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Data mining over biological datasets: an

integrated approach based on computational

intelligence
Georgina Stegmayer, Member, IEEE, Matias Gerard and Diego H. Milone, Member, IEEE

Abstract

Biology is in the middle of a data explosion. The technical advances achieved by the genomics,

metabolomics, transcriptomics and proteomics technologies in recent years have significantly increased

the amount of data that are available for biologists to analyze different aspects of an organism. However,

∗omics data sets have several additional problems: they have inherent biological complexity and may have

significant amounts of noise as well as measurement artifacts. The need to extract information from such

databases has once again become a challenge. This requires novel computational techniques and models to

automatically perform data mining tasks such as integration of different data types, clustering and knowledge

discovery, among others. In this article, we will present a novel integrated computational intelligence approach

for biological data mining that involves neural networks and evolutionary computation. We propose the use

of self-organizing maps for the identification of coordinated patterns variations; a new training algorithm that

can include a priori biological information to obtain more biological meaningful clusters; a validation measure

that can assess the biological significance of the clusters found; and finally, an evolutionary algorithm for the

inference of unknown metabolic pathways involving the selected clusters.

Index Terms

Data mining, systems biology, clustering, validation, biological assessment, pathways analysis, evolu-

tionary search.

F

1 INTRODUCTION

Modern biology studies generate a large amount of data, that require dedicated computational tools for their analysis.

Data integration is also gaining importance given the need for extracting knowledge from multiple data types and
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sources, with the aim of infering insights from the genetic processes underlying them [1], [2], [3]. In fact, since the

completion of genome sequences, functional identification of unknown genes has become a principal challenge in

systems biology. Bioinformatics plays an important role here, allowing biologists to make full use of the advances

in computer science in analyzing large and complex datasets.

At the beginning of the genomics revolution, bioinformatics referred only to the creation and management of

large databases to store biological data. However, the discipline has evolved over time, mainly from the application

and adaptation of classical statistical methods and standard clustering algorithms, such as hierarchical clustering

(HC) and k-means (KM) [4], [5], [6], towards more recent approaches based on computational intelligence [7], [8],

[9], with promising results. Yet their application to bioinformatics problems has gained popularity only recently

[10].

From an application point of view, a current trend is to achieve integration of different types of biological data

to reveal hidden correlations between them, allowing the inference of new knowledge regarding the biological

processes that affect them. However, the discovery of hidden patterns in such data is currently a challenge because

the use of any type of algorithm for pattern recognition is hampered by a limited number of samples and a

very high number of dimensions. Besides, biological data sets may have significant amounts of noise as well as

measurement artifacts. This highlights the need to develop new techniques aimed at overcoming the limitations of

existing ones. New computational models to perform several data mining tasks, such as integration of different data

types, unsupervised clustering and knowledge discovery, are required.

In this article we will present a novel integrated computational intelligence approach for biological data mining

(Figure 1). It involves the use and application of two of the most important and well-tested techniques in the

computational intelligence field: neural networks and evolutionary algorithms. The different models and techniques

involved in the proposed approach could be used separately, since they tackle different data mining aspects that can

be treated as separated problems: data pre-processing and integration, clustering, clusters validation and selection,

and pathway search. We will show the integration among them for the purpose of data mining and knowledge

discovery in biological data. We will present and explain each step of the proposed approach in detail, using as

a case study for its application a real biological data set of Arabidopsis thaliana, which is the model species of

current plant genomics research.

The first step involves the obtention and selection of the biological data, the kind and number of data types and

sources, such as microarray experiments, metabolic profiles and pathways information, among others; the number

of experiments and repetitions for each dataset, as well as the structure and type of datafiles that contain them.

It also requires cleaning and artifacts elimination from data, as well as the application of appropriate selection

criteria with the objective of including only sufficiently expressed data [11]. This step also needs a treatment of the
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Fig. 1. Data mining of biological data as an integrated computational intelligence approach: a) different
biological data sources; b) data pre-processing, normalization and integration; c) self-organizing map
clustering; d) validation measures for cluster selection; e) evolutionary algorithm for metabolic pathway
inference.

expression intensity values over the control sample in the case of data coming from several experimental sources

[12] (Figure 1.a). The next stage requires the integration of the different data sources (Figure 1.b). For example,

with an appropriate normalization, metabolome and transcriptome data obtained from the same plant material, can

be integrated into a single multivariate dataset suitable for further analysis with clustering tools [13].

After the integration of heterogeneous data sources, clustering can be used for finding hidden relationships among

different kinds of patterns. A software called *omeSOM [14], which implements a neural model for biological data

integration, clustering and visualization through simple interfaces for the identification of coordinated variations

in the data, will be shown. This visual information is then linked to the most widely used biological annotation

databases, such as Arabidopsis Annotations [15] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16].

Moreover, instead of using classical algorithms that calculate distance among patterns according to a metric such

as Euclidean distance or correlation, the incorporation of a biological similarity measure into, for example, a self-

organizing map (SOM) (Figure 1.c), could significantly improve the biological meaning of the clusters obtained,

which are later subjected to computational analysis or scrutiny by biologists. Thus, we will describe a novel training

algorithm that integrates biological similarities (derived from metabolic pathways information) into a SOM and will

demonstrate that doing so, improves the quality of the clustering results. This new algorithm weighs the biological

significance of the patterns during the training of the clustering method, while the clusters are being formed.

To avoid inconsistencies in the results, any clustering solution should be validated. However, after the application

of an unsupervised mining technique, it is rather difficult to validate and select the best partition, especially from

a biological perspective. In this domain, it is a common practice to validate each group returned by a clustering
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algorithm according to a priori biological knowledge (Figure 1.d). For each pattern, its annotations and memberships

to well-known metabolic pathways are assessed, since they can indicate functionally related patterns. For this stage,

we will show a measure that allows the comparison of clustering methods over metabolic datasets [17]. Such

measure compactly summarizes the objective analysis of clustering methods: coherence and clusters distribution.

Furthermore, it also evaluates the biological internal connections of such clusters considering common pathways,

allowing the selection of the best clusters by effectively measuring the biological significance of each solution.

Although the clusters found reveal the presence of relations, they do not make them explicit. After the application

of a clustering technique and once meaningful biological clusters are found, the identification of the relations among

the data is a common problem in bioinformatics. Thus, the last step of the proposed approach is an evolutionary

algorithm for the identification of novel metabolic pathways (Figure 1.e). Inside a cluster, the identification of

biochemical links between its elements (genes, proteins, reactions, etc.) is not a trivial task, and it is of particular

interest for the reconstruction of a metabolic network. Finding novel or non-standard metabolic pathways has

important applications in metabolic engineering, metabolic network analysis and construction, as well as in the

elimination of gaps in metabolic models [18]. Traditionally, this has been a manual and time-consuming process.

We will present here a novel evolutionary algorithm for finding metabolic pathways, which, when given the desired

beginning and target compounds, can identify pathways that link them and that are biologically meaningful.

This paper is organized as follows. Section 2 shows the use of self-organizing maps for data clustering and

identification of coordinated patterns variations. Section 3 presents a new training algorithm that can include a

priori biological information to obtain more biologically meaningful clusters. A validation measure that can assess

the biological significance of the clusters found is explained in Section 4. Section 5 introduces an evolutionary

algorithm for the inference of unknown metabolic pathways from data in clusters. Finally, the conclusions can be

found in Section 6.

2 *OMESOM: TRANSCRIPT/METABOL-OME SELF ORGANIZING MAP

In this section the focus is primarily on class discovery or clustering, where data are explored from the perspective

that previously unknown relations can be identified and could lead to the formulation of novel hypotheses [19]. For

the analysis of biological data, clustering is implemented under the assumption that behaviorally similar samples

may be related to common pathways. According to this principle, a set of genes involved in a biological process

is co-expressed under the control of the same regulatory network [20].

Most of the clustering algorithms assume, at least indirectly, that the cluster structure of the data under con-

sideration exhibits particular characteristics. For instance, HC assumes that the clusters are well separated and

KM supposes that the shape of clusters is spherical [21]. When the number of samples and features involved is
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large, neural networks such as self-organizing maps (SOMs) [22] may be considered as a guide for an exploratory

analysis of the data. Such models represent complex high-dimensional input patterns into a simpler low-dimensional

discrete map, with prototype vectors that can be visualized in a two-dimensional lattice structure, while preserving

the proximity relationships of the original data as much as possible. Thus, SOM can be appropriate for cluster

analysis when looking for underlying hidden patterns in data.

SOMs have been used for unsupervised clustering of transcriptome profiles increasingly over the past decade

[23], [24], [25]. Recently, a method for automatically clustering SOM ensembles of high-dimensional data, such

as those from whole genome microarrays, was proposed [26]. Regarding metabolites, in [27] a correlation network

analysis has revealed gene-metabolite relationships in Arabidopsis thaliana. In [28], [29] SOM clustering is used for

the analysis of Arabidopsis thaliana metabolome and transcriptome datasets, helping in the hypothesis validation of

a metabolic mechanism responding to sulfur deficiency. In [13] a SOM model is proposed for finding relationships

among introgression lines compared to a wild type control at a given developmental stage in contrast to genotype-

specific data representing a time-course.

The *omeSOM software implements a neural model for biological data clustering [14]. It trains a two-dimensional

SOM for the analysis and interpretation of large amounts of different types of data, such as gene expression and

metabolite profiling. The software is focused on the easy identification of groups including different molecular

entities, independently of the number of clusters formed. The *omeSOM software provides easy-to-visualize

interfaces for the identification of coordinated variations, offering several visualization features, which are easy

to understand by non-expert users. Additionally, this information is linked to the most widely used gene annotation

and metabolic pathway databases. It is a software designed to give support to the data mining task on biological

datasets derived from different databases.

2.1 *omeSOM main features

The *omeSOM software builds a SOM model oriented towards discovering unknown relationships among biological

data, showing groups of coordinated up-regulated and down-regulated patterns in each genotype. The initial vectors

are set by a principal component analysis, obtaining a learning process independent of the order of vector input, and

hence reproducible. The learning method is the standard batch training algorithm [22], where the whole training

set is gone through at once, and only afterwards is the map updated with the net effect of all the samples.

The *omeSOM software provides the following main options:

• Training *omeSOM model: creating an *omeSOM model requires an input file with comma separated values,

for example datasetname.csv. The map size (n×n neurons) should be typed by the user in the command line.

Several model topologies, map sizes, number of training epochs and initialization strategies are possible.
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• Neurons map: several views of a trained map are possible, showing transcript (red), metabolite (blue) and both

molecular entities (black) grouped into neurons. The marker size indicates the number of patterns grouped.

Detailed plots of normalized and un-normalized data are shown. Additionally, in the case of genes, their

corresponding Arabidopsis [15] and Solanaceae Unigene [30] annotations can be retrieved. Also, a list of

KEGG metabolic pathways [16] associated with each metabolite is shown.

• Search: any input data point can be located on *omeSOM by name. This function returns the neuron number

where a given compound has been grouped.

• Neurons error measure: a typical measure of clustering quality (cohesion) is calculated for each neuron and

graphically shown over the feature map with different marker sizes.

The features described above constitute the fundamental functions of the software, which are constantly extended

according to the users’ feedback.

2.2 *omeSOM visualizations

In a standard SOM, clusters are recognized as a group of nodes rather than considering each node as a cluster.

The identification of neuron clusters is mainly achieved through visualization methods such as the U-matrix [31].

It computes the average distance between the codebook vectors of adjacent nodes, yielding a landscape surface

where light-colors stands for short distance (a valley) and dark-colors for larger distance (a hill). Then, the number

of underlying clusters must be determined by visual inspection.

The visualizations provided by *omeSOM model, instead, present a simple interface for quick identification of

co-expressed and co-accumulated genes and metabolites through a simple color code. An appropriate visualization

of the resulting characteristics map, painting the neurons according to the type of data grouped, is proposed for

helping the rapid identification of combined data types. The focus is on the easy identification of groups, independent

of the number of neurons in a cluster. The setting of several possible visualization neighborhoods of a neuron is

also helpful for the easy detection of groups of combined data types. When a visualization neighborhood is defined,

all the neurons in the neighborhood radius are considered as a group and treated altogether accordingly.

An example is presented in Figure 2 for a real biological data set that comprises primary metabolites and

transcripts measured in Arabidopsis thaliana leaves. The purpose of the integrated analysis of these data is to study

the effects of cold temperatures on circadian-regulated genes in this plant [32]. The data set includes metabolites

and transcripts under light-dark cycles at two control temperatures (20◦C and 4◦C), involved in diurnal cycle and

cold-stress responses. More details on how these data were processed, filtered and normalized can be found in

[32]. A total of 1549 genes and 51 metabolites were used in the integrated analysis. The plus/minus sign of each

transcript/metabolite was reversed as suggested in [33], [34] to obtain items inversely correlated to each other. The
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a) b)

Fig. 2. *omeSOM neuron map visualizations. Color code for data type grouped into neurons: transcript (red),
metabolite (blue), both (black). a) Visualization neighborhood of radius 0. b) Visualization neighborhood of radius
1.

inverted-patterns were added to the training set, resulting in a total of 3200 data points. Figure 2 shows a SOM

map obtained with *omeSOM when trained with this dataset and the painting of the neurons according to the color

codes mentioned before. The influence of two visualization neighborhoods on the neurons painting is shown as

well.

For the special case of *omeSOM, many interesting representations of clusters can be obtained from the projection

of patterns in the lattice of neurons. If the dataset includes the original data and all the data with inverted sign,

the resulting map shows a symmetrical triangular configuration. This means that the top-right and bottom-left

zones of the map group exactly the same data but have opposite sign. This way, it can be directly seen from the

data visualisation the genes and metabolites that are up-regulated and down-regulated together or inversely (down

regulated genes grouped together with up-regulated metabolites).

*omeSOM provides support for data mining tasks and it is applicable to basic research as well as applied breeding

programs. This software could be used to analyze many different types of omics data. The source code and sample

datasets are available free of charge at http://sourcesinc.sourceforge.net/omesom/.

3 BIOLOGICAL SELF-ORGANIZING MAPS

As previously introduced, systems biology clustering is implemented under the guilt-by-association principle [20],

that is to say, the assumption that compounds involved in a biological process behave similarly under the control

of the same regulatory networks [35]. It is presumed that if a metabolic compound with unknown function varies

in a similar fashion with a known metabolite of a defined metabolic pathway, it can be inferred that the unknown

element is also likely to be involved in the same pathway [36]. Therefore, those clusters that group metabolites

provide evidence about the metabolic pathways associated with them. This pathway-based approach to identify

metabolic traits results in more biological information or hypotheses that have to be tested through the design of

biological experiments (wet experiments) to confirm the results [37].
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In this context, when evaluating a clustering solution, it is a common and necessary practice to validate each

group returned by a clustering algorithm through manual analysis and visual inspection, according to a priori

biological knowledge. For each pattern, its annotations and memberships to well-known metabolic pathways are

generally assessed. Traditionally, the known annotations have been used only as a second step, after data have been

clustered according to their expression pattern. Only those clusters in which many data points are annotated with

the same information (for example, the same biologic process), are then selected for further analysis [38], [39].

The results obtained after the examination of each cluster by hand may indicate functionally related patterns [40],

[41].

Therefore, there is a growing interest in improving the clustering of biological data by incorporating prior

knowledge into it, such as the Gene Ontology (GO) [42] annotations of genes, in order to improve the biological

meaning of clusters that are subjected to later scrutiny [43]. In the last few years, several methods have been

introduced with that aim, since integrating a biological similarity measure into a clustering method can lead to

potential enhancement in the performance of the clustering [44], [45], as a result of a good correlation between

biological similarity and gene co-expression [46]. In [47] the proposal is to shrink the distances between pairs

of genes that share a common annotation. In fact, the similarity measure between genes can combine expression

profiles and functional similarity [48][49]. Most of these proposals utilize only the annotations provided by the

GO ontology or its hierarchical structure, that can be taken advantage of through the use of similarity measures

between terms. However, genes that are currently unannotated are either excluded or handled as exceptional cases

in those methods.

In this section, we describe a novel training algorithm that integrates biological similarities, derived from metabolic

pathway information, into the procedure of obtaining clusters with a SOM model when used over biological datasets.

We will demonstrate that doing so improves the quality of the clustering. This new approach named biological SOM

(bSOM) weighs the biological significance of the patterns during the training of the clustering method, through the

use of a new term for the biological assessment of clusters while they are being formed.

3.1 Biological-SOM training algorithm

In bSOM, we propose the use of a combination of a classical metric to measure distance between patterns and

neuron centroids, plus an additional term that measures the internal biological connectivity of the patterns grouped

in a cluster. Thus, when forming the clusters, the distances among patterns are computed using the weighted sum

dij = (1− α) εij + α(πi/∈j − πi∈j), (1)
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where εij is a standard metric distance between a pattern i and a neuron prototype j, (for example, εij = ‖xi−wj‖2);

πi/∈j is the average number of biological connections between all the patterns clustered in neuron j not including

pattern i; πi∈j is the average number of biological connections between all the patterns clustered in neuron j

including pattern i; and α is a regularization parameter that can be varied between 0 and 1 and controls the

importance that is given to the biological distance during training. The biological connections are calculated as the

average number of metabolic pathways in common among the patterns clustered in a neuron.

The biological term (bij = πi/∈j − πi∈j) measures how close a pattern i is to a neuron j, in terms of the

improvement of the common number of known pathways in that cluster j. If the pattern has already been correctly

assigned to a neuron, bij = 0. If a pattern has bij > 0 with respect to neuron j, it means that if the pattern i is

assigned to neuron j, the average number of common pathways among all the data patterns clustered in that neuron

would decrease. Instead, if bij < 0, the assignment of the pattern i to neuron j would certainly increase the number

of average common pathways connections, clearly enhansing the biological value of that cluster. The parameter α is

used to balance the two goals: when α = 0, dij becomes a classical metric distance and the algorithm becomes the

standard SOM clustering (sSOM); and when α = 1 the algorithm completely disregards the expression measures

and groups data only according to biological connections.

3.2 Analysis of bSOM results

This subsection presents the results obtained from the application of the new biologically-inspired training algorithm,

in comparison to standard training, to the direct metabolites of the Arabidopsis thaliana data set presented in Section

2.2. Table 1 reports the results of the comparison of bSOM vs. sSOM training algorithms for three standard validation

measures: compactness (C), separation (S) and the combined index of Davies-Bouldin [50], [51], [17].

For the evaluation of clusters from the viewpoint of their biological meaning, we will use the number of common

pathways among patterns grouped in a cluster normalized by the number of all the possible shared pathways among

patterns grouped in this cluster and any other pattern in the dataset. The average biological connectivity P is defined

as the average of this relation over all the clusters. For the calculation of this biological connectivity index we

used the KEGG1 pathway database [16]. SOM was trained during 10 epochs with both training methods, weighing

the Euclidean distance and the biological terms during clusters formation in bSOM using a regularization term

α = 0.75.

As shown in Table 1, improved cohesion and average separation of the clusters are achieved when using bSOM

in comparison to sSOM. The DB measure does not improve when using bSOM. However, this measure is designed

to qualify well-separated clusters better, and in the biological data set the average separation and clusters cohesion

1. http://www.genome.jp/kegg/pathway.html/
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TABLE 1
Validation measure comparison for sSOM and bSOM. The best value for each measure is underlined.

training → sSOM bSOM
C 6.92 6.81
S 4.25 4.19
DB 8.38 9.55

− log(P ) 1.22 0.89

are large. Therefore, DB does not provide good results in any case since it should be closer to zero, and this

does not happen independently of the training algorithm used and data distribution. Finally, considering the average

biological connectivity of the clusters found, P has clearly improved in the new proposed algorithm bSOM when

compared to sSOM. It can be stated that, in general, the new algorithm has a better performance than the standard

one. That is to say, it effectively improves the clusters obtained, from the viewpoint of their biological meaning,

which is measured in terms of belonging to known metabolic pathways.

We have performed a detailed analysis of one of the clusters obtained after training using sSOM and bSOM. The

metabolites grouped together when using sSOM were: Valine, Aspartate, Xylose, Raffinose and Citrate. The number

of common pathways among these metabolites was only one: ko20102. The equivalent cluster obtained by bSOM

has grouped: Valine, Aspartate, Xylose, Raffinose, Citrate, Glutamine and Arginine. In this case, the pathways in

common are five: ko2010, ko0970, ko1060, ko2010 and ko4974. This example shows how the patterns grouped in

the cluster obtained by the biological training have significantly increased the number of pathways in common in

the cluster, increasing the biological meaning of the clusters found.

4 GLOBAL MEASURE FOR LINKED CLUSTERING

As shown in the previous section, after the application of an unsupervised mining technique, it is rather difficult to

validate the results obtained. A good clustering solution should perform reasonably well under multiple measures.

Although a set of objective measures can be used to quantify the quality of the clusters obtained by the different

methods available, it is very difficult to clearly indicate one as providing interesting clusters to be analyzed by

biologists in order to discover new relationships among data. As stated before, it is common practice to validate the

groupings returned by a clustering algorithm through manual analysis and visual inspection, according to a priori

biological knowledge.

Most existing validation measures [50] evaluate different aspects of a clustering solution separately, which are

based only on the raw data. None of them uses explicit information from the application domain to evaluate the

clusters found nor do they evaluate the differences among the solutions found from a biological point of view.

2. KEGG pathway code.
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Therefore, a way of measuring the biological relevance of the results might be useful, since unsupervised clustering

may produce useless clusters.

The clustering results are evaluated by examining the relationship between the clusters produced and the known

attributes (annotations) of the genes in those clusters. Existing proposals [52], however, mainly concentrate on

enriching or evaluating clusters according to well-known gene functions only. Looking at the analysis made by

biologists when they evaluate the elements that are part of a cluster, coherent groupings are verified, as well as

their belonging to well-known metabolic pathways. These aspects are important when qualifying a cluster.

A Global Measure for Linked Clustering (GMLC) [17], which compactly assesses the kind of cluster analysis

often made by biologists, is explained here. In our work, the use of pathway information for assessing clusters allows

the integration of both transcriptional data and metabolic profiles for a more general evaluation. This is addressed

from the perspective of the usefulness of clusters to identify those patterns that change in coordination and belong

to common pathways of metabolic regulation. The proposed GMLC compactly reflects the objective analysis of

clustering methods regarding coherence and cluster distribution. Moreover, it also evaluates their biological internal

connections considering common pathways.

4.1 Combined biological assessment validation measure

In this subsection, the following notation is used: X is the dataset formed by xi data samples; Ω is the set of

samples that have been grouped in a cluster; and W is the set of wj centroids of the clusters in Ω. To define the

GMLC, we need the following three factors:

1) Clustering homogeneity:

Ȟ =
1 + medm {|Ωm|}

maxm {|Ωm|}
,

where the numerator counts the median of the number of elements in the clusters and the denominator is the

maximum number of elements in the clusters. Ȟ is a measure of the flatness of the pattern distribution along

clusters. For the analysis of their possible biological relations, it is preferable to have many small clusters

than a few large ones (with many data points).

2) Grouping coherence:

Γ =
1

|X|
∑
i

ε(−xi)

( |Ω(i)| −Θ(−i)

|Ω(i)|

)
,

where Ω(i) is the node in which pattern xi is grouped; Θ(−i) is the number of misplaced inverted-patterns

grouped in the node where −xi is grouped; and the indicator ε(−xi) is 1 only when −xi /∈ Ω(i). This factor

indicates if the data sample xi has been coherently grouped when having an inverted value. That is to say, the

normal and inverted-sign versions of a data point should have the same behavior. For example, let us suppose

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, M
. G

er
ar

d 
&

 D
. H

. M
ilo

ne
; "

D
at

a 
m

in
in

g 
ov

er
 b

io
lo

gi
ca

l d
at

as
et

s:
 a

n 
in

te
gr

at
ed

 a
pp

ro
ac

h 
ba

se
d 

on
 c

om
pu

ta
tio

na
l i

nt
el

lig
en

ce
"

IE
E

E
 C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 M

ag
az

in
e,

 2
01

2.



IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, JUNE 2012 12

xi has been grouped together with xj and xk. If the sign of each data point in the dataset is changed, one

should expect that −xi would be grouped together with −xj and −xk. If this is the case, Θ(−i) = 0. If not,

Θ(−i) counts how many of the original data points that were grouped together with xi are not grouped now

with −xi.

3) Internal biological connectivity:

P =
1

k

∑
m

pm
pm∗

,

where

pm = 1 +
∑
i∈Ωm

∑
j∈Ωm,j 6=i

ρij

is the number of common pathways among patterns grouped in cluster m, with ρij the number of pathways

that contain patterns i and j, and

pm∗ = 1 +
∑
i∈Ωm

∑
j 6=i

ρij

is the number of all the possible shared pathways among patterns grouped in cluster m and any other pattern

in the dataset. This measure is, conceptually, the same one used in Section 3.2 for bSOM result evaluation,

but it is formally defined here.

The Global Measure for Linked Clustering is defined as a weighted combination

G = γH log(Ȟ) + γΓ log(Γ) + γP log(P ), (2)

where the γ parameters are empirically determined. A simple criterion to set them, according to their distribution

in a given dataset, could be to define γP = −1 and calculate the other weights as the ratio of the expected values

γH = −E`
[
logP `

]
/E`
[
logH`

]
,

and

γΓ = −E`
[
logP `

]
/E`
[
log Γ`

]
.

Here, E` may be simply the average over all the cluster methods and configurations evaluated with the dataset.

Thus, in order to equate the influence of all three terms in the final GMLC score, one of the γ parameters (any of

them) can be taken as a reference and the others scaled accordingly.

4.2 Application to clustering methods

The application of standard measures to the clusters obtained on the Arabidopsis thaliana data are presented in

Table 2. We included the clustering methods most widely used in bioinformatics research nowadays [5], [9], [53]:
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TABLE 2
Comparison of validation measures for the clustering methods. The best value of each k for each measure

is underlined.

HC KM SOM
k1 k2 k3 k1 k2 k3 k1 k2 k3

C 7.06 7.21 8.66 6.85 7.11 7.19 6.55 6.33 6.29
S 7.09 7.36 7.06 6.35 6.69 6.99 4.58 4.55 5.40
DB 2.67 2.89 3.63 5.12 4.93 4.52 14.9 15.7 13.0
G 10.08 10.32 9.55 17.1 21.7 19.8 8.72 8.27 6.49

HC, KM (100 repetitions) and SOM. For all the methods, we used the Euclidean norm to measure the distance

between patterns. The Gap Statistic [54] was used to select an appropriate number of clusters for the comparisons

among methods to show the application and use of the GMLC. These three top gap scores were selected for the

comparisons: k1 = 50, k2 = 200 and k3 = 450. For further details on this study and additional comparisons see

[17].

Additionally, we tested the significance of all the results obtained by performing 100 resamplings of 80% of

the transcripts and metabolites in the dataset, for all the methods in each k. We have statistically analyzed the

significance of such results using an ANOVA to test the null hypothesis in which, for each partition k, the difference

among the clustering methods, in a given measure, is not significant. The analysis revealed that all the measures,

including the new GMLC, show significant differences (p < 0.01) among the methods in each partition, validating

the conclusions obtained from the detailed analysis of each of the measures in the presented table.

It can be seen from compactness and separation that SOM is the best clustering method in any of the tested

configurations. Since these two types of measures evaluate opposite aspects of a clustering solution, a combined

measure such as DB was calculated because it combines compactness and separation into one single index. Due to

this fact, one would expect a better discerning capacity. Interestingly, DB has favored HC for all the configurations

tested. However, being a measure that summarizes compactness and separation, it contradicts those indications in

the table. In particular, SOM always obtains the worst DB scores because the distances between centroids are

always the smallest since these centroids are better distributed and are not associated with remote and isolated

patterns. As patterns that are at large distance to a centroid (possible outliers) have to be associated with any

centroid, cluster compactness also decreases. However, from a biological point of view, it would be useful to have

clusters with a high DB index because there are patterns that should be close to many other patterns, if we think

that the groupings reflect components of common metabolic pathways and that there are patterns that certainly

participate in several pathways simultaneously.

These contradictory results can be very confusing. As stated, a good clustering solution should perform well
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under multiple evaluation points. However, as it can be seen, it is very difficult to indicate one of the evaluated

methods as the clear winner according to all the measures applied; or to indicate a solution and configuration as

the most adequate. Although objective measures should give an indication of which clustering technique would

be more appropriate for the dataset under study, it is very difficult to explicitly select one method as the one

providing more interesting clusters to be analyzed by further computational analysis or by biologists in order to

discover new relationships among data. It can be observed that the GMLC is consistent with the results obtained

from the application of compactness and separation measures. In fact, the GMLC could aid in deciding which

clustering solution to use in order to obtain a coherent and biologically significant solution for a particular biological

experiment. In future works, a fuzzy-GMLC measure could be defined using fuzzy memberships for the pathways.

Nevertheless, the analysis performed does not provide a clear clue regarding the connection or the reason why

the data were clustered, from the viewpoint of their involvement in a common metabolic pathway. This point is

addressed in the next section.

5 EVOLUTIONARY METABOLIC PATHWAY SEARCH

Although SOM can be applied to group biochemical entities into clusters, the relationships among them remain

hidden. In fact, searching metabolic pathways is a relevant task in bioinformatics, particularly when working with

different types of data. In many cases, employing classical strategies for sequential state space exploration allows

solutions to be found more rapidily [55]. However, it is a well-known fact that there are several problems where a

very high number of solutions must be explored, making classical methods practically inapplicable [56]. In the last

few years, nature inspired approaches have been proposed to tackle these problems. Among them, the ones with

higher impact and relevance were evolutionary algorithms, providing outstanding results in several disciplines [57],

[58], [59]. Their success is related to their ability to perform an effective and efficient global search in complex

solution spaces. Some interesting aspects about them are the simplicity of the operators used, the possibility of

using fitness functions with very few formal requirements, and the ability to explore multiple points of the search

space in each iteration [60].

Different search strategies to find metabolic pathways that relate compounds have been recently proposed.

PathComp [61] uses an algorithm based on a classical search algorithm to build paths that connect the compounds,

taking them in pairs and combining them through allowed relations (metabolic reactions). Linked Metabolites [62]

builds an integrated graph first and performs the pathway search by specifying the maximum number of reactions

between source and target compounds. Metabolic PathFinding Tool [63] assigns to each operator a cost that is equal

to the number of reactions where the compound participates. PathMiner [64] uses the A* search algorithm in wich

its heuristic function employs the structural information of the compounds to generate characteristic descriptors,
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and explores the search space using a cost function based on the Manhattan distance. Most of these methods require

detailed and specific information about the molecular structure of metabolic compounds, which in many cases is

not available. The proposals based on classical methods suffer from limitations in the computational resources

associated with the path length and degree of branching of the tree search. Furthermore, the order in which the

nodes of the tree are visited can bias the search for particular solutions.

In literature, there are many different applications of evolutionary algorithms to bioinformatics [18], and in

particular, to metabolic pathway analysis [65] and optimization [66], [67]. A genetic algorithm can be used for

specific optimal metabolic network design of energetically favorable pathways for production of a determined

compound of interest [68]. An optimum metabolic pathway can be found by studying a large number of alternative

pathways. This could show if very efficient pathways share common structural properties, which can be used,

for example, for the optimization of the flux and stoichiometry of a determined biological system [69]. An

evolutionary algorithm can be also used for the determination of the kinetic parameters of a time-varying model

of a metabolic system [70]. Another recent field of application is metabolic engineering within biotechnology –the

targeted manipulation of cells and enhancement of a desired product. Evolutionary algorithms can be used for the

understanding of how regulatory elements interact with each other, to control such processes [71]. In line with

this last application field, this section will present an evolutionary algorithm to find metabolic pathways (EAMP)

that relates two compounds, and compare its performance with solutions based on classical search algorithms. To

achieve this the *omeSOM data mining tool was used to generate clusters from a real biological dataset, and pairs

of compounds within the clusters were used for metabolic pathways search. Afterwards, objective measures are

defined to quantify the performance of the algorithms.

5.1 Evolutionary algorithm for the search of metabolic pathways

The state space is defined as the set C of all metabolic compounds in the KEGG database [16]. This database

contains information of genes, proteins and metabolic compounds of hundreds of different organisms, and the

allowed binary relations between compounds are described by r transformations. The compound on which the

transformation is applied will be called substrate s, and p will be the product or new resulting state. Transformations

will be represented as ordered pairs ri = (si, pi), with si, pi ∈ C ∧ si 6= pi, being ŝ and p̂ the initial and final

compounds of the metabolic pathway. In this way, a metabolic pathway is built as a sequence of transformations

that produce p̂ starting from ŝ. Finally, the sequence of possible states q = [ŝ, p1, p2, . . . , p̂] is defined as the

sequence of compounds that take part in the transformation. Thus, the sequence of ri transformations leading to the

production of p̂ from ŝ can be coded in a chromosome c = [r1, r2, . . . , ri, . . . , rN ], where N indicates the number
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a b b r r d z q v t t p w f o l m s

h j n g k n u c t g b q q y y r r e

φ1

φ2

b q q y y r r ea b

Fig. 3. Crossover operator. Each block corresponds to a gene encoding a transformation. In each gene,
substrate and product are represented by letters on the left and right of each arrow, respectively. Shaded
elements indicate pairs of positions (φ1, φ2) where a valid crossover can be made.

of genes and the sequence is read from left to right 3.

Due to the requirements of the application under study, it has been necessary to make various changes to classical

genetic operators, which, if directly applied, would limit the convergence of the algorithm. In order to facilitate their

explanation, four sets of transformations are defined: R∗ contains the complete set of allowed transformations; R1 =

{ri�ri = (ŝ, pi)} ∧R1 ⊂ R∗ contains only those transformations that use ŝ; RN = {ri�ri = (si, p̂)} ∧RN ⊂ R∗,

contains all transformations that produce p̂; and R+ = R1 ∪RN .

The crossover point φk for each parent ck is randomly selected from a set containing pairs of positions (φ1, φ2)

that satisfy si = pj for si ∈ c1 ∧ pj ∈ c2. Figure 3 shows a diagram of this crossover operator in the case of two

parents having reactions that are not completely valid. Each gene codes a chemical reaction in which letters represent

the substrates and products. It can be noticed that if a simple crossover method is applied without considering the

sequence of reactions, the validity of the generated offspring will probably diminish. However, if the crossover is

carried out in one of the highlighted pairs of positions (φ1, φ2), the validity of the offspring will increase or, at

least, remain constant.

The mutation operator replaces a gene with another according to

mut(ri) =



τi ∈ R+ if N = 1,

τi ∈ R1 if N > 1 ∧ i = 1,

τi ∈ RN if N > 1 ∧ i = N ,

τi ∈ R∗�%i = si+1 if N > 1 ∧ 1 < i < N ∧ u ≤ 0.5,

τi ∈ R∗�ςi = pi−1 if N > 1 ∧ 1 < i < N ∧ u > 0.5,

(3)

3. In the context of evolutionary computation, in spite of the name, chromosomes and genes are not biological entities but data structures
that model a problem.
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f → b b → r k → z z → q q → v v → t t → p

f → b b → r r → d z → q q → v v  → t t → p

f → b b → r r → z z → q q → v v → t t → p

.

.

.

Fig. 4. Mutation operator. The selected gene to mutate is marked with a black rectangle. This mutation may
lead to maintaining or increasing the validity of the chromosome.

where si+1 is the substrate of the gene that is located in the position next to the mutated gene ri, and pi−1 is the

product of the gene that is in the position previous to the mutated gene. Value u is random with uniform distribution

in [0,1]. Figure 4 presents a diagram of the mutation operator. It is observed that in the chromosome placed at the

top of the figure the gene selected to mutate has a valid relation with the previous gene. If a classical mutation

operator is applied, there is high probability that the validity of the chromosome will diminish. If, on the contrary,

a valid mutation strategy is applied like in (3), the new chromosome increases its validity, as it can be seen in the

chromosome at the bottom of the figure.

To evaluate the solutions, a fitness function was built taking into account features of biochemical reactions,

and it was employed to guide the search. The fitness function for the chromosome c is defined as f(c) =

∆ [V (c) + βE(c) +Q(c) + I(c)], where ∆ = 1/(3 + β) is a normalization constant and β determines the relative

contribution of E measure. This fitness function takes value 1 when a valid and loop-free metabolic pathway that

transforms ŝ in p̂ is found. In case of having information about the relative abundance of compounds, this function

could be modified to weight the reactions according to the probability of occurrence. The four measurements of

the fitness function are:

• Validity (V ): it quantifies the number of valid concatenations present in the chromosome, defining them as

those consecutive pairs of transformations where the product pi of ri is the substrate si+1 of the transformation

ri+1. V varies in the range [0,1], being 1 when all operators are well concatenated.

• Valid extremes (E): this term evaluates transformations r1 and rN to verify they contain the desired ŝ and

p̂ compounds. The calculation is done according to E(c) = 1
2 [δ(ŝ, s1) + δ(pN , p̂)], where δ is the Kronecker

delta. This term varies in the range [0,1] and reaches its maximum value when compounds s1 and pN are the

desired ones.

• Unique reactions rate (Q): it penalizes the repetition of transformations in the chromosome. The rate is
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TABLE 3
Comparison between BFS and EAMP. Time t is expressed in seconds and L in number of transformations.

|Ψ| indicates the number of compounds in each cluster.

|Ψ| 6 12
Ends 62 - 47 258 - 77 47 - 258 37 - 82 135 - 65 135 - 82

t
EAMP 17.6 8.6 8.3 3.4 15.2 8.4
BFS 170.4 613.5 533.2 33.5 14.2 84.7

LM
EAMP 13 11 17 9 19 18
BFS 6 6 6 4 6 7

L̂
EAMP 6.5 7 8 5 9 6
BFS 5 6 6 4 6 6

Lm
EAMP 4 5 5 3 5 5
BFS 4 5 5 3 5 5

ψM
EAMP 3 3 2 4 3 4
BFS 3 2 2 3 2 2

ψ
EAMP 2.4 2.1 2.0 2.3 2.1 2.1
BFS 2.3 2.1 2.0 2.6 2.1 2.0

calculated as Q(c) = (ϕ(c)− 1)/(N − 1), where ϕ counts the number of unique elements present in c, and

Q(c) = 0 when N = 1. Q varies in the range [0,1] and reaches its minimum value when the sequence contains

a unique element repeated N times.

• Unique compound rate (I): this term penalizes the repetition of compounds in the pathway. The rate is

calculated as I(c) = (ϕ(q)− 2)/(N − 1) and it is defined I(c) = 0 when N = 1. I varies in the range [0,1]

and reaches its minimum value when the chromosome contains transformations that lead only to s1 or p1.

For example, for the metabolic pathway c = [a → b], [b → a], [a → b], [b → d] the number of reactions is

N = 4 and the sequence of states associated to it is q = [a, b, a, b, d] where only three compounds are unique

(ϕ(q) = 3). In consequence, I(c) = 1/3.

5.2 Evolutionary algorithm results and discussion

The proposed EAMP has been compared with two classical search algorithms that do not require specific information

from the problem: breadth-first search (BFS), the classical method most widely used by related work, and deep-first

search (DFS) [55]. However, since the length of the paths found by DFS tended to be equal to the maximum allowed

value (100 reactions in our experiments) and metabolic pathways containing such number of transformations are

of no biological interest, the results obtained with this algorithm are not presented.

Several performance measures obtained for the search of metabolic pathways on different number of clusters were

used. Table 3 shows measures obtained with EAMP and BFS for each pair of compounds searched4. The rows in

the table correspond to: the mean search time (t); the maximum, median, and minimum number of transformations

(LM , L̂ and Lm); and the maximum and mean number of cluster compounds incorporated into the pathway (ψM

and ψ). An analysis of this table reveals that BFS employed times which are 10 times higher than EAMP to

4. Named using KEGG codes.
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C00037

C02985C01019

C01721 C01099 C00256C00033

C00424C03979

C00186

C00149

C00058

C00111C00424

C01005C00078 C00065

C00022 C00740

C00048C00188C00546

C00325
R03161 R01951

R03163

R03241

R02262

R02261 R02260 R01016

R01446

R00319 R01450

R00703

R00214

R00212 R00221

R00220 R00589

R00582

R02722

R00588

R00751

R00364

R00372

C00022

Fructose and Manose Metabolism Pyruvate Metabolism Glycine, Serine and Threonine Metabolism

Fig. 5. Metabolic pathway found by using EAMP (indicated in bold lines) for linking compounds C01019 and
C00037. Initial and final compounds are drawn as bold hexagons. Large gray rectangles indicate related
known pathways and their compounds (circles) and reactions (arrows), shown with the KEGG codification.

perform every search (p < 0.003). With regard to the length of the paths, it can be noticed that the median for

each algorithm was similar, whereas the diversity in the number of transformations was higher for the EAMP, as

reflected in the maximum length for each algorithm. On the other hand, it was observed that measures related to

the presence of cluster compounds in the paths were similar for both algorithms. It must be highlighted that the

EAMP generated a higher dispersion of lengths in the paths, which translates into an increase in the variety of

pathways found and the richness of possibilities for further analysis from a biological point of view.

As an example of a biological evaluation, a search for a pathway linking two metabolic compounds, C01019

(Fucose) and C0037 (Glycine), was performed. The linked metabolites have been clustered in neighborhood neurons

in a SOM map and they do not have any common metabolic pathway inside KEGG. Figure 5 shows the obtained

results. Initial and final compounds are drawn as bold hexagons. Large gray rectangles indicate, as a reference, parts

of well-known pathways. Their compounds (circles) and reactions (arrows) are shown with the KEGG codification.

The pathway found by the EAMP is indicated in bold lines. It presents a novel mechanism for the conversion of

L-Fucose in Glycine, not reported so far in literature. This mechanism could be of interest since it corresponds to an

alternative route for the production of Glycine, which is an amino acid of great importance that acts as precursor of

many other metabolites [72]. All metabolites in this pathway have been reported in Arabidopsis thaliana [73] with

the exception of the compounds C01721 (L-Fuculose) and C01099 (L-Fuculose 1-Phosphate). This might be due

to the fact that they have not been determined experimentally yet. With respect to the enzymes necessary for the

reactions that produce these metabolites, a gene encoding the enzyme that may catalyze the first reaction was found

in Oryza sativa [74], while a gene encoding an enzyme associated to the third reaction was found in Medicago

truncatula (legume) [74]. Although a gene encoding the enzyme needed for the second reaction has not been found

in these plants yet, it should not be excluded that it could be found in the future. In fact, the functionality of a
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large variety of Arabidopsis thaliana genes is currently unknown [75]. The verification of inferred non-standard

pathways should be performed through the corresponding biological “wet” experiments.

6 CONCLUSIONS

In this article we have presented a novel integrated computational intelligence approach for biological data mining.

It is an approach encompassing several steps, which involves the application of two of the most important and

well-tested techniques in the computational intelligence field: neural networks and evolutionary algorithms. Each

step has been explained in detail, through a real case study involving genes from microarray measurements and

metabolite profiles from Arabidopsis thaliana.

First of all, we have proposed the use of self-organizing maps for the integration and clustering of data from

heterogeneous sources, since SOM has proved to be a useful tool for the identification of coordinated variations

in data patterns. We have also presented a novel algorithm for training a SOM model, in such a way that a priori

biological information could be used during clusters formation to obtain more biologically meaningful results.

Several quality measures have been applied to the results, showing improved clusters formation in comparison to

standard methods. Due to the need for further validation of clustering results, not only from an objective point of

view but also taking into account knowledge from the application domain, a validation measure that can assess

the biological significance of the clusters has been presented. It explained how such measure could aid in deciding

which clustering configuration to use in order to obtain a coherent and a biologically significant solution. Finally,

an evolutionary algorithm for the search of novel metabolic pathways among data grouped inside clusters was

presented. Such an algorithm was able to find a biological pathway between two metabolic compounds, in spite

of the fact that they have no known pathway that relates them. The sequence of reactions found by the proposed

evolutionary method could provide clues for hypothesis formulation and further investigation of the biological

processes involving those compounds.
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