.68 70.54 69.42 70.36

Slaney 29.94 30.28 36.44 54.76 60.66 62.02 61.52 62.78

clean 30 dB  20 dB 15 dB 10 dB  5 dB  0 dB  −5 dB

20

30

40

50

60

70

SNR

C
la

ss
ifi

ca
tio

n 
ra

te
 [%

]

 

 

EFB A6
EFB B6
EFB C4
MFB
HFCC
Slaney

Figure 8: Performance of the best EFBs compared with MFB (English phonemes).

a white noise signal by the short-time magnitude spectrum recovered from
the cepstral coefficients. Figures 10 and 11 show the spectrograms of sen-
tence SI648 from TIMIT corpus, with additive noise at 50 dB and 10 dB
SNR respectively. Figure 10 shows that wide filters of the EFB blur energy
coefficients along the frequency axis, and it is more difficult to notice the
formant frequencies, though this information is not lost. Moreover, phoneme
classification is made easier by removing information related to pitch. On the
other hand, from Figure 11 it can be seen that when the signal is noisy, the
relevant information is clearer in the spectrogram reconstructed from ECC.
This is because the filter distribution and bandwidths of EFB C4 allow the
relevant information on higher frequencies to be conserved, which is hidden
by noise when using MFCC.
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Figure 9: Filterbanks optimised for phonemes /b/, /d/, /eh/, /ih/ and /jh/ from TIMIT
database.

Table 6 exhibits the confusion matrices for MFB and EFB C4, obtained
when testing with signals at 10 and 15 dB SNR. From these matrices, it can
be seen that phonemes /eh/ and /ih/ are mostly misclassified using MFB
and they are frequently well classified using EFB C4. In fact, when the SNR
is high, the performance in the classification of each of the five phonemes is
similar for both MFB and EFB C4. However, the lower the SNR, the more
MFB fails to classify phonemes /eh/ and /ih/. These are mostly confused
with phonemes /b/ and /d/, while the success rate for phonemes /b/, /d/
and /jh/ is barely affected. On the other hand, when using EFB C4 the effect
of noise degrades the success rate for all phonemes uniformly, but none of
them are as confused as in the case of MFB. That is, not only the average of
success rate is higher, but also the variance between phonemes is lower. This
means that the evolved filterbank provides a more robust parameterisation
as it achieves better classification results in the presence of noise.
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Table 6: Confusion matrices. Average classification rates (percent) from ten data parti-
tions.

MFB EFB C4
/b/ /d/ /eh/ /ih/ /jh/ /b/ /d/ /eh/ /ih/ /jh/

1
5

d
B

/b/ 64.7 34.8 00.0 00.0 00.5 56.9 39.7 01.8 01.4 00.2
/d/ 11.7 83.2 00.0 00.1 5.00 14.1 79.9 00.6 00.9 04.5
/eh/ 33.1 51.0 05.0 07.1 03.8 03.9 04.5 73.5 18.1 00.0
/ih/ 21.8 45.3 04.7 18.9 09.3 12.6 09.9 18.2 59.3 00.0
/jh/ 00.1 14.6 00.0 00.0 85.3 00.3 25.3 00.2 00.3 73.9

Avg: 51.42 Avg: 68.70

1
0

d
B

/b/ 55.4 44.0 00.0 00.0 00.6 48.8 48.6 01.5 00.5 00.6
/d/ 07.4 89.2 00.0 00.0 30.4 08.2 86.4 00.0 00.0 05.4
/eh/ 25.6 70.6 00.0 00.0 30.8 03.7 06.5 77.4 12.4 00.0
/ih/ 13.5 68.6 00.0 00.0 17.9 09.1 10.3 22.9 57.7 00.0
/jh/ 00.0 21.2 00.0 00.0 78.8 00.2 28.3 00.0 00.2 71.3

Avg: 44.68 Avg: 68.32

3.3. Statistical dependence of ECC

As we mentioned in Section 2.3, MFCC are almost uncorrelated and are
suitable for the utilization of HMM. However, this assumption of weak sta-
tistical dependence may not be true for the ECC. As Figure 9 shows, filter
bandwidth and overlapping is usually higher for the optimised filterbanks
than MFB. This means that the energy coefficients contain highly redun-
dant information, and DCT may not be enough to obtain near decorrelated
coefficients in this case. In fact, we have studied and compared the statisti-
cal dependence of MFCC and ECC, and noticed that optimised coefficients
show, in general, higher correlation. Figure 12 shows the correlation matri-
ces of 10 cepstral coefficients computed over 1500 frames. In order to make
this comparison, we used a MFB consisting on 18 filters, the same num-
ber of filters in the optimised filterbank named C4. Correlation coefficients
corresponding to MFB are shown on top and those corresponding to the op-
timised filterbank C4 at the bottom. As can be seen, correlation matrices
show high statistical dependence between cepstral coefficients corresponding
to phonemes /eh/ and /ih/, and this is much more noticeable for the case
of the evolved filterbank. In order to obtain a measure of the statistical
dependence, the sum of the correlation coefficients for each phoneme was
obtained. These values can be seen on Table 7, and they were computed as∑

i

∑
j |Mi,j| − trace(|M |), where M is the matrix of correlation coefficients.

From these values we can also see that ECC are more correlated than the
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Figure 10: Spectrograms for sentence SI648 from TIMIT corpus at 50dB SNR. Computed
from the original signal (top), reconstructed from MFCC (middle) and reconstructed from
ECC (bottom).

MFCC for the set of phonemes we have considered.
The statistical dependence which is present in ECC implies that GM

observation densities with diagonal covariance matrices (DCM) may not be
the best option. Hence we decided to use full covariance matrices instead, to
model the observation density functions during the optimisation. Moreover,
as the MFCC are not completely decorrelated, they also allowed the classifier
to perform better when using full covariance matrices (FCM) (See Table 1).

4. Conclusion and future work

A new method has been proposed for evolving a filterbank, in order to
produce a cepstral representation that improves the classification of noisy
speech signals. Our approach successfully exploits the advantages of evolu-
tionary computation in the search for an optimal filterbank. Free parameters
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Figure 11: Spectrograms for sentence SI648 from TIMIT corpus at 10dB SNR. Computed
from the original signal (top), reconstructed from MFCC (middle) and reconstructed from
ECC (bottom).

and codification provided a wide search space, which was covered by the algo-
rithm due to the design of adequate variation operators. Moreover, the data
selection method for resampling prevented the overfitting without increasing
computational cost.

The obtained representation provides a new alternative to classical ap-
proaches, such as those based on a mel scaled filterbank or linear prediction,
and may be useful in automatic speech recognition systems. Experimental re-
sults show that the proposed approach meets the objective of finding a more
robust signal representation. This approach facilitates the task of the classi-
fier because it properly separates the phoneme classes, thereby improving the
classification rate when the test noise conditions differ from the training noise
conditions. Moreover, with the use of this optimal filterbank the robustness
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Figure 12: Correlation matrices of MFCC (top) and ECC (bottom).

Table 7: Sum of correlation coefficients.

/b/ /d/ /eh/ /ih/ /jh/
MFB 20.9 24.9 30.4 27.2 11.2

C4 28.8 27.5 33.1 45.5 32.2

of an ASR system can be improved with no additional computational cost.
These results also suggest that there is further room for improvement over
the psychoacoustic scaled filterbank.

In future work, the utilisation of other search methods, such as particle
swarm optimisation and scatter search will be studied. Different variation
operators can also be considered as a way to improve the results of the
EA. Moreover, the search for an optimal filterbank could be carried out by
evolving different parameters. The possibility of replacing the HMM based
classifier by another objective function, in order to reduce computational
cost, will also be studied. In particular, we will consider fitness functions
which incorporate information such as the gaussianity and the correlation of
the coefficients, as well as the class separability.

References

[1] L. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition, Prentice
Hall PTR, 1993.

23

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. D

. V
ig

no
lo

, H
. L

. R
uf

in
er

, D
. H

. M
ilo

ne
 &

 J
. G

od
da

rd
; "

E
vo

lu
tio

na
ry

 C
ep

st
ra

l C
oe

ff
ic

ie
nt

s"
A

pp
lie

d 
So

ft
 C

om
pu

tin
g,

 V
ol

. 1
1,

 N
o.

 4
, p

p.
 3

41
9-

34
28

, 2
01

1.



[2] S. V. Davis, P. Mermelstein, Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,
IEEE Transactions on Acoustics, Speech and Signal Processing 28 (1980)
57–366.

[3] B. Nasersharif, A. Akbari, SNR-dependent compression of enhanced Mel
sub-band energies for compensation of noise effects on MFCC features,
Pattern Recognition Letters 28 (11) (2007) 1320 – 1326, advances on
Pattern recognition for speech and audio processing.

[4] X. Zhou, Y. Fu, M. Liu, M. Hasegawa-Johnson, T. Huang, Robust Anal-
ysis and Weighting on MFCC Components for Speech Recognition and
Speaker Identification, in: Multimedia and Expo, 2007 IEEE Interna-
tional Conference on, 2007, pp. 188–191.
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Figure 13: Leandro Daniel Vignolo.
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Figure 14: Hugo Leonardo Rufiner.

Figure 15: Diego Humberto Milone.
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Figure 16: John C. Goddard.
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