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bCentro de Investigación en Ingenieŕıa en Sistemas de Información, CONICET, Lavaise

610, Santa Fe, (3000), Argentina, gstegmayer@santafe-conicet.gov.ar
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Abstract

Citrus exports to foreign markets are severely limited today by fruit diseases.

Some of them, like citrus canker, black spot and scab, are quarantine for the

markets. For this reason, it is important to perform strict controls before

fruits are exported to avoid the inclusion of citrus affected by them. Nowa-

days, technical decisions are based on visual diagnosis of human experts,

highly dependent on the degree of individual skills. This work presents a

model capable of automatic recognize the quarantine diseases. It is based on

the combination of a feature selection method and a classifier that has been

trained on quarantine illness symptoms. Citrus samples with citrus canker,

black spot, scab and other diseases were evaluated. Experimental work was

performed on 212 samples of mandarins from a Nova cultivar. The proposed

approach achieved a classification rate of quarantine/not-quarantine samples

of over 83% for all classes, even when using a small subset (14) of all the

available features (90). The results obtained show that the proposed method

can be suitable for helping the task of citrus visual diagnosis, in particular,

quarantine diseases recognition in fruits.
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1. Introduction

Three diseases have currently quarantine restrictions for the European

Union (EU) and the United States of America citrus markets: citrus canker,

black spot and scab. Despite this severe limitation, many regions continue

to export to these markets by following the guidelines of the so-called Sys-

tem Approach, individually agreed with the EU [1], which includes different

methods to provide the quarantine security required by the citrus trade with

the EU and to certify citrus quarantine with minimal risk. A key point to

the success of these programs is the effectiveness of the audit work carried

out in the field by inspectors, both in the packaging area where the items are

processed as well as at the boarding ports. Since tolerance to the presence of

symptoms of these diseases is zero, it is essential the early detection of items

with such symptoms, especially when they can reach detectable levels in the

ports and markets of arrival.

At present, the diagnosis of these diseases, both in field and packing

points, depends on the visual method based on the presence of symptoms.

Due to the characteristics of the harvest and export operations in the case

of having the dubious presence of symptoms, the diagnosis must be realized

immediately. However, the visual diagnosis presents a number of disadvan-
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tages including the fact that the accuracy and reliability of the diagnostic

procedure is subject to the personal capacity of those who make it [2]. More-

over, the decision-making process frequently involves subjective factors that

provide some degree of variability to the result [3]. There is a clear need

for computational tools to identify situations in which the value of an entire

production is compromised.

The literature currently available on the symptoms of diseases affecting

citrus fruits is abundant [4, 5, 6]. However, symptoms of each quarantine

infection are described based on a small number of very characteristic at-

tributes [7, 8]. This helps in identifying and solving the diagnoses of the most

typical symptoms of each disease, but are insufficient to diagnose those that

are less frequent and/or share similar attributes and variants with symptoms

of other non quarantine diseases. Alternative diagnostic techniques can be

used, such as the incubation of fruits under temperature and light controlled

conditions, or practices of isolation of the causal agent of dubious symptoms.

However, they have proved to be very slow and subject to methodological

and experimental errors [3].

In recent years, highly sensitive biochemical techniques have been devel-

oped, which allow diagnosis within hours. However, they are highly expen-

sive and require instrumental and specific training. Thus, they are not yet

available today for the in situ use required in the field and packaging ar-

eas [7, 9, 10]. For these reasons, efforts are needed in order to improve the

current procedure of visual diagnosis for early detection of diseases [11, 12],

such as technological strategies using machine learning to achieve intelligent

farming [13]. Current proposals study the problem of post-harvest processing
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of citrus [2], in particular, visual detection defects through image analysis to

classify the fruit depending on appearance (texture and colour [14]) in an

unsupervised way [15, 12].

This paper presents a classifier able to distinguish among the three quar-

antine diseases mentioned, based on a binary description of the presence

or absence of disease symptoms. Such classifier could be stored in a cen-

tral server that could be accessed online through a simple portable device,

without special equipment nor computational processing requirements. An

inspector could check the symptoms that he can see on the suspected fruits,

send the data to the server and receive a response from it, indicating whether

the fruit may have the quarantine disease or not.

The symptomatological descriptions available in the current literature are

rather general in nature, aiming to allow the diagnosis of the most typical

symptoms only and described using few attributes. Besides, some symptoms

are common to symptoms of other non quarantine diseases. In this work, an

accurate data set of symptoms has been created through careful observations

and descriptions of different types and variations of symptoms caused by the

quarantine diseases of interest. After that, a feature selection analysis on the

attributes of diseases and their variants has been performed to select the most

representatives ones. This allows to minimize the number of features needed

to be loaded into a portable device. Several classifiers have been trained

with the selected features that better represent each of the three quarantine

infections of interest. Results for each classifier have been obtained using

cross-validation. Then, the best classifier has been selected for further study,

calculating specific performance metrics to deeply analyze its results, class
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by class.

This paper is organized as follows. Section 2 presents the materials used in

this study. Section 3 explains in detail the proposed approach for quarantine

diseases recognition, which includes a feature selection step and a classifier

training. The performance measures used in this work are presented in Sec-

tion 4. Section 5 shows the results obtained and their discussion. Finally,

the conclusions and future work can be found in Section 6.

2. Materials

Data set used in this sudy includes citrus canker, black spot and scab

symptoms on a group of 212 Nova mandarins grown along the Uruguay River

citrus growing area. The database of symptoms of each quarantine disease

was manually built because, while a number of the studied diseases symptoms

are described in [8], the variability observed in them is large in practice.

Symptoms described in the data set were those ones that represent variants

with respect to typical symptoms, for example the four typical symptoms of

black spot [8]: freckle spot, hard spot, virulent or spreading spot and speckle

blotch, and that are observed less frequently.

The data recolection period lasted one week on May 2011, where the

fruits were all mature. Although infections mainly occur during the early

growth of the fruits, new symptoms can be observed several months later,

when the fruits reach their final color and commercial maturity [16]. This

long incubation period hampers the effectiveness of both field and packaging

site monitoring inspections for the detection of the disease. The number of

samples of each class (quarantine disease) was quite balanced, according to

5

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, D
. H

. M
ilo

ne
, S

. G
ar

ra
n 

&
 L

. B
ur

dy
n;

 "
A

ut
om

at
ic

 r
ec

og
ni

tio
n 

of
 q

ua
ra

nt
in

e 
ci

tr
us

 d
is

ea
se

s"
E

xp
er

t S
ys

te
m

s 
W

ith
 A

pp
lic

at
io

ns
, 2

01
2.



the following detail: 54 citrus canker, 43 black spot, 45 scab and 70 other (non

quarantine) diseases. The whole set was randomly divided into two subsets:

data set 1 (DS1) having 25% (71 samples) of the total data for feature and

model selection; data set 2 (DS2) having the remaining 75% (141 samples)

for training and cross-validation testing.

3. Quarantine diseases recognition

3.1. Feature selection

Feature or attribute selection is an active research area in pattern recog-

nition, statistics, and data mining. Its main idea is to eliminate features with

little or no predictive information and select only a subset of relevant fea-

tures for building robust learning models. Feature selection can significantly

improve the performance of learning models by removing most irrelevant

and redundant features from the data, thus achieving better generalization

to test points. Besides, it can help to improve model interpretability and

comprehension [17].

The problem of feature subset selection is that of finding a subset of

the original features of a dataset, such that an algorithm that is run on data

containing only these features be able to generate a classifier with the highest

possible accuracy. Given an algorithm I that will be used for classification

and a dataset D with features F1, F2, · · · , Fn, from a distribution over the

labeled instance space, an optimal feature subset, Fopt, is a subset of the

features such that the accuracy of the classifier C = I(D) is maximal [18].

Techniques for feature selection can be divided in two approaches: feature

ranking, where features are ranked by some criteria and then features above
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a defined threshold are selected; and subset selection, where one searches

a space of feature subsets for the optimal subset. Such approach works by

using a function (for example, classifier accuracy) that takes a subset and

generates an evaluation value for that subset.

A search is performed in the subsets space until the best solution can be

found. For example, best-first search is a commonly used search algorithm

which explores a state space by expanding the node with the best score first

[19]. An evaluation function is used to assign a score to each candidate node.

The algorithm maintains two lists, one containing a list of candidates yet to

explore, and one containing a list of visited nodes. This algorithm always

chooses the best of all unvisited nodes, rather than being restricted to only

a small subset, such as immediate neighbours. Other search strategies, such

as depth-first and breadth-first, have this restriction. In this work we have

used the best-first search method for feature selection, which searches the

attribute subset space by finding low-dimensional projections of the data

that score highly. The features that have the largest projections in the lower

dimensional space are then selected [20].

3.2. Classification

A classifier is a mapping from the space of feature values to the set of

class values. Each technique uses a learning algorithm to identify a model

that best fits the relationship between the attribute set and the class labels

in the training data. The models should fit the training data well and also

correctly predict the class label of points not seen during the training process

[20]. After the feature selection step explained above, using only the selected

attributes, we have trained three different classifiers (decision trees, neural
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networks and naive Bayes.

3.2.1. Classification and regression tree (CART)

CART is a classification method that uses data to construct a so-called

decision-tree, which is then used to classify new data. The goal of CART is

to create a model that predicts the value of a target variable based on several

input variables. CART can handle numerical as well as categorical variables.

Decision trees are formed by a set of rules, based on variables in the

training set, selected to get the best split to differentiate observations based

on the independent variables (the classes). Once a rule is selected and splits a

node into two, the same process is applied to each child node of the resulting

tree, recursively, until no further changes can be made. That is to say, until

a node has the same value of the target variable, or when splitting no longer

adds value to the predictions. Each branch of the tree ends in a terminal

node. Each observation falls into one and exactly one terminal node, and

each terminal node is uniquely defined by a set of rules [21].

In summary,

1. Take all of the data in the training set.

2. Consider all possible values of all variables.

3. Select the variable/value that produces the greatest separation in the

target (x = ti is called a split).

4. If x < ti then send the data to the left part of the tree; otherwise, send

data point to the right branch of the tree.

8

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, D
. H

. M
ilo

ne
, S

. G
ar

ra
n 

&
 L

. B
ur

dy
n;

 "
A

ut
om

at
ic

 r
ec

og
ni

tio
n 

of
 q

ua
ra

nt
in

e 
ci

tr
us

 d
is

ea
se

s"
E

xp
er

t S
ys

te
m

s 
W

ith
 A

pp
lic

at
io

ns
, 2

01
2.



5. Repeat same process from 3 on these two nodes of the tree and the

data in each node, until no further changes can be made.

3.2.2. Naive Bayes (NB)

The naive Bayes model for joint distributions has been studied exten-

sively in the pattern recognition literature [22]. A naive Bayes classifier is a

simple probabilistic classifier based on applying Bayes’ theorem with strong

(naive) independence assumptions. The naive Bayes model assumes the con-

ditional independence of all effect variables, given a single cause variable. In

this model, the class variable (which is to be predicted) is the root and the

attribute variables are the leaves. The model is naive because it assumes that

the attributes are conditionally independent of each other, given the class.

Once the model has been trained, it can be used to classify new examples

for which the class variable is unobserved. A deterministic prediction can be

obtained by choosing the most likely class [19].

The probability model for a classifier can be stated as a conditional model

p(C|F1, ..., Fn) over a dependent class variable C with a small number of

outcomes or classes, conditional on several feature variables F1 through Fn.

Using Bayes’ theorem, we can write

p(C|F1, F2, . . . , Fn) =
p(C)p(F1, ..., Fn|C)

p(F1, ..., Fn)
. (1)

In practice we are only interested in the numerator of that fraction, since

the denominator does not depend on C and the values of the features Fi

are given, so that the denominator is effectively constant. The numera-

tor is equivalent to the joint probability model p(C,F1, . . . , Fn). Under the

conditional independence assumption, we assume that each feature Fi is con-
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ditionally independent of every other feature Fj for j 6= i. This means that

p(Fi|C,Fj) = p(Fi|C) for j 6= i and so the joint model can be expressed as

p(C,F1, F2, . . . , Fn) ∝ p(C)
n∏

i=1

p(Fi|C). (2)

The training of a naive Bayes model is computed by simple frequen-

cies (maximum likelihood estimate). The class distribution is estimated by

p(C) = #(C)/|D|, where #(C) is the number of times the class C shows

up in the training data D, with the denominator being the total number of

training instances (each instance has a unique class).

The naive Bayes classifier combines the naive Bayes probability model

with a decision rule, such as selecting the hypothesis that is most probable;

this is known as the maximum a posteriori rule. The corresponding classifier

is a function that can be defined as follows:

ĉ(f1, f2, . . . , fn) = arg max
c
p(C = c)

n∏
i=1

p(Fi = fi|C = c). (3)

This means that for each possible class label, the conditional probability

of each feature has to be multiplied together, given the class label. The

label for which the largest product is obtained is the label returned by the

classifier.

3.2.3. Multilayer perceptron (MLP)

MLP is a type of artificial neural network model, which can be loosely

defined as a large set of interconnected units (neurons) that are executed

in parallel to perform a common global task. The units undergo a learn-

ing or training process in response to input signals, adjusting the internal

parameters of the neural model (weights between neurons).
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The MLP model, which is the most widely used for classification problems

[23], has distinct layers such as input, hidden and output, with no connec-

tions among neurons belonging to the same layer. The number of layers and

neurons in each layer is chosen a-priori, as well as the type of activation func-

tions for the neurons. Each neuron j in each layer computes a weighted sum

of its inputs and then applies an activation function to produce an output,

as follows:

yj = φj

(
n∑

i=1

wjixi

)
, (4)

where yj is the neuron output, n is the number of inputs, wji is the synaptic

weight connecting the input signal xi to the neuron j and φj is the activation

function, which will provide a nonlinear mapping between input and target

signals [24].

In the MLP model, learning is supervised and the basic learning algorithm

used is backpropagation, which uses gradient descend to minimize a cost

function. The cost function is generally defined as the mean square error

E =
1

2

p∑
k=1

(tk − yk)2 (5)

between the desired or target output (tk) and each actual network output

(yk), for p output neurons.

During learning, the error propagates backwards through the network and

the model parameters are changed according to the so-called delta rule [24]:

δwji = −η ∂E
∂wji

. (6)
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4. Performance measures

The objective in supervised learning is to approximate an unknown func-

tion, using a set of data, searching for the model that better predicts the

outputs of the unknown function. To fit the parameters of the different mod-

els, their performance is compared on a dataset not used during training, to

evaluate the generalization capability of each model. This is named cross-

validation and it is an effective method for estimating the prediction error

of a classifier to an independent data set. To reduce variability, multiple

folds of cross-validation can be performed using different partitions, and the

validation results are averaged over the folds.

In k-fold cross-validation, the original data set is randomly partitioned

into k subsets: k-1 subsets are used as training data and the remaining

single subset is used for testing the model. The cross-validation process is

then repeated k times (the folds), with each of the k subsets used exactly

once. The k results from the folds can then be averaged to produce a single

estimation [24].

In classification problems, the primary source of performance measure-

ments in classification is the overall accuracy of a classifier estimated through

the classification rate or accuracy (A), which is the proportion of correctly

classified examples, calculated as

A =
tp+ tn

M
, (7)

where M is the total number of samples, tp (true positives) is number of

correct predictions of a class sample; and tn (true negatives) is the number

of correct predictions of a no-class sample.
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Another usual performance measures commonly used in pattern recogni-

tion are precision and recall [25], defined as:

P =
tp

tp+ fp
, (8)

R =
tp

tp+ fn
, (9)

where fp (false positives) is the number incorrect predictions of a class exam-

ple; fn (false negatives) corresponds to the number of incorrect prediction of

a no-class example. Precision for a class can be defined as the ratio between

samples correctly classified and the total number of samples assigned to a

class. That is to say, it is a measure of the fraction of classified samples

that are relevant. Recall for a class is the ratio between samples correctly

detected over the total number of samples that actually belong to a class.

Precision can be seen as a measure of exactness (fidelity), recall is a mea-

sure of completeness, and the F-score is a measure that combines precision

and recall through their harmonic mean as follows:

F = 2 · P ·R
P +R

. (10)

Relative operating characteristic (ROC) curves can be used to visualize

the achieved trade-offs between correctly classifying positive and negative

cases. A ROC curve is a graphical plot of the true positive rate also known

as sensitivity, versus the false positive rate or one minus the specificity, for a

classifier system as its discrimination threshold is varied. Each point on the

ROC curve represents a classifier with a particular trade-off between sensi-

tivity and specificity. Comparing the performance of multiple classification

schemes with statistical tools requires the information represented by the
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ROC curve to be collapsed into a single response variable [26]. To this end,

the area under the entire ROC curve (AUC) was proposed as a suitable per-

formance index [27] since it is a value between 0 and 1 and makes easier the

comparison of classifiers among them. When AUC is close to 1, it means

that most of the positive class samples have been assigned a score higher

than any no-class sample, meaning that there is a threshold that perfectly

separates the classes.

5. Results and discusion

This section reports the results obtained on the data set described in

Section 2. First of all, the feature selection step has been performed. Clas-

sification rates for three classifiers are reported before and after the feature

selection step. After that, using only the selected features, the three classi-

fiers have been tuned and compared in order to select the most adequate for

the recognition of the three quarantine diseases of interest. The results on

global, as well as per class classification rates are reported and discussed.

5.1. Feature and model selection

The feature selection, as well as the classification models tuning, have

been performed through cross-validation on the smaller subset only, as sug-

gested in the pattern recognition literature [28]. The data set 2 was used for

model testing and discussion of results.

First of all, all of the features (90) of the quarantine diseases of interest

in this study were used to train and test three classifiers. Table 6 shows

the global classification rate obtained with each of the studied classifiers (in
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columns) after a 5-fold cross-validation procedure performed on each subset

(in rows).

Table 1: Accuracy (A %) for 5-fold cross-validation without feature selection (90 features)

in both datasets.

Data set CART NB MLP

DS1 (25% data) 54.93 76.06 60.56

DS2 (75% data) 68.43 79.43 73.76

It can be seen that for each partition of the original dataset, the global

classification rate is higher than 60% for both NB and MLP, being significa-

tively lower in the case of CART for the data set 1. In the case of the data

set 2, accuracies higher than 70% are achieved. Note that these rates are ob-

tained if all the 90 features (symptoms) are used for the classification task.

This implies that, at the moment of diagnosis, for example at a packaging

site, an inspector having a mobile device would have to fullfill 90 boxes in

a form in order to send all of the required information to a remote server

and get a classifier response. However, if a feature selection procedure is

performed over the original 90 features, only the most important features

would be used. This would significatively speed the in situ diagnosis task,

by reducing the amount of information to be provided to the classifier. This

approach, however, implies that less information is given to the classifier,

which could reduce its performance. We will show, however, that the per-

formance of the classifier can be maintained, and even, increased, if only the

relevant features to discriminate between classes is provided, and noisy and
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redundant features are not considered for the classification.

For the feature selection step, a 5-fold cross-validation procedure has been

performed to decide which features to use. In this step, DS1 was used for

feature and model structure selection, and DS2 for estimation of the final

error [29]. Once the feature selection step was completed by performing a

classical best-first search, 14 of a total of 90 features were selected (see Table

2). For CART, the minimal number of observations at the terminal nodes

was 2 and minimal cost-complexity pruning has been used [21]. For the

MLP model, the best results have been obtained after 100 training epochs

with a topology of 5 hidden neurons and using a 10% of the training set for

monitoring the generalization peak.

5.2. Classifiers training and testing on selected features

After the feature and model selection steps, the classifiers were trained

using the WEKA software1 by performing 5-fold cross-validation on DS2

[30]. With this approach, the data set was divided into 5 mutually exclusive

folds with approximately the same class distribution as the original data

set. Each fold was used once to test the performance of the classifier that

was generated from the combined data of the remaining folds, leading to 5

independent performance estimates [26].

Table 3 reports the classifiers performance obtained on DS2 using the

14 main features previously selected. It can be seen that, while NB has

maintained its classification rate, both CART and MLP have even increased

their performance. In fact, the MLP model has reached a very high clas-

1www.cs.waikato.ac.nz/ml/weka/
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sification rate (almost 84%) on the 5-fold test partitions of the larger data

subset. This result can be explained with the fact that, once only the most

informative features haven been considered for classification, removing noisy

and redundant information, the generalization capability of the models has

been improved. Moreover, by using the best features for class discrimination,

we are performing a better training of the models because there is a better

relationship between data size and number of parameters to estimate.

Once the better classifier was obtained, per class performance has been

analyzed. Table 4 shows the detail of the performance measures used in this

study (columns) for each of the classes (quarantine diseases) included (rows).

It can be noticed that the best classifier found (the MLP model) has very high

values, almost all of them are near the optimum (1.0). In particular, for the

ROC area index (AUC), the values obtained assure a very high performance

for the automatic recognition of any of the quarantine diseases under study,

since the obtained values are, in all cases, higher than 0.90.

Table 5 shows the performance of the MLP classifier for the recognition of

each of the diseases, through a confusion matrix. Looking at the detail of the

confusion matrix, it can be seen that the higher mis-classification occurs with

the other class, not the classes of interest. That is to say, at the presence of

a sample of a quarantine disease the classification will be correct. However,

at the presence of a sample of a non-quarantine disease, there are 11 samples

that would be indicated as quarantine, and 13 quarantine samples that would

be indicated as other disease.

It is important to highlight the fact that the model has no confusion

among the three classes of interest. That is to say, for the quarantine diseases
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of interest in this study, there are no misclassified elements: each sample of

each quarantine disease has been correctly identified.

For the classification problem stated as binary, that is to say, if only two

classes are considered: quarantine disease and not quarantine disease, the

corresponding confusion matrix is shown in Table 6. The classification rate

corresponding to the binary problem and the MLP model is of 83%, which

maintains the result obtained with this classifier in the multiclass problem.

If the confusion matrix is analyzed in detail, it can be seen that, as stated

before, the quarantine diseases samples of interest are correctly recognized in

most cases: in 92 out of 96 examples of quarantine disease class are correctly

classified. The other class has less examples and the confusion if higher. This

fact should be tackled in future works, increasing the number of non quar-

antine diseases samples or through a better classifier design. Furthermore,

existing proposals for visual detection of citrus defects through images and

machine vision [31], that is to say, depending on the texture and colour of the

fruit [15, 12], could be used as a preliminary step to our classifier, obtaining

the features automatically through image analysis.

6. Conclusions and future work

It has been explained how citrus exports to foreign markets are limited

today, mainly, by fruit diseases. Some of them are quarantine for the mar-

kets and have zero-tolerance at the destination market. For this reason, it

is important to perform good controls before fruits are exported. Nowadays,

technical decisions are highly dependent on the degree of individual skills on

human experts, with previous experience in visual diagnosis. This work has

18

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, D
. H

. M
ilo

ne
, S

. G
ar

ra
n 

&
 L

. B
ur

dy
n;

 "
A

ut
om

at
ic

 r
ec

og
ni

tio
n 

of
 q

ua
ra

nt
in

e 
ci

tr
us

 d
is

ea
se

s"
E

xp
er

t S
ys

te
m

s 
W

ith
 A

pp
lic

at
io

ns
, 2

01
2.



presented a model capable of recognizing three quarantine diseases (citrus

canker, black spot and scab) in an automatic way and achieving high classi-

fication rates, by using barely a bit more than a dozen of characteristics or

symptoms that can be seen in a fruit.

The proposed approach is based on the combination of a feature selec-

tion method and a classifier that has been trained on the illness symptoms.

Experimental work was performed on 212 Nova mandarins. The proposed

approach achieved a classification ratio of quarantine/not-quarantine sam-

ples of 83% for all classes, even when using a small subset (14) of all the

available features (90). When the problem was stated as multiclass, also

high classification rates of 84% was achieved and AUC values higher than

95%, very close to the optimum. Since only the most informative features

have been considered, removing noisy and redundant information, the gen-

eralization capability of the models has been improved, with a direct impact

on the model performance.

The high classification rates that have been obtained on the task of au-

tomatic recognition of quarantine citrus diseases show the usefulness of the

proposed approach. Another advantages of the proposed method is the sig-

nificant reduction of the number of features that have to be used in order

to obtain a high classifier response, which could be very helpful for visual

inspection on the field, if, for example, the classifier was implemented in a

mobile device used at field and packaging site monitoring inspections for the

detection of the diseases.

The results obtained show that the proposed method can be suitable for

helping the task of citrus visual diagnosis, in particular, quarantine diseases
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recognition in fruits in the field. All of the quarantine diseases samples are

correctly recognized into each corresponding class. As future work, it would

be very interesting to design a hierarchical classifier, for the not quarantine

class only, capable of better discerning with which quarantine disease the

sample is being confused.
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Table 2: Selected features. All features are binary.

Feature Description

Shape Circular spot Shape of the symptom

in the infected area

Topography Depressed Topography of the symptom

of the surface Prominent on the surface of the infected area

Deepness Shallow Deepness reached by the necrotic

tissue within the infected area

Transition Constellation Kind of transition zone between

zone Aureole healthy and necrotic tissue

Color of the Oily-water-soaked Color-aspect of the transition

transition zone zone between healthy - ill tissue

Central color White Predominant color of the

symptom central zone

Ruggedness of the Eruptive Type of the surface of the

central surface Edge perimeter central zone of the symptom

Pattern of the Flat and smooth External aspect of the

central zone central zone

Central Corky & granular Texture of the tissue in the

texture Scabby central zone of the symptom

Presence of Pycnidia present Presence of pycnidia on the

fruting bodies central zone of the symptom
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Table 3: Accuracy (A %) for 5-fold cross validation on DS2 after the feature selection step

performed on DS1 (14 features selected).

Class CART NB MLP

citrus canker 83.80 91.90 94.60

black spot 70.00 83.30 80.00

scab 72.40 82.80 86.20

global 70.92 78.72 83.69

Table 4: Detailed performance by class of the MLP (best) model.

Class P R F AUC

citrus canker 0.92 0.95 0.93 0.99

black spot 0.80 0.80 0.80 0.94

scab 0.93 0.86 0.89 0.95

Table 5: Confusion matrix for the best classification model (MLP) - multiclass problem.

classified as → a b c d

a = citrus canker 35 0 0 2

b = black spot 0 24 0 6

c = scab 0 0 25 4

d = other 3 6 2 34
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Table 6: Confusion matrix for the best classification model (MLP) - two class problem.

classified as → a b

a = quarantine disease 92 4

b = not quarantine disease 20 25
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