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Abstract— The main objective of the emotion 

recognition systems is to improve the human-

machine interaction, giving them a more natural 

behavior to attend different situations and user 

requirement. Several works on this domain use the 

prosodic features and the spectrum characteristics of 

speech signal with classifiers based on neural 

networks, Gaussian mixtures and other standards 

classifiers. In this paper a deep autoencoder based 

on a Multilayer perceptron was used as a classifier. 

Following the deep learning paradigm, an 

autoencoder training strategy layer by layer was 

implemented, which results in a stack of perceptrons 

with a set of “good” weights. A final fine-tune 

training was applied to the whole classifier. Many 

configurations were evaluated in order to predict six 

different emotions and neutral emotional state. 

Performance of the classifier was over 70%, 

promoting better results for this novel approach. 

 Key words— Emotion Recognition, Deep Auto-

encoder, Multilayer Perceptron. 

1. INTRODUCTION 

Speech is the most important and efficient channel of 

communication in humans [1]. In addition to what is 

said, a lot of extra information is exchanged which is 

unconsciously manifested and interpreted, e.g. facial 

expressions, body language and prosodic features. The 

emotional state of a speaker can be noticed in this 

information and this motivates its study. 

There are many theories that explain the emotions 

from different perspectives. For example, Ekman et al. 

[2] theorized the existence of six universal emotions: 

happiness, sadness, surprise, fear, disgust and anger. 

Following this idea, in this work we use a set of seven 

discrete emotions.  Emotion recognition plays an 

essential role in human-machine interaction systems by 

providing a more natural behavior [3]. That implies not 

only to carry out instructions given directly by users, 

these systems should act according to the implicit 

information produced by them in the emotions. This has 

been implemented to support semi-automatic diagnosis 

of psychiatric diseases [4], detection of emotional 

attitudes from child through visual-acoustic interaction 

software [5], systems for real-life emotion detection 

using a corpus of agent-client spoken dialogues from a 

medical emergency call centre [6].   

The application of neural networks to the complex 

problem of emotion classification is not so novel. On 

the other hand, there are few works with focus on deep 

architectures [7]. As Bengio states: “there is theoretical 

evidence which suggests that in order to learn 

complicated functions that can represent high-level 

abstractions (e.g. in vision, language, and other AI-level 

tasks), one needs deep architectures” [8]. 

Here we propose a method which takes the idea 

introduced by Hinton et al. to train deep belief networks 

in order to obtain better generalization results [8] [9]. 

Differently from the greedy layer-wise training 

algorithm proposed by [9] in this work we used Deep 

Autoencoders (DA) based on Multilayer perceptrons 

trained through backpropagation algorithm. 

In the next section the emotional speech database 

used in the experiments is presented. Section 3 

describes acoustic features extraction stage, and 

classifiers based on Multilayer perceptron and Deep 

Autoencoders. The method to build the Deep Classifier 

here proposed is also explained. In Section 4 

experiments are described. Section 5 presents the 

obtained results. Also, performance and selection of the 

method are discussed. Finally, in Section 6, conclusions 

and future works are presented.  

2. THE SPEECH CORPUS 

The emotional speech signals used in this work 

correspond to the EMO-DB database, developed at the 

Communication Science Institute of Berlin Technical 

University [10], which consists of 535 utterances 

recorded in German. In order to construct the database, 

ten actors (5 female and 5 male) simulated the emotions, 

producing 10 German utterances divided into 5 short 

and 5 longer sentences. This corpus covers anger (A), 

disgust (D), boredom (B), joy (J), fear (F), sadness (S) 

and the neutral (N) emotional state. The corpus 

distribution is shown in Table 1. After recording all 

utterances, a perception test was carried out by 20 

subjects in order to evaluate quality and naturalness of 

them. Only utterances with a recognition rate better than 

80% and naturalness better than 60% were taken. 

3. METHODS 

2.1. Acoustic Features Extraction 

For every emotional utterance two sets of character- 

istics were extracted: MFCC (Mel Frequency Cepstral 
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Coefficients) and prosodic features. 

The MFCC parameterizations were calculated using a 

Hamming windows of 25 ms with a 10 ms frame shift 

and the first 12 MFCC were used here (extracted using 

the Hidden Markov Toolkit [11]). The mean of the log-

spectrum (MLS) on each frequency band along the 

frames was calculated for every utterance, as was 

introduced in [12]. 

Table 1: Number of utterances corresponding to 

each emotion class. 

Emotion 

class 
A B D F J S N 

No. of 

Utterances 
127 81 46 69 71 62 79 

 

Many works used the prosodic features in emotion 

recognition, while the classic methods were used to 

calculate energy (E) and voice fundamental frequency 

(F0) along signals [13]. Many useful parameters can be 

extracted from prosodic features; usually the minimum, 

mean, maximum and standard deviation over the whole 

utterances is selected. This set of parameters has already 

been studied and some works reported an important 

information gain to discriminate emotions [14].  

In this work, the selected feature vector is which 

obtained best results in our previous experiments 

reported in [12]. It has 46 elements: 12 mean MFCC + 

30 MLS + F0 mean + E mean + the standard deviation 

for F0 and E. 

2.2. Multilayer Perceptron 

Multilayer Perceptron (MLP) is a class of artificial 

neural network that consists of a set of simple 

perceptrons arranged in layers. In the MLP, the 

perceptrons are fully connected between layers without 

connections between them in the same layer. The input 

vector feeds into each of the first layer perceptrons, the 

outputs of this layer feed into each of the second layer 

perceptrons, and so on [15]. The output of the neuron is 

the weighted sum of the inputs plus a bias term, passed 

through an activation function. Backpropagation 

training algorithm was generally used in order to find 

the optimal values for all the parameters of the MLP. In 

this work the Stuttgart Neural Network Simulator
1
 

(SNNS) was used for this purpose. SNNS offers the 

possibility to interact with users through a graphical 

interface; however, batchman
2
 program was used here 

because many hours of CPU time and relatively 

complex networks manipulations were required. 

Batchman uses a specific language that allows to 

generate, train, test and perform other tasks with neural 

networks in background execution. 

2.3. Deep Autoencoders 

                                                           
1
 The latest version 4.3, available in http://www. 

ra.cs.uni-tuebingen.de/SNNS/ 
2
  A command interpreter for batch jobs, included in 

SNNS. 

We can describe a general classification task as a 

process in which, given a certain classes, we have to 

pick from a set of features those which better fit each of 

these classes. When that set consists of too many 

features the task might not be so easy and it could be 

better to have a smaller set, but whose elements are still 

representative of the first. Applying this concept to 

neural networks, we want to find a low dimensional 

representation of a high dimensional data and that is 

what autoencoders can do [16]. This process of 

dimensionality reduction is performed by such 

autoencoder which consists of a multilayer neural 

network with a small central layer and whose aim is to 

reconstruct its high-dimensional input vectors. Since the 

input data is forced through that “bottleneck” and then 

is should be reconstructed, a low-dimensional code is 

learned by the network (for example see the 

autoencoder in Fig. 2). To train the whole autoencoder 

we could initialize weights randomly and then apply the 

backpropagation algorithm. However, following this 

way in the case of nonlinear deep autoencoders (i.e. 

autoencoders with 2, 3 or 4 hidden layers) we only 

reach poor local minima since gradients are very small 

in the early layers. Due to local minimum problems, 

backpropagation need to be close to a good solution 

before training the weights of the whole deep 

autoencoder [16] [17]. Finding such initial weights 

requires a very different type of algorithm that learns 

one layer of features at a time. This way of initializing 

weights, so called “pre-training”, is accomplished by 

applying a serie of steps as explained below. The 

addition of a last layer converts the deep autoencoder 

(DA) into a deep classifier (DC). 

2.4. Building the Deep Classifier 

The whole process to obtain a deep classifier can be 

split into 8 steps. To better understand the previous 

ones, we will first take a look to the final classifier that 

will be obtained at the final step. Figure 1 shows the 

topology of that classifier which is a feed forward, fully 

connected network with an input layer i, two hidden 

layers h1, h2 and an output layer o. Similarly, the 

corresponding number of units is represented by ni, nh1, 

nh2 and no for each layer, respectively. All units from 

this and other networks used in this work have the same 

characteristics: the activation corresponds to the logistic 

function, and outputs to the identity function. Since the 

input vector has 46 elements and there are 7 classes to 

discriminate, the number of units in the input and output 

layer are fixed, i.e. ni=46, no=7. 

Regards the hidden layers, the number of units in each 

–nh1, nh2- are degrees of freedom to modify during 

experiments in order to find the best net architecture. A 

restriction imposed is that the number of units in a layer 

should be less than in the previous one, hence the size of 

rectangles in the diagrams. This restriction was made in 

order to force the net to progressively perform a 

dimensionality reduction of the input features. There are 

several previous steps that were made to pre-train the 

 classifier described above, they are detailed below. 
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Step 1. The aim of this step is to initialize the weights 

corresponding to links between the input layer i and the 

first hidden layer h1 of the classifier. To achieve that, an 

autoencoder was constructed which was formed by a 

single hidden layer h1 with nh1 units and identical input 

and output layers with 46 units each, fully connected 

with h1 (Fig. 2). Different values of nh1 were experimen- 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of the network topology 

corresponding to the final classifier. Layers are 

represented by rectangles, and dot pattern indicates the 

fully connection between them. The network has an 

input layer i, two hidden layers h1, h2 and an output 

layer o. The number of units in each layer is indicated 

by ni, nh1, nh2 and no, respectively. 

ted. During training, the Sum of Squared Errors (SSE) 

in each epoch was calculated for training and test sets 

respectively. For each configuration, the network 

corresponding to the epoch that yields the minimum test 

SSE was chosen. Then, SSE for validation set was 

additionally computed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Diagram of the autoencoder corresponding to 

step 1. It was formed by a single hidden layer h1 with 

nh1 units and identical input and output layers with 46 

units (coder-decoder). 

Step 2. It was taken the best autoencoder 

configuration -minimum test SSE- from the previous 

step and the output layer was removed (decoder), 

obtaining a network (coder) like the one shown in Fig. 

3. We called it as i+h1 because these indexes 

corresponds to the layers that form the network. All 

training, test and validation patterns were passed 

through this network in order to generate outputs that 

will be the input patterns used in the following step. 

Step 3. Similarly to step 1, a new autoencoder was 

constructed (Fig. 4), but in this case the objective was to 

initialize the weights corresponding to links between the 

first and second hidden layer, i.e. h1 and h2. To train this 

autoencoder we used patterns obtained in step 2 and the 

best autoencoder configuration was selected according 

the same rules applied in step 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The resulting  i+h1 net of step 2 (coder), after 

removing the output layer (decoder) of the autoencoder 

from step 1. 

Step 4. From the best autoencoder obtained in step 3, 

the output layer was removed resulting in a single layer 

network, h1+h2, as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

Figure 4: Diagram of the autoencoder corresponding to 

step 3. It was formed by a single hidden layer h2 with 

nh2 units and identical input and output layers with nh1 

units. 

Step 5. Resulting networks from steps 2 and 4 were 

combined to build a DA that was again constructed as 

described below. Firstly, i+h1 and h1+h2 networks were 

 

 

 

 

 

Figure 5: Resulting h1+h2 net of step 4, after removing 

the output layer of the autoencoder from step 3. 

linked through one-to-one connections between units of 

h1 layers of both into a new i+h1+h2 net. Note that we 

write i+h1+h2 instead of i+h1+h1+h2 since the one-to-
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one connections had fixed weights equal to one and they 

were not susceptible to being modified during training 

(Henceforth, we assume this kind of connections when 

linking nets). Secondly, a copy of that network was 

inverted resulting in another net h2’+h1’+i’, leaving 

weights unmodified (we use apostrophes to differentiate 

layers with identical characteristics but that are in 

different locations in the network). Finally, the DA 

i+h1+h2+h1’+i’ (see Fig. 6) was created by linking 

i+h1+h2 and h2’+h1’+i’ between units of h2 layers (note 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The i+h1+h2+h1’+i’ deep autoencoder 

corresponding to step 5. One-to-one connections 

between layers are represented by parallel lines. 

that the h2-h2’ junction is referenced only as h2 due to it 

act as a single layer). After training, the best DA was 

selected. 

Step 6. The best DA obtained previously was 

converted into i+h1+h2 net by eliminating the decoder 

part, i.e. h1’ and i’ layers (Fig. 7). Next, the same train, 

test and validation pattern sets using during training in 

step 5 were passed through i+h1+h2 to obtain a new sets 

of patterns. They will be the input patterns for the 

following step. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The i+h1+h2 network after step 5 was applied. 

Step 7. In order to initialize the output layer weights 

of the classifier, a fully connected network was created 

(Fig. 8) with an input layer h2’’ of  nh2 units (the same 

number of units as the i+h1+h2 output layer) and an 

output layer of 7 units. It will be, in turn, the output 

layer of the classifier. Training patterns were composed 

of inputs from the previous step and the desired outputs 

according to the labeled data provided in the speech 

corpus. For each partition, the preferred network was 

the one that yield the minimum test error percentage, in 

other words, the highest percentage of correct 

classifications for test patterns. The classification rule 

applied in the output layer is “winner takes all”, that 

means the class given by the network will correspond to 

the unit with the highest output. And, of course, it was 

classified correctly if that agrees with the teaching 

output. 

 

 

 

 

 

 

 

 

 

Figure 8: Network of step 7 whose aim is to initialize 

the final layer weights of the classifier. 

Step 8. The classifier (Fig. 9) is constructed by 

joining networks from step 6 and 7. The pre-training 

procedure is complete now. After a final “fine-tuning” 

training, the best classifier was selected by the same 

criteria of step 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Resulting classifier at the end of the whole 

process. In the output layer, emotions classes are 

schematically labeled. 

4. CLASSIFICATION EXPERIMENTS 

In order to estimate the performance of the classifier, 

ten partitions were generated which were extracted from 

the whole corpus at random. As can be seen in Table 1, 

the distribution of emotions is quite unbalanced. This 

can bias the results obtained with several classifiers. To 

avoid this problem, the dataset was balanced by 

equalizing the size of the classes which was performed 

by selecting randomly the same number of samples for 

all classes in each partition (46 x 7 = 322 utterances), so 

it consisted in a train set (196 patterns), test set (63 

patterns) and validation set (63 patterns) [12]. 

Experiments were performed using six different 

network structures and two combinations of 

backpropagation algorithm parameters, leading to 

twelve configurations. The network structures refer to 

diverse configurations with different number of units in 
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hidden layers, i.e. nh1 and nh2. Some parameters of the 

backpropagation algorithm were evaluated: Learning 

Rate (LR), Momentum (M), Flat Spot Elimination 

value
3
 (FSE) and Tolerance

4
 (T). The two combinations 

of them were called Parameters A (PA) and Parameters 

B (PB). They were different in training process 

corresponding to steps 1, 3 and 5 (Table 2) but the same 

in steps 7 and 8 (Table 3). 

Table 2: Training parameters of steps 1,3 and 5 

 

Step 1 Step 3 Step 5 

 

LR M FSE T LR M FSE T LR M FSE T 

PA 0.08 0.1 0.1 0.1 0.08 0.1 0.1 0.1 0.07 0.08 0.1 0.1 

PB 0.08 0.08 0.07 0.07 0.08 0.1 0.07 0.07 0.05 0.05 0.07 0.07 

Table 3: Training parameters of steps 7 and 8 

Step 7 Step 8 

LR M FSE T LR M FSE T 

0.3 0.3 0.15 0.1 0.01 0.05 0.1 0.1 

PA and PB configurations were selected from 

extensive previous experimentations (not reported here) 

with initial typical values, graphics of SSE were 

analyzed, and then parameters were set in order to get 

smoother graphics. This allowed networks to easily 

reach a deeper local minimum and to obtain a better 

performance. 

5. RESULTS AND DISCUSSION 

The results obtained for the deep classifiers for all 

twelve configurations are shown in Table 4. The 

classification rates are the average percentage over the 

ten partitions corresponding to validation (training 

classification rates are omitted).  

Table 4: Performance of deep classifiers. 

Classification rate in [%]. 

Network  

structure 
PA PB 

46+27+17+7 64.60 68.73 

46+30+20+7 66.83 69.21 

46+33+23+7 65.87 68.73 

46+36+26+7 64.13 68.89 

46+39+23+7 63.33 70.95 

46+42+23+7 61.11 69.36 

The best performance was 70.95% corresponding to 

the 46+39+23+7 classifier using PB. Nevertheless, the 

same network structure yield only 63.33% with PA, the 

second lowest value. Comparatively, a MLP with one 

hidden layer of 90 units gave a 66.83% performance 

using identical partitions [12]. With respect to network 

                                                           
3 A constant value which is added to the derivative of the 

activation function to enable the network to pass flat spots of 

the error surface [19]. 
4 A tolerance for the maximum difference between a teaching 

value and an output of an output unit, i.e. which is propagated 

back as zero [19]. 

configurations, there is no significant difference among 

the structures that use PB (0.8 standard deviation). In 

contrast, results using PA were scattered between 

61.11% and 66.83% (2.0 standard deviation). 

It is clear that using PA yield worse results than PB 

for all networks structures. Although these parameters 

only modified steps 1, 3 and 5, their influence on the 

classifier performance is significant. To present that 

more clearly, SSEs for validation in these steps are 

shown in Table 5 and Table 6 using PA and PB, 

respectively. Also, the classification rate of step 7 is 

included. 

Table 5: Results of steps previous to the final 

classifier training with PA 

Network 

Structure 

PA 

Step 1 

(SSE) 

Step 3 

(SSE) 

Step 5 

(SSE) 

Step 7 

(%) 

46 27 17 8.18 1.54 9.66 42.54 

46 30 20 11.35 1.83 6.04 46.51 

46 33 23 7.08 1.59 6.05 43.81 

46 36 26 8.16 1.87 7.51 46.35 

46 39 23 9.25 1.70 8.04 42.54 

46 42 23 9.90 2.74 11.87 47.62 

 

All average values of SSE for steps 1, 3 and 5 using 

PA (8.99, 1.88, and 8.20) are higher than PB case (6.91, 

1.37, and 3.34) but the biggest difference happens for 

step 5 (40% smaller). In this step, weights of the DA are 

adjusted to obtain a good representation of the input in 

its output, thus, a better dimensionality reduction in its 

central layer is obtained. 

Classification rate of step 7 do not show significant 

differences between PA and PB. 

Table 6: Results of steps previous to the final 

classifier training with PB 

Network 

Structure 

PB 

Step 1 

(SSE) 

Step 3 

(SSE) 

Step 5 

(SSE) 

Step 7 

(%) 

46 27 17 4.08 0.54 3.65 48.41 

46 30 20 7.28 1.45 3.23 45.87 

46 33 23 5.15 0.96 3.39 44.76 

46 36 26 7.13 1.54 3.26 47.94 

46 39 23 7.47 1.45 3.26 48.10 

46 42 23 10.35 2.25 3.23 47.78 

6. CONCLUSIONS AND FUTURE WORK 

In this work we evaluated the application of a Deep 

Autoencoder to the task of emotional speech 

recognition. We proved the importance of doing a pre-

training as a way to initialize weights. The results 

represent a good starting point for this novel method, 

they are promising and encourage us to accomplish 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

N
. C

ib
au

, E
. M

. A
lb

or
no

z 
&

 H
. L

. R
uf

in
er

; "
Sp

ee
ch

 e
m

ot
io

n 
re

co
gn

iti
on

 u
si

ng
 a

 d
ee

p 
au

to
en

co
de

r"
A

na
le

s 
de

 la
 X

V
 R

eu
ni

ón
 d

e 
Pr

oc
es

am
ie

nt
o 

de
 la

 I
nf

or
m

ac
ió

n 
y 

C
on

tr
ol

, p
p.

 9
34

-9
39

, s
ep

, 2
01

3.



XV Reunión de Trabajo en Procesamiento de la Información y Control, 16 al 20 de septiembre de 2013 

more experiments using different structure networks and 

parameters in order to improve the classifier 

performance. Other aspect to consider is the possibility 

of including some sparsity constraints when training the 

DA. Moreover, the proposed method could be applied in 

other tasks such as digit and speech recognition [18]. 
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