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Abstract

In this work, a first approach to a robust phoneme recognition task by means
of a biologically-inspired feature extraction method is presented. The pro-
posed technique provides an approximation to the speech signal represen-
tation at the auditory cortical level. It is based on an optimal dictionary
of atoms, estimated from auditory spectrograms, and the Matching Pursuit
algorithm to approximate the cortical activations. This provides a sparse
coding with intrinsic noise robustness, which can be therefore exploited
when using the system in adverse environments. The recognition task con-
sisted in the classification of a set of 5 easily confused English phonemes,
in both clean and noisy conditions. Multilayer perceptrons were trained
as classifiers and the performance was compared to other classic and ro-
bust parameterizations: the auditory spectrogram, a probabilistic optimum
filtering on Mel frequency cepstral coefficients and the perceptual linear
prediction coefficients. Results showed a significant improvement in the
recognition rate of clean and noisy phonemes by the cortical representation
over these other parameterizations.
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1. INTRODUCTION

In previous years, the classic techniques of signal analysis have been
applied to automatic speech recognition with relatively good results in con-
trolled conditions. At present, however, there is an increasing need to deal
with more complex and real situations, for example robust speech recogni-
tion in noisy environments. The ability to solve this and other challenging
problems could be improved by the development of new speech representa-
tion techniques.

An early stage in the speech recognition process consists in the acous-
tic modeling of phonemes. In the last years, efforts have been made to
provide robustness to this stage by the proposal of different approaches in
the speech representation. In [1, 2, 3|, authors use the central segment of
the acoustic waveforms of the phonemes. They showed that the mismatch
between clean and noisy conditions is better managed by the raw acoustic
data than perceptual linear prediction (PLP) coefficients, specially under
severe degradation. Recently, a noise compensation techique was proposed
to suppress the efect of additive noise with an estimation of the noise enve-
lope [4]. This work was carried out by processing the speech signal in their
time-frequency representation, in a similar way as the approach proposed
here, showing better performance at low signal-to-noise ratios (SNRs) than
classic speech representations.

The use of biologically inspired, feature extraction methods has im-
proved the performance of artificial systems that try to emulate some aspect
of human communication, such as emphasizing the discourse cues. Based
on the biological time-frequency analysis the inner ear carries out, auditory
representations of speech beyond the cochlea have been widely studied. Dif-
ferent mathematical and computational models have been developed that
allow for the estimation of the auditory spectrograms [5]. These investiga-
tions enabled modeling the discharge patterns of the auditory nerve.

Moreover, given a speech utterance, a pattern of activations can be found
at the primary auditory cortex that encodes a series of meaningful cues con-
tained in the signal. This behavior of the cortical neurons could be emulated
using the notion of spectro-temporal receptive fields (STRF). The STRF are
defined as the optimal linear filter that convert a time-varying stimulus into
the firing rate of an auditory cortical neuron, so that it responds with the
largest possible activation [6]. Using two-bidimensional discrete dictionar-
ies, an approximated cortical representation can be established by means
of techniques related to independent component analysis (ICA) and sparse
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Figure 1: Block diagram of the proposed phoneme classification system based on the
sparse representation of speech.

representations [7, 8, 9]. Here we used the term approzimated cortical rep-
resentation with the meaning of the set of activations that contribute to
form a particular pattern from an estimation of the STRF. This estima-
tion intends to model the global statistical characteristics of the discharge
patterns in the auditory cortex, in a phenomenological rather than a physio-
logical way. This concept of cortical representation is slightly different from
the one applied in neuroscience, where studies about brain activity involves
analysis of the cortical areas that are mainly stimulated by viewing images
or listening words [10].

In this work, using the time-frequency representations of the auditory
spectrograms of phoneme speech signals, a dictionary of two-dimensional
optimal atoms is estimated. Based on this STRF dictionary, a sparse rep-
resentation that emulates the cortical activation is computed. This repre-
sentation is then applied to a phoneme classification task in both clean and
noisy conditions, designed to evaluate the advantages and robustness of the
representation. Figure 1 resumes the main steps in the operation of the
proposed system.

The organization of the paper is as follows. Section 2 presents the
method for the speech signal representation used in this work. Section
3 gives the information about the speech data and the noise corpus used in
the experiments, along with details of the cortical representation. Section 4
presents the results obtained in the preliminary tuning of the method and
the phoneme classification task, which is then compared with other robust
parameterizations widely used in this field. Finally, Section 5 summarizes
the contributions of this paper and outlines future research.

2. SPARSE REPRESENTATIONS

2.1. Representations based on discrete dictionaries

There are different ways of representing a signal using general discrete
and finite dictionaries. For the case where the dictionary forms a basis, in
3
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particular for the orthonormal or unitary cases, the techniques are quite
simple. This is because, among other aspects, the representation is unique.
However, in the general case, a signal can have many different representa-
tions for the same dictionary. In these cases, it is possible to find a suitable
representation if additional criteria are imposed. For our problem, these
criteria can be motivated by obtaining a representation with characteristics
such as sparseness and independence. Furthermore, it is possible to find an
optimal dictionary that resembles biological properties of sensorial systems,
such as in the primary visual cortex. These visual neurons exhibit a spa-
tially localized, oriented bandpass behavior, similar to the basis functions
of a wavelet transform [11].

A sparse code is one which represents the information in terms of a
small number of descriptors taken from a large set. This means that a
small fraction of the elements from the code are used actively to represent
a typical pattern. In numerical terms, this means that the majority of the
elements are zero, or ‘almost’ zero, most of the time [12].

It is possible to define measures or norms that allow us to quantify how
sparse a representation is; one way is using either the ¢y or the ¢; norms.
An alternative criteria for optimization is to use an a priori probability
distribution with a large positive kurtosis. This results in a distribution
with a large thin peak at the origin and long tails on either side. One
such distribution is the Laplacian. In the statistical context it is relatively
simple to include aspects related to the independence of the coefficients, like
factorial probability distributions, which connects this approach with ICA
8].

In the following subsection a formal description of a statistical method
for estimation is given. This method estimates an optimal dictionary and
the corresponding sparse representation of the input datal.

2.2. Optimal sparse and factorial representations
Let ¥ € RY be a signal to represent in terms of a dictionary CI;, with size
N x M, and a set of coefficients @ € R™. In this way, the signal is described
as
T= Z pia; + €= Pd+ < (1)

1<i<M

L Although in our proposed method and experiments two-dimensional patterns are
used, for clearness we only describe the one-dimensional case in this Section.
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Where £ € RY is the term for additive noise and M > N. The dictionary
P is composed of a collection of waveforms or parameterized functions (gbl)
where each waveform gbi is an atom of the representation.

In the context of this work, & corresponds to the reconstruction of the
time-frequency representation of the speech at the auditory cortex. The
atoms in ® will further be the representation of the important features
found at the cortex for each input stimuli. Finally, an estimation of the
coefficients @ will be the output of the feature extraction stage proposed.

Although (1) appears very simple, the main problem is that for the most
general case <13, a and € are unknown, thus there can be an infinite number
of possible solutions. Even in the noiseless case (when &= 0) and given D, if
there are more atoms than the dimension of # then multiple representations
of the signal are possible. Therefore, an approach that allows us to select
one of these representations has to be found. For the complete and noiseless
case the relationship between the data and the coefficients is linear and it
is given by ®-!. For classical transformations, such as the discrete Fourier
transform, this inverse is simplified because @1 = &* (with & € CN*N
and ®*(i,j) = ®(j,4)). In our case —although this is a linear system- the
coefficients chosen to be part of the solution generally have a non-linear
relationship with the data  [13].

When & and 7 are known, an interesting way to choose the set of coeffi-
cients a from among all the possible representations, consists of finding those
a; which make the representation as sparse and independent as possible. In
order to obtain a sparse representation, a distribution with positive kurto-
sis can be assumed for each coefficient a;. Further, assuming the statistical
independence of the a;, the imposed joint a priori distribution satisfies

= H P(ay). (2)

The system (1) can also be seen as a generative model. Following the
terminology used in the ICA field, this means that signal # € R” is gener-
ated from a set of sources a; (in the form of a state vector @ € RM) using

a mixing matrix cf>, and including an additive noise term £ (Gaussian, in
most cases).
The state vector @ can be estimated from the posterior distribution [14]

(3)
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Thus, a maximum a posteriori estimation of @ would be

G = arg max [log P(#]®,d) + log P(d)] . (4)

When P(@|®, &) is sufficiently smooth, the maximum can be found by
the method of gradient ascent. The solution depends on the functional
forms assigned to the distributions for the noise and the coefficients, giving
rise to different methods for finding the coefficients. Lewicki and Olshausen
[15] proposed the use of a Laplacian a prior: distribution with parameter
Bi

P(a;) = aexp (=i |ai]) (5)

where « is a normalization constant. This distribution, with the assumption
of Gaussian additive noise €, results in the following updating rule for a

Ad = &"Ke— §" Jal, (6)

where A is the inverse of the noise covariance matrix &£ [€7¢], with &[]
denoting the expected value. This provides a gradient-based search for the
solution of (4).
To estimate the value of ®, the following objective function can be max-
imized [15]
® = arg max [C(f, 5)} , (7)

(]

where £ = & [log P(f@)] . is the likelihood of the data. This likelihood
P&

can be found by marginalizing the following product of the conditional dis-
tribution of the data, given the dictionary and the a priori distribution of
the coefficients
P(#|3) = / P(#,a)P(a) d, (8)
RM

where the integral is over the M-dimensional state space of a.

The objective function in (7) can be maximized using gradient ascent
with the following update rule for the matrix o

Ad = A, glea’] P(ad,z) (9)

where 7, in the range (0, 1), is the learning rate.
6
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The practical implementation is carried out through an iterative esti-
mation of (6) and (9) allow the calculation of the dictionary @ and the
coefficients @. In this work, the initialization of both is at random and
1000 iterations are then performed. The parameter 7 is kept high to get
a rough approach to the solution up to 500 iterations, then it is gradually
decreased as a function of the number of cycles. This election was guided
by preliminar experiments where the evolution of £ was surveyed.

2.3. Matching Pursuit

The computational cost in the estimation of a is truly expensive. The
Matching Pursuit (MP) algorithm is another method to approximate the so-
lution of the sparse representation problem, once the dictionary is provided
or estimated [16].

Sparsity is enforced by choosing an appropriate number of terms. Given
an initial approximation 7® = 0 and an initial residue B© = Z, a sequence
of approximations is iteratively constructed. At step k the parameter v =+
is selected, such that the atom gﬂym best correlates with the residue ﬁ(k),
and a multiple of this atom is added to the approximation at step k£ — 1,
obtaining

0 = 6 | g0, (10)

where a%k) = (R, 5%k)), and R® = 7 — 7% After m steps an approxi-
mation to (1) is obtained, with residue & = E™. It is said that MP consti-
tutes a greedy solution to the sparse representation problem?; therefore it
shares the same advantages and disadvantages of this type of optimization
methods (fast but generally not optimal methods). Nevertheless, there are
investigations that establish that under appropiate conditions of dictionary
coherence and sparsity of the state vector 5, these algorithms obtain the

globally optimal solution [17, 18].

3. APPROXIMATED AUDITORY CORTICAL REPRESENTA-
TION

In neuroscience, it has been established the principle that the brain of
an animal adapt its properties (internal configuration) to best describe the
statistics of stimuli perceived through its senses [19]. If a simple model of

2MP is a greedy algorithm that minimizes Hf —da

7
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these stimuli is assumed, as the one outlined in (1), it is possible to esti-
mate their properties from the statistical approach presented in the previous
section.

The early auditory system codes important cues for phonetic discrimina-
tion, such as the ones found in the auditory spectrograms (AS) [5]. Shamma
et al proposed a model of the processing of the sound carried out in the au-
ditory system based on psychoacoustic facts found in physiological exper-
iments in mammals. The main idea behind the model is to move forward
in the representation of the sound from the initial spectral analysis by de-
composing this spectrogram in its spectrotemporal modulation content [20].
While the complete model of Shamma consists of two stages, in this work
only the early stage was used. It obtains the auditory spectrogram, an in-
ternal cochlear representation of the pattern of vibrations along the basilar
membrane. This part of the model is composed of a bank of 128 cochlear
filters that process the temporal signal s(¢) and obtain the outputs

Yeh = S(t) * hch(tv f)v (11)

where h.}, is the impulse response of each filter. These outputs are trans-
duced into auditory-nerve patterns

Yan = Ghe (atych(ta f)) * :uhc(t)’ (12)
where 0, represents the fluid-cilia coupling (highpass filter), gy, the non-
linear compression in the ionic channels and pp,. the hair-cell membrane
leakage (lowpass filter). Finally, the lateral inhibitory network is approx-
imated by a half-wave rectified first-order derivative with respect to the
frequency axis as

y]jn<t7 f) = nax (afyan@a f)? 0) (13)
and the final output consists in a integration of this signal over short win-
dows.

In these representations —of a higher level in the auditory path— some
aspects of the acoustic signal that arrives at the eardrum have been reduced
or eliminated. Among these superfluous aspects are the temporal variability
of the signal and the relative phase of acoustic waveforms. Hence, following
this biological simile, the representation becomes a good starting point to
attain more complex ones.

Obtaining a dictionary of two-dimensional atoms s using (7), corre-
sponding to time-frequency features estimated from the AS of Z, is equiva-
lent to the STRF of a group of cortical neurons [7]. Therefore, the activation
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Figure 2: Schematic diagram of the method used for estimating the approximated audi-
tory cortical representation (AACR).

level of each neuron can be associated with the set of coefficients @ in (1).
Instead of using this vector as the representation, due to the high com-
putational cost in computing it from (4), the preferred approach here is
to obtain an approximated solution by the Matching Pursuit algorithm by
means of (10). Thus, the feature extraction scheme here proposed obtains
the coefficients modeling the activations at the primary auditory cortex in
reponse to input stimuli. These features are named approzimated auditory
cortical representation (AACR).

Figure 2 shows a schematic diagram of the method adopted for estimat-
ing the AACR, once the dictionary has been trained following the process
previously described. The acoustic signal corresponding to a complete utter-
ance, s(t), is processed by the ear model. It obtains the spectrogram at the
early auditory level, y(¢, f) from (13). Finally, from these time-frequency
representations, the feature extraction scheme obtains the coefficients a of
the AACR as a subproduct of (10) in the Matching Pursuit algorithm.

4. MATERIALS AND METHODS

The feasibility of building a robust classification system based on the
described scheme was studied for an initial simpler task of phoneme classifi-
cation. The classifiers were trained with approximated auditory cortical pat-
terns calculated from clean speech and then tested with patterns obtained

9
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Table 1: Distribution of patterns per class for training and test data in region DR1 of
the TIMIT corpus.

PHONEME TRAIN TEST

# (%) # (%)
/b/ 211 (3.26) 66 (3.43)
/d/ 417 (6.45) 108 (5.62)
/ih/ 489 (7.56) 116 (6.04)
Jeh/ 2753 (42.58) 799 (41.63)
Jih/ 2594 (40.13) 830 (43.25)
Total 6464 (100.00) 1919 (100.00)

from noisy speech, where controlled amounts of white noise were added.
The task consisted in the classification of the set of five easily confused
phonemes in English: /b/, /d/, /jh/, /eh/, /ih/, in a context-independent
approach [21].

4.1. The signals

The clean speech data were extracted from the TIMIT corpus, which
contains a total of 6,300 sentences recorded from 630 speakers (10 sentences
each) [22]. In this work, the training (38 speakers) and test (11 speak-
ers) data corresponding to region DRI were used. The number of AACR
patterns calculated from the TIMIT data is showed in Table 1. It can be
observed that there is a noticeable imbalance in the distribution, which
could be counterproductive for the generalization capabilities of the classi-
fiers. Thus, the training and test sets were balanced by selecting the same
number of patterns for each phoneme in each set (211 and 66 patterns,
respectively).

For the estimation of the dictionaries, an AS from the original clean
signals sampled at 16 kHz was obtained by means of an early auditory
model [23]. In order to process less data, the frequency resolution was
downsampled by half. Thus, AS with 64 frequency coefficients per frame of
32 ms were obtained. After that, a sliding window of one frame in length at
intervals of 8 ms, was applied to obtain the set of spectro-temporal patterns.
Figure 3 shows the principal signals of this process, while in Figure 4 there
is an excerpt of the clean signal and its corresponding low-resolution AS for
the five phonemes used in the experiments. Here, the phonemes /b/ and
/d/ are shorter than the 32 ms required to calculate the spectro-temporal
patterns, so the signals are first zero-padded at the beginning and the end,

10
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Figure 3: Principal signals in the process of obtaining the spectro-temporal patterns:
sonogram (top) and auditory spectrogram (bottom). A section corresponding to the
sliding window, from which each spectro-temporal pattern is generated, has been marked
with vertical lines.

mantaining the phoneme in the central portion. The spectrograms show
in red (light gray) the highest amplitudes, highlighting the high frequency
features of the shortest phonemes and the voiced features of the longest
ones.

In a previous work using clean speech, we obtained different dictionaries
of two-dimensional atoms through the Basis Pursuit algorithm and trained
a number of neural networks with the spectro-temporal patterns using (9),
with exhaustive tests for both the complete and overcomplete cases [24].
The classification experiments were carried out by means of an artificial
neural network, namely a multi-layer perceptron (MLP). The best perfor-
mance was obtained with a dictionary size of 256 atoms. This corresponds
to the complete case given that each atom has a dimension of 64 frequency
coefficients by 4 frames. In spite of there being no evidence that it would
be the best choice for noisy speech as well, it is the configuration used in
this work.

In order to obtain the patterns that are the inputs to the classifiers,
speech utterances corresponding to the phonemes are processed by the au-

11
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Figure 4: Examples of the five phonemes used in the experiments showing the sonogram
(top) and their respective auditory spectrogram (bottom). The spectrograms have 64
frequency coefficients in height from 0 to 8 kHz and a minimum of 4 coefficients in length,
as it can be seen in the shortest phonemes.

ditory model and their AS are obtained. Then, using the dictionary previ-
ously computed, the activation coefficients are calculated. This operation
is carried out using the MP algorithm explained in Section 2.3, giving pat-
terns with 256 coefficients (recall that only a subset of them are different
from zero).

The noisy version of the corpus was obtained by mixing the clean data
with white noise taken from the NOISEX-92 database [25]. The noise was
first conveniently resampled at 16 kHz with a resolution of 16 bits in order
to match the characteristics of the clean signals. Finally, both signals were
additively mixed at different signal-to-noise ratios.

4.2. The features

The suitability of the AACR approach for robust phoneme recognition
was evaluted by comparing the performance in classification against differ-
ent parameterizations used in this area: the mel frequency cepstral coef-
ficients (MFCC) [26], the auditory spectrogram, the PLP coefficients, the
Relative Spectral Transform applied to the previous ones (RASTA-PLP)
[27] and the Probabilistic Optimum Filtering (POF) applied to the MFCC
coefficients. The POF analysis consists of a mapping between a pair of
acoustic spaces: the clean and noisy speech features. The mapping tries

12
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to estimate the clean feature vectors by means of a probabilistic piece-wise
linear transformation from the noisy features [28].

4.3. The classifier

This paper focuses on assessing the advantages of the proposed AACR
method over the other parameterizations in the representation of isolated
phonemes. Thus, a static classifier was used because in this stage of the
investigation there is no need to incorporate either a language model or
temporal dynamics, in spite of the fact that the patterns are of variable
length.

The MLP was used as classifier. It has a fixed number of input units
that receives one vector of 256 activations at each time, corresponding to a
STRF in R%*4, Longer phonemes contribute with more patterns due to the
sliding window used to extract the STRF. The architecture of the MLPs
consisted of one input layer, where the number of input units depended on
the dimension of the patterns; one hidden layer with a variable number of
units and one output layer of 5 units. The training of the networks was
conducted with the standard backpropagation algorithm with momentum
term [29].

5. RESULTS AND DISCUSSION

5.1. Dictionary for the sparse representation

Figure 5 shows some of the STRFs corresponding to the complete esti-
mated dictionary & € R?6256  The STRFs are in R4, with frequency
content from 0 to 4 kHz and 32 ms in length.

The obtained STRFs present some characteristics of typical behaviors.
It can be observed that they act like detectors of diverse significant fea-
tures present in the spectrogram: unique frequencies, stable speech formant
patterns, changes in the speech formants, unvoiced or fricative components
(e.g. atom located in the dictionary at row/column 2/2 in the figure) and
well-located patterns in time and/or frequency (e.g. the dark marks in
atoms located at 1/2 and 1/6). The general similarities with the STRF
patterns found in mammals are also revealed by comparing a pair of them
taken from sound signals in animals with patterns here estimated, as can
be seen to the left of Fig. 5 [30].

13
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Figure 5: Example of spectro-temporal receptive fields (STRF) in R%*** calculated from

the early auditory representation of phoneme utterances. Two examples of biological
STRF as found in animals are shown to the left and compared (in red) with similar
patterns as estimated in the discrete dictionary.

5.2. Initial tuning of the method

The first series of experiments, using clean speech, was devoted to find
the optimum number of coefficients in the Matching Pursuit feature extrac-
tion scheme.

From the TIMIT DRI training set, we constructed two subsets for car-
rying out these experiments. In order to avoid bias in the results due to the
class imbalance (showed in Table 1), the data consisted of 100 patterns of
each phoneme for the training subset and 25 patterns for the test subset.
The exploration was carried out with 4, 8, 16, 32, 64 and 128 selected coef-
ficients of the complete vector in R?*®. Also, the best network architecture
was found by varying the number of hidden units with a powers-of-two law,
from 4 up to 512 units. Each experiment consisted of 3 runs with different
initial weights at random, reporting the mean value obtained on the test
subset.

The results of this initial tuning are presented in Fig. 6, where a similar
behavior for all the curves was observed in general. They showed a lower
performance when the size of the hidden layer was reduced, because of the
limited capability of the MLPs to learn the key aspects of the patterns.
Also, the performance achieved a maximum and then flattened as the size
of the hidden layer was increased, due to the greater number of weights
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Figure 6: Initial tuning of the number of selected coefficients in the algorithm and hidden
units in the neural networks. The best performance is obtained for 8 selected coefficients
and 32 nodes in the hidden layer of the MLP.

to adapt. Regarding the differences found when varying the number of
selected coefficients, the best performances were obtained with few selected
coefficients, showing the curves a general dropping when this parameter
increased. This situation may arises owing to the fact that the patterns
contain more non-relevant information to the classification.

From these curves, it can be seen that the best recognition rate is
achieved by retaining only 8 coefficients in the MP algorithm. This is the
situation expected, since the representation obtained is truly sparse (few
active atoms for each analized pattern). In these conditions, the impor-
tant cues of each pattern would be encoded in about 3% from the total of
atoms in the dictionary. Also, this representation is better processed by
an MLP with a low dimension in the hidden layer, in this case 32 nodes.
This makes clear the generalization capabilities of the networks, given that
the patterns carry only the most important information and therefore fewer
weights are required. Therefore, this configuration of the MP algorithm and
MLP architecture is set for the following experiments.

5.3. Robust phoneme classification

With the aim of evaluating the performance of the cortical represen-
tation in the presence of noise and to compare its robustness with other
parameterizations, the next series of experiments consisted in training the
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MLPs with clean speech and testing them in different noisy conditions.

The feature extraction for MFCC, PLP and RASTA-PLP was fixed to
12 coefficients with frame energy and delta coefficients added, resulting
in patterns of 26 coefficients. The patterns obtained from the AS have
256 coefficients. For all these networks, the number of hidden units was
fixed to the same number of input units, as it was found to be the optimal
configuration in preliminary experiments.

In each experiment, a different SNR was fixed from clean speech up to
0 dB (equal energy levels of noise and speech). Then, for each parame-
terization, a series of 10 runs with different initial network weights chosen
at random was conducted. This initialization method seems to be good
enough for our purpouses, given that the generalization peak of the MLPs
is reached at roughly 10-20 iterations of the backpropagation algorithm in a
200 iterations cycle. Moreover, the variance in the results remains between
1% and 3% in the case of clean test signals.

The obtained results are shown in Fig. 7. The curves show the gen-
eral behavior of artificial systems in the presence of noise: they achieve a
good recognition rate with clean speech, with performance falling as the
noise content in the signal increases. The performance of the less robust
parameterization, the MFCC, quickly drops in severe noisy conditions (SNR
near to 0 dB). All the other parameterizations obtain higher rates in these
conditions, as can be seen for 5 and 0 dB. In [31] authors showed better
performance of POF mapping than MFCC at higher noise levels also, but
those results were obtained on continuous speech and using hidden Markov
models as classifiers. These experimental conditions are very different from
our configuration of isolated phoneme recognition by an static classifier.

The AACR aproach here proposed always achieves the highest classifi-
cation rates with respect to the other parameterizations, for all the SNRs
evaluated including clean speech. This result would be given by the in-
trinsic robustness of the AACR, where only the more important activations
are retained by the algorithm. Thus, the selected coefficients are acting as
phonetic clues that capture the particularities of each phoneme and enable
their characterization.

A more in depth analysis of the results is presented by the confusion
matrices showed in Table 2. They show the mean recognition rate in percent
for each phoneme using the best configuration found with the proposed
AACR approach: 8 coefficients in the MP algorithm and the MLP with 32
units in the hidden layer. The rates correspond to the mean test values
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Figure 7: Recognition rates in percent for the classification of the 5 phonemes in the
presence noise at different SNR, from clean speech up to same energy levels of speech
and noise (SNR=0 dB).

for the 10 initializations, and two different conditions are evaluated: with
clean signals and with noise added at SNR=15 dB. For each phoneme in
the first column (teaching output of the MLPs), the matrices show in rows
the percentages of each phoneme given by the networks.

Results showed that, in the clean condition, the MLP is able to carry out
an adequate classification of almost all the classes except the phoneme /ih/,
which is spread in the rest of classes (last row). In the noisy condition, it
can be seen that the networks classify very well the phonemes /d/, /jh/ and
/eh/, whereas phoneme /ih/ is mainly assigned to the other classes. The
case for phoneme /b/ is also interesting to analyze. In the clean case a good
performance is obtained (84%), with a minor confusion with phoneme /d/.
With the introduction of noise, even in moderate amounts, this confusion
is increased: 67% of /b/ are recognized as /d/. This behaviour could be
explained by the fact that in clean speech these plosive, voiced consonants
show a high energy content at low frequencies in the AS, but phoneme /d/
also presents more energy at higher frequencies unlike phoneme /b/ (see Fig.
4). When white noise is added, the AS of /b/ resembles more to that of
/d/, giving rise to the misclassification found. A study in line with this idea
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Table 2: Confusion matrices showing the classification percentages for the AACR ap-
proach with clean and noisy speech at SNR=15 dB. In rows: teaching output, in columns:
classification. Mean recognition rate: 83% (clean speech) and 71% (noisy speech).

AcTuaL CLEAN SPEECH Noisy SPEECH AT SNR=15 dB
PHONEME | /b/ /d/  /ih/ /Jeh/ /fih/ | /b/ /d/ /Jih/ /Jeh/  [ih/
/b/ 84 16 33 67
Jd/ 16 70 10 4 5 94 1
/ih/ 1 99 12 88
/eh/ 5 93 2 5 1 92 2
/ih/ 2 2 10 26 60 3 17 15 18 46

was presented in [32], where authors showed that these phonemes are very
confusable given their high acoustic similarity (Euclidean distance between
their average auditory spectrograms). Similarly, due to the energy content
of phoneme /d/, when noise is added the patterns become more similar to
the learned examples. Therefore, the initial confusion of phoneme /d/ with
others is reduced given that the noisy phoneme is very different from the
clean /b/, /jh/ and /ih/.

The statistical significance of these results was evaluated considering
the probability that the classification error of a given classifier € is smaller
than the one of the reference system ¢€,.¢. In order to make this estimation,
the statistical independence of the errors for each frame was assumed, and
the binomial distribution of the errors was modeled by means of a Gaus-
sian distribution (this is possible because a sufficiently large number of test
patterns are given). Therefore, comparing our approach against the sec-
ond best result (auditory spectrogram) for the worst case, SNR=0 dB, a
Pr(eer > €) > 96.54% was obtained. The standard deviation for the AACR
ranges from 0.88 (clean speech) up to 2.31 (SNR=0 dB), whereas for the
PLP coefficients the same parameter has a higher variation: from 0.87 up
to 10.71, respectively.

The use of additive white noise is probably the most studied and straight-
forward way to simulate the operation of an artificial system in adverse con-
ditions. In speech applications, perhaps the babble noise would be the more
difficult one to deal with, due to their concentration of energy in the same
range as speech formants, masking important features for the classification.
A previous study in robust speech recognition support this hypothesis [33].
The performance of phoneme recognition systems with this and other types
of noise is a topic to further explore.
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6. CONCLUSIONS

In this paper, a biologically-inspired sparse method for speech param-
eterization was presented. From the auditory spectrograms, the technique
calculates an optimal dictionary of atoms. The extracted feature vectors
consist of the activation coefficients obtained with the Matching Pursuit
algorithm, which selects the more representative ones. Using a dictionary
of 256 atoms, the optimal sparse representation for each speech segment is
obtained by selecting only 8 atoms. Thus, in adverse environments, a sort of
thresholding of noisy components is carried out, while the most important
cues are preserved.

The feasibility of building a robust phoneme recognizer using this rep-
resentation was evaluated in the classification of five highly confusing En-
glish phonemes. The performance of our approach was compared against
a number of standard and robust parameterizations, namely the PLP and
MFCC among others. The recognition experiments were carried out us-
ing multilayer perceptrons. Results showed that the approximated cortical
representation always improves the recognition rate obtained by the rest of
parameterizations, for both the clean case and in the presence of additive
white noise at different signal to noise ratios (from 50 dB up to 0 dB).

Future direction in this investigation would be devoted to optimize the
denoising of the speech activation patterns, explore a discriminative learning
of the dictionaries and to explore this feature extraction scheme in the major
problem of large vocabulary continuous speech recognition.
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