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Abstract

Background: It is a common practice in bioinformatics to validate each group returned by a clustering algorithm

through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally

related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this

knowledge is used only as a second step, after data are just clustered according to their expression

patterns.Thus, it could be very useful to be able to improve the clustering of biological data by incorporating

prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters.

Results: A novel training algorithm for clustering is presented, which evaluates the biological internal

connections of the data points while the clusters are being formed. Within this training algorithm, the

calculation of distances among data points and neurons centroids includes a new term based on information

from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the

biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites

from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were

used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into

account the biological connectivity of the clusters was applied. The results of bSOM show important

improvements in the convergence and performance for the proposed clustering method in comparison to
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standard SOM training, in particular, from the application point of view.

Conclusions: Analyses of the clusters obtained with bSOM indicate that including biological information during

training can certainly increase the biological value of the clusters found with the proposed method. It is worth

to highlight that this fact has effectively improved the results, which can simplify their further analysis.

The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/demo/bsom.php The source

code and the data sets supporting the results of this article are available at

http://sourceforge.net/projects/sourcesinc/files/bsom

Keywords: clustering, SOM training, pathway data.

Background

In the biology field, clustering is implemented under the guilt-by-association principle [1], that is to say, the

assumption that compounds involved in a biological process behave similarly under the control of the same

regulatory networks [2]. It is assumed that if a metabolic compound with unknown function varies in a

similar fashion with a known metabolite from a defined metabolic pathway, it can be inferred that the

unknown element is also likely to be involved in the same pathway [3]. Therefore, one cluster that groups

some metabolites indicates that they can be connected within common metabolic pathways. This

pathway-based approach to identify metabolic traits results in more biological information (hypothesis)

that has to be tested through the design of biological experiments (wet experiments) [4]. From this

perspective, it could be useful to perform a detailed inspection of the patterns inside a cluster to determine

memberships to known metabolic pathways.

Due to the limitations of traditional algorithms, computational intelligence has been recently applied to

bioinformatics with promising results [5] [6]. For example, self-organizing maps (SOMs) [7] are a special

class of neural networks that use competitive learning. SOMs can represent complex high-dimensional

input patterns into a simpler low-dimensional discrete map, with prototype vectors that can be visualized

in a two-dimensional lattice structure, while preserving the proximity relationships of the original data as

much as possible. SOMs have been used for unsupervised clustering of transcriptome profiles [8, 9] as well

as metabolites [10]. For example in [11] SOM clustering was used for the analysis of Arabidopsis thaliana
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datasets, helping in the hypothesis validation of a metabolic mechanism responding to sulfur deficiency.

SOMs have been recently proposed also for the integration and knowledge discovery of coordinated

variations in transcriptomics and metabolomics data [12], and a software tool for SOM application has been

designed to give support to the data mining task of datasets derived from different databases, providing

user-friendly interface and several visualization tools easy to understand by non-expert users [13].

When evaluating a clustering solution, it is a common (and necessary) practice to validate each group

returned by a clustering algorithm through manual analysis and visual inspection, according to a-priori

biological knowledge. Traditionally, the known annotations are used only as a second step, after data have

been clustered according to their variation patterns. Only those clusters in which many genes (and

proteins/metabolites) are annotated within the same category (for example, the same MapMan BIN [14] or

Gene Ontology (GO) terms [15]), are then selected for further analysis [16–19]. For each pattern, its

annotations and memberships to well-known metabolic pathways are generally assessed. The results

obtained after inspection of each cluster, by hand, may indicate functionally related patterns. Automatic

pos-clustering validation proposals like ”gene set enrichment analysis” [20] focus on groups of genes that

share common biological function, chromosomal location or regulation. Similarly,

Protein-Protein-Interactions (PPI) derived metrics can be used in combination with genomic data to

validate clusters with respect to their biological relevance [21]. These metrics, however, can only be applied

to clusters of genes. Recently, a biologically inspired validity measure that can be applied not only to

groups of genes but also to genes and metabolites together has been proposed [22].

Actually, there is a growing interest in improving the cluster analysis of biological data by incorporating

such prior basic knowledge into the clustering itself, in order to increase the biological meaning of the

clusters that are subjected to later scrutiny. In the past few years, several methods have been introduced

with that aim, since integrating a biological similarity measure or biological information into a clustering

method can lead to the potential enhancement in the performance of the clustering, as a result of the good

correlation between biological similarity and gene co-expression levels [23,24]. For example, the distance

function built by [25] combines information from expression data and the proximity of the proteins in a

metabolic pathway network. In [26] a similar approach is presented, where a graph is used based on the

GO structure. The work of [27] proposed shrinking the distances between pairs of genes sharing a common

annotation. In fact, the distance measure between two genes can be modified to be a linear combination of

the similarity of their expression profiles and their functional similarity [28] [29] [30]. Moreover, a classical

clustering method can be modified to work with such a newly defined metric, for example, by slicing a
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hierarchical clustering tree obtained from a gene dataset to get clusters that are as consistent as possible

with well-known gene annotations [31]. Another example of using heterogeneous genomic data into a

clustering algorithm is proposed by [32], with the aim of identifying highly correlated genes more effectively

than using only expression data or a single data source. Most of these clustering methods utilize only the

annotations provided by the GO ontology or its hierarchical structure through the use of similarity

measures between terms. Although GO is heavily used in systems biology, redundancy and problems with

stability over time have been recently indicated [33]. Besides, this information, cannot be associated to

other molecular entities such as metabolites. It can be used for genes and their products only.

Additionally, there are many genes that are currently unannotated and this situation is generally handled

by excluding them from the analysis or by considering them as exceptional cases.

In summary, it can be anticipated that the integration of -omics measurements with additional relevant

biological information is expected to improve the quality and the biological significance of unsupervised

clustering. This paper proposes and illustrates this integrative principle, not only for genomic data but also

for metabolic and integrated datasets. We present a novel training algorithm that combines biological

similarities derived from metabolic pathways information and demonstrate that its application improves

the quality of the clustering. This new approach weights the biological connectivity of the patterns (genes

and/or metabolites) during training of the clustering method. This can be achieved through the use of a

new term for the biological assessment of the clusters while they are being formed. The algorithm takes

into account not only the classical Euclidean distance between patterns, but also a biological term assessed

by means of the number of common pathways. The proposed approach was tested on a set of

transcriptome and metabolome data from Solanum lycopersicum and Arabidopsis thaliana, showing

improved clusters formation when using the proposed biologically inspired SOM (bSOM), in comparison to

the standard SOM training (sSOM). This improvement is demonstrated by the increase of biological

connections in the clusters found by bSOM and the biological analysis of the clusters found.

Methods

In the following section we explain in detail the new biologically-inspired algorithm for SOM training.

After that, the validation measures used for performance comparison among training algorithms are

presented. Finally, the datasets used for SOM training are described.
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Improved SOM training using metabolic pathways

SOM clustering is based on nodes (neurons) that compete in response to a given input. Inputs are fully

connected to the output nodes. Each output node corresponds to a cluster and is associated with a

prototype or synaptic weight vector [34]. Given an input pattern, competition among neurons takes place,

when their similarity (or distance) to the input is computed. Thus, the neurons in the output layer

compete with each other, and only the closest to the input becomes activated or fired. The weight vector of

this winning neuron is further moved towards (closer to) the input pattern. This competitive learning

paradigm allows learning for the neuron that best matches the given input pattern and it is also known as

winner-takes-all learning [35].

When competition among the neurons is complete, SOM updates not only the weight vector of the winning

neuron but also a set of weights within its neighborhood, according to a neighborhood function Λ. This

function defines the neurons that will be affected by the changes in the winning neuron. We have used the

standard squared neighborhood. Thus for example, if the radius of the neighborhood is 1, all the 8 neurons

in touch with the winning one will be updated as well. At the beginning of training, Λ has a radius equal

to a quarter of the size of the map. During training, this radius is reduced linearly with training epochs,

until reaching 0 (that is to say, at this point only the winning neuron is updated). The rate of the

modifications at different neurons is a monotonically decreasing scalar function of the training epochs. Its

form is not so important as long as its value is large at the beginning of the process, gradually reducing it

to a fraction of it in successive steps [7].

The goal of SOMs is to represent complex high-dimensional input patterns into a simpler low-dimensional

discrete map, with prototype vectors that can be located in a two-dimensional lattice structure, while

preserving the proximity relationships of the original data as much as possible [36]. SOM structures the

output nodes (neurons) in such a way that nodes in closer proximity are more similar to each other than to

other nodes that are farther apart. Having finished the training, input patterns are projected into the

lattice, corresponding to adjacent neurons connected to each other through the neighborhood function,

giving a clear topology of how the network fits into the input space [35]. In this projection, an input

pattern is associated to a neuron (cluster) simply according to minimum distance to all neuron prototypes.

In Algorithm 1 we present a new algorithm for SOM training over biological datasets (bSOM). The

following notation is used: X is the dataset formed by x` data samples; Ωm is the set of samples that have

been grouped in the cluster m and W is the set of the wm centroids of the clusters. We propose the use of

a combination of the classical Euclidean distance among patterns and the neurons centroids, plus an
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Algorithm 1: SOM training using metabolic pathways (bSOM).

Inputs :
X: training set
n: map size (n× n)
α: biological weight
ρ: matrix of metabolic pathway connections

Outputs:
Ω: clusters
W : centroids

begin
N = |X|
k = n× n
Define neurons neighborhood function Λ
Initialize the map by choosing random weights values wm` ∈ [−0.5,+0.5]
repeat

Select a pattern at random x` Calculate the biological contribution:

Ω`∈m = Ωm ∪ x`, π`∈m = 2

∑
∀i,j/xi,xj∈Ω`∈m

ρij

|Ω`∈m|2−|Ω`∈m|

Ω`/∈m = Ωm − x`, π`/∈m = 2

∑
∀i,j/xi,xj∈Ω`/∈m

ρij

|Ω`/∈m|2−|Ω`/∈m|

b`m =
π`/∈m − π`∈m

max {π`/∈m, π`∈m}
Search for the winning neuron:
m∗ = arg min

∀m
{(1− α) ε`m + α b`m}

Adapt weights wm of neurons in the neighborhood Λm∗
Update Λ

until no significative changes in wm;
Ωm ← x`/(1− α) ε`m + α b`m < (1− α) ε`q + α b`q ,

∀q 6= m, 0 < q ≤ k
end

additional term that measures the internal biological connectivity of the patterns grouped in a cluster (line

7). The distance is computed using the weighted sum

d`m = (1− α) ε`m + α b`m, (1)

where α is a regularization parameter that can be varied between 0 and 1 and controls the weight given to

the biological distance during training; ε`m = ‖x` −wm‖2 is the standard Euclidean distance between a

pattern ` and a neuron prototype wm; and b`m is the biological contribution of a pattern ` to a cluster m,

computed as

b`m =
π`/∈m − π`∈m

max {π`/∈m, π`∈m}
, (2)

where π`/∈m is the average number of biological connections among all the patterns clustered in the neuron

m not including the pattern `; and π`∈m is the average number of biological connections among all the

patterns clustered in the neuron m including the pattern `. The average biological connections are

calculated using a metabolic pathways connection matrix ρ, where each element ρij has the number of

metabolic pathways that involve both pattern in row i and pattern in column j. This is calculated by

simply counting the number of pathways in common, following the same procedure for metabolites as well
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as for transcripts.

The biological term b`m measures how close (or distant) is a pattern ` to a neuron m, in terms of

improvement of the average number of common pathways in that cluster. When a pattern has b`m > 0

with respect to neuron m, it means that if the pattern ` were assigned to the neuron m, the average

number of common pathways among all the data patterns clustered in that neuron would be decreased.

Instead, if b`m < 0, the assignment of the pattern ` to the neuron m would certainly increment the number

of average common pathways, clearly increasing the biological value of that cluster. The parameter α is

used to balance between the two goals: when α = 0, d`m becomes the classical Euclidean distance and the

algorithm becomes the standard SOM clustering (sSOM); and when α = 1 the algorithm completely

disregards the expression measures and groups data only according to biological connections. In principle,

it cannot be stated that there is any optimum α, it depends on the weight that is given to the related

biological information in the final analysis.

An artificial “toy-example” data set has been used to illustrate the new algorithm. It is shown in Figure 1.

The set consists of four groups of 100 data points each, following Gaussian distributions. In Figure 1 a) the

ρ matrix corresponding to this data set is shown. For simplicity purposes, the matrix is stored as upper

triangular. The color of the pixels indicate the existence of biological connections among elements. In this

artificial example, four groups biologically connected can be distinguished by looking at the main diagonal

(black pixels). The rest of the data points do not have pathways in common (white pixels). In the

remaining sub-figures, the data points distribution is shown, as well as the groups and the centroids of each

cluster (black dots) obtained for n = 2 (that is, 4 neurons). Each cluster found by the algorithm is indicated

with a different color. The points located at the extremes of the groups are biologically related among

them, as indicated with different markers (squares, diamonds, circles and triangles) which correspond to

the four groups of high biological connections present in the ρ matrix. In Figure 1 b), α = 0.00 is used

(equivalent to sSOM). It can be seen that the neurons centroids are located approximately in the euclidean

center of each distribution. In the case of α = 0.50, shown in Figure 1 c), the Euclidean distance as well as

the biological connections are used to form the clusters. It can be noticed that the centroids here have been

moved in order to group in the same cluster some of the patterns biologically connected. At the extreme,

with α = 1.00 in Figure 1 d), only the groups that have common pathways among their elements form a

cluster and determine the centroids location. As it can be clearly seen from this example, when α is

increased the biological connections among elements increase their direct influence on the clustering results.
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Validation measures

After the application of an unsupervised mining technique, it is quite difficult to validate the obtained

results. A set of objective measures can be used to quantify the quality of the clusters obtained by different

available methods [34]. A new kind of biological measure is presented as well, that evaluates the metabolic

connections existing in the clustering partition found. The work of [37] presents a summary of different

types of validation measures that can be used to qualify a clustering solution. In this study we have used:

Compactness.

It measures intracluster compactness or homogeneity as Cj = 1/|Ωj |
∑
∀xi∈Ωj

‖xi −wj‖2, For a global

measure of compactness, the average over all k clusters is calculated as C = 1/k
∑

j Cj . Values of C close

to 0 indicate more compact clusters.

Separation.

It quantifies the degree of separation between individual clusters, measuring the mean Euclidean distance

among cluster centroids as S = 2/(k2 − k)
∑k

i=1

∑k
j=i+1 ‖wi −wj‖2, where S close to 1 indicates more

separated clusters.

Davies-Bouldin index.

This is a combination of the previous two measures and a popular metric for evaluating clustering

algorithms [38]. DB index is a function of the ratio of the sum of within-cluster scatter to between-cluster

separation. This is an indication of clusters overlap, therefore DB close to 0 indicates that the clusters are

compact and far from each other.

Dunn index.

It combines dissimilarity between clusters and their diameters, based on the idea of identifying cluster sets

that are compact and well separated. D index measures inter-cluster distances (separation) over

intra-cluster distances (compactness). If a clustering partition contains well-separated clusters, the

distances among them are usually large and their diameter is expected to be small. Therefore, a larger D

value means better cluster configuration.
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Biological internal connectivity.

For the evaluation of the clusters from the viewpoint of their biological meaning, we use a measure defined

as follows:

P = − log

(
1

k

k∑
m=1

pm
pm∗

)
, (3)

where

pm = 1 +
∑

∀i/xi∈Ωm
∀j/xj∈Ωm

j 6=i

ρij

is the number of common pathways among patterns grouped in cluster m, with ρij the number of pathways

in common between patterns i and j, and

pm∗ = 1 +
∑

∀i/xi∈Ωm
∀j 6=i

ρij ,

is the number of all the possible shared pathways among patterns grouped in cluster m and any other

pattern in the dataset. A P value close to 0 indicates more biologically significant clusters. For this

measure, non empty and annotated clusters are taken into account.

Global Measure for Linked Clustering (GMLC).

For evaluating both coherence and biological significance of clusters found over biological datasets, we have

used the G measure which is a biologically-inspired validity measure for comparison of clustering methods

over metabolic datasets [22]. It is defined as the sum of Ȟ, which is a measure of the flatness of the

distribution of patterns along clusters, Γ that indicates if the data samples have been coherently grouped

when having a sign-inverted value, and P which evaluated biological internal connectivity, as previously

explained.

Datasets

In this subsection, the datasets used for SOM training are described. The Kyoto Encyclopedia of Genes

and Genomes (KEGG)1 [39] pathway database was used for calculation of the biological connectivity. All

pathways in which the measured elements participated have been considered.

1http://www.genome.jp/kegg/pathway.html
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Solanum lycopersicum dataset

The first biological dataset used in this paper involves metabolic and transcriptional profiles from

Introgression Lines (ILs) of Solanum lycopersicum. The ILs harbor, at certain chromosomes segments,

introgressed portions of the wild species (Solanum pennellii). After log-transforming the expression values

over the entire dataset, genes with no significant change were discarded from further analysis. As a result

of the pre-processing and selection steps, 1159 genes were selected. The metabolic data were obtained

analyzing polar extracts of tomato fruits, through Gas Chromatography coupled to Mass Spectrometry

(GC-MS). The metabolite profiling technique used allows the identification of approximately 80 primary

metabolic compounds. For each metabolite in each IL, the log ratio of the mean of the replicates was

calculated. In the selection step only 70 metabolites (having log ratio greater than 0.1) were kept for data

integration and cluster analysis. Further details on data selection can be found on [12]. This data set has a

size of 1229 data points.

Arabidopsis thaliana dataset

The second biological dataset comprises primary metabolites and transcripts measured in Arabidopsis

thaliana leaves. The integrated analysis of this data is aimed at studying the effects of the cold on

circadian regulated genes in this plant [40]. In this study we included metabolites and transcripts under

light-dark cycles at two control temperatures (20◦C and 4◦C). Genes involved in diurnal cycle and

cold-stress responses were selected for further study. More details on how the data were processed, filtered

and normalized can be found in [40]. A total of 1549 genes and 51 metabolites were used in the integrated

analysis, resulting in a total of 1600 data patterns.

Results and discussion

This section presents the results obtained from the application of the new biologically-inspired training

algorithm (bSOM), in comparison to the standard training (sSOM). For a preliminary assessment, only the

metabolic profiles of each data set were used since all metabolites have information associated to metabolic

pathways. The corresponding ρ matrix for Solanum lycopersicum and Arabidopsis thaliana datasets,

respectively, are shown in Figure 2. The intensity in the color scale indicates a higher connection value. It

can be seen that most of the data points have metabolic pathways in common (there is a very low number

of white pixels). There are just few points highly connected (black pixels), but most of the data points

have a moderate number of common pathways. For this reduced subset, a map size of 6× 6 neurons was
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used. This allowed us to easily evaluate whether there was an improvement in the biological connections of

the clusters found by the new bSOM in comparison to sSOM. The α parameter that weights the biological

distance has been varied in the range [0.00, 0.25, 0.50, 0.75].

Table 1 shows the results of the comparison of both training algorithms over the two biological datasets,

for the validation measures presented in the Validation measures Section. For each measure, a triangle up

or down is shown in order to easily indicate whether the best expected index value should have a high or a

low value. Compactness and average separation of the clusters are slightly worsened when using bSOM in

comparison to sSOM in both data sets. This is due to the fact that these measures are highly dependant

on the Euclidean distance and at higher α the biological term has a stronger influence on the assignment of

patterns to clusters than the Euclidean distance. The DB measure does not improve when using bSOM in

any case, on the contrary, it gets worst scores. This can be expected since, in fact, this measure is designed

to better qualify well-separated and highly compact clusters (in the Euclidean sense) and, as explained

above, compactness and separation are worsened as α increases. Similar behavior has the Dunn index for

the first data set, although improving with bSOM and α = 0.5 and α = 0.75 for the second dataset.

Although these two measures are a combination of compactness and separation into one single index (Dunn

qualifies clusters taking into account the same general criteria as DB) they present contradictory results.

While DB uses the Euclidean distance of data to centroids in a direct way, Dunn measures the distance to

the global centroid of all data and not between data and each cluster centroid.

With respect to measures that take into account the biological information associated to the clusters

obtained, considering the P measure, it is clearly and consistently improved as α increases for the proposed

algorithm when compared to sSOM, for all configurations and both datasets. As can be expected, at low α

the improvement is not so important but when α increases, clusters are more biologically connected which

is directly reflected by this measure, reaching the best possible result for this index at the maximum α here

considered. The significance of these results has been statistically tested by performing 100 re-samplings of

90% of the metabolites in both datasets, for all the methods (sSOM vs. bSOM with different α). An

ANOVA was performed to test the null hypothesis in which the difference among the clustering results for

the biological connectivity measure (P ) with different training methods is not significant. The analysis

revealed that the results in the table show significant differences (p < 0.001). Finally, the G measure, which

evaluates in a single index not only clusters quality but also their biological content, remains almost

unchanged or even improves. For the first data set, G has almost the same value in all configurations. As α

is increased on bSOM, G values improve for the second data set, even at maximum α. In general, it can be
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stated that while a balance between homogeneity and coherence is maintained, an improvement in the

biological connectivity of the clusters can be achieved.

Table 2 shows the results of the comparison of both training algorithms over the two full biological datasets

(transcripts and metabolites). The Gap Statistic [41], intended to estimate adequate cluster numbers from

a dataset [42], was used to select the number of clusters for the comparisons among methods. The selected

map size was 10× 10 neurons. Comparisons between sSOM and other clustering algorithms for the

datasets used in this study have already been done in [22]. It is worth to highlight the fact that, although

all metabolites were annotated, only a low proportion of the genes (approximately 10%) were associated to

metabolic pathways in the KEGG database. In this case, with so many clusters without related biological

information, one should expect that it will be very hard to enhance the results, even using high α values.

However, the results obtained in both cases show that bSOM can work well even in this situation,

improving the biological connections of the clusters. Considering the classical data mining measures in

Table 2, the results do not vary significantly between methods and configurations tested. For example,

compactness as well as separation remain almost unchanged in all cases. The DB index is particularly

influenced in the case of large α since the Euclidean distance is almost disregarded for grouping data points

and thus the clusters get closer and larger, which is highly penalized by this measure. The Dunn index is

slightly worsened in most cases, improving only in one case with a large α in the first data set.

Taking into consideration now only the measures that evaluate the biological quality of the solutions (P

and G), both present better results and it can be stated that, in general, the biological connectivity of the

clusters is really improved when using bSOM compared to sSOM, in both datasets. The biological

connectivity of the clusters is effectively improved when using bSOM in comparison to sSOM, which is

even achieved when both distances (Euclidean and biological) are equally considered (α = 0.5). The G

measure also consistently obtains better scores when α increases, in all configurations tested for each map.

This means that enhanced clustering results can be achieved when using bSOM rather than sSOM, not

only with respect to clusters quality but also from a biological point of view.

For the full Arabidopsis dataset, we have also calculated the biological homogeneity index (BHI) [43] for

sSOM and bSOM, which measures how homogeneous are biologically the clusters obtained. BHI evaluates

if genes in the same cluster are also part of the same functional classes according to GO annotations. The

BHI score obtained for sSOM was 6.49%. For bSOM with the same α values reported in Table 2, the BHI

scores were 6.57, 6.68 and 7.53%. As can be seen, this independent measure also indicates that better

biological clusters can be obtained with the proposed algorithm.
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Finally, to show an illustrative example of how bSOM obtains better clustering results from a biological

point of view, a pathways analysis and validation has been performed over neurons selected at random

from a SOM map on the first data set. Table 3 shows comparative results regarding the data points that

where clustered in the neurons by both algorithms and the Solanum lycopersicum dataset. The full

statistics for all clusters in both datasets have been presented in the previous tables.

From a quantitative point of view, it can be seen that in general bSOM can increase the number of

common pathways in the clusters for the same number of elements. In particular, in Cluster A the number

of common pathways among cluster elements is maintained, although bSOM can achieve that result with

less cluster elements. In Cluster B, for the same number of elements a higher number of common metabolic

pathways was obtained. In Cluster C, a better grouping allows finding common biological information,

which could not be achieved by using the standard training algorithm. Finally, cluster D exemplifies how,

for the same number of elements with related biological information in a cluster, more common pathways

can be found by bSOM (note that although the cluster found by bSOM has 5 elements, only 3 of them

participate in known pathways).

The previous examples suggest that bSOM is able to better group the amino acids glycine, serine,

threonine, valine, leucine, isoleucine, lysine and arginine within clusters considering the number of

biochemical pathways they are involved in. For instance, bSOM grouped serine, threonine, valine and

isoleucine within cluster A and glycine, arginine and lysine in a separate cluster (B). In this case, bSOM

takes account of the possibility that co-variation of valine and isoleucine can also be affected by their

degradative pathway (ko00280). Another example of the usefulness of bSOM is given by clusters C and D.

In the first case, bSOM grouped two transcripts which both encode for beta-galactosidase precursor. It is

somehow here expectable either because they are derived from the same gene or from different loci. In

cluster D, glutamate, proline and sucrose grouped together with two transcripts. One of these transcripts

(LE23B16) encodes a putative calcium-dependent protein kinase (CDPK). Although the exact mechanism

by which this protein could be related to the variation of the above-mentioned metabolites is not known,

the role of different CDPKs in the control of primary plant metabolism is well documented [44].

Conclusions

In this paper we presented a new training algorithm for self-organizing maps (bSOM) over biological

datasets. A new biologically-inspired term, considering common pathways, is added in the calculation of

the distances among data points and neurons centroids. This term evaluates the internal connections of the
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data samples in terms of their belonging to known pathways. The proposed training algorithm was tested

in two datasets involving Solanum lycopersicum and Arabidopsis thaliana transcripts and metabolites.

Classical data mining validation measures were used to qualify the clustering solutions obtained when using

both algorithms, as well as a new measure that takes into account biological significance of the clusters

found. The new algorithm showed important improvements in performance in comparison to standard

SOM training. It is worth to highlight the fact that the inclusion of biological information implicitly during

training has effectively improved the results. This would certainly increase the biological value of the

clusters found and would simplify their further analysis. Future work will involve the expansion of the

range of additional biological sources that could be used in combination with clustering algorithms.
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Figures
Figure 1 - Example of SOM training using metabolic pathways (bSOM) with an artificial data set.
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Figure 1: Example of SOM training using metabolic pathways (bSOM) with an artificial data set. a) ρ
matrix; b) α = 0.00; c) α = 0.50; d) α = 1.00. Each cluster found by the algorithm is indicated with a
different color (red, green, cyan and purple). Groups of biologically related points are indicated with different
markers (squares, diamonds, circles and triangles).
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Figure 2 - Biological internal connectivity of data sets.
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Figure 2: Biological internal connectivity of data sets. Corresponding ρ matrix for: a) Solanum lycopersicum,
b) Arabidopsis thaliana data sets.
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Tables
Table 1 - Validation measures for SOM training: metabolic datasets.

Table 1: Validation measures for SOM training: standard (sSOM) versus biological (bSOM) for metabolic datasets.

sSOM bSOM
α→ 0.00 0.25 0.50 0.75

Solanum lycopersicum

C
O

0.65 0.69 0.73 0.79

S
M

0.66 0.65 0.59 0.49
DBO 9.56 31.00 13.90 19.05
DM 0.59 0.40 0.40 0.37

P
O

3.58 2.74 2.58 2.08
GO 0.87 0.90 0.83 0.87
Arabidopsis thaliana

C
O

0.48 0.55 0.64 0.65

S
M

0.81 0.79 0.79 0.71
DBO 10.45 8.86 4.9e2 60.66
DM 0.32 0.24 0.50 0.54

P
O

3.84 2.93 2.17 1.56
GO 0.65 0.67 0.52 0.48
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Table 2 - Validation measures for SOM training: full datasets.

Table 2: Validation measures for SOM training: standard (sSOM) and biological (bSOM) for the full datasets.
sSOM bSOM

α→ 0.00 0.25 0.50 0.75
Solanum lycopersicum

C
O

0.79 0.80 0.80 0.81

S
M

0.68 0.67 0.66 0.64
DBO 8.80 9.07 9.12 10.64
DM 0.18 0.14 0.13 0.26

P
O

3.32 2.65 2.38 1.80
GO 1.09 0.63 0.59 0.52
Arabidopsis thaliana

C
O

0.51 0.52 0.51 0.51

S
M

1.00 1.00 1.00 1.00
DBO 13.30 12.02 10.35 12.19
DM 0.16 0.15 0.16 0.13

P
O

3.13 3.10 2.80 2.00
GO 0.68 0.41 0.43 0.32
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Table 3 - Detail of patterns and common pathways for sSOM vs. bSOM.

Table 3: Detail of patterns and common pathways for sSOM vs. bSOM.
Algorithm→ sSOM bSOM
Cluster A serine serine

threonine threonine
valine valine
glycine isoleucine
lysine

Common ko00260, ko00290 ko00260, ko00290
pathways ko00970, map1060 ko00970, map1060

ko02010 ko02010
ko00460 ko00966

Cluster B arginine arginine
β-alanine glycine
GABA lysine

Common ko00330, ko00410 ko00310, ko00970
pathways ko04080 map1060, map1064

ko02010

Cluster C LE31F17 LE31F17
LE30O12∗ LE16F20
LE26F02∗

Common - ko01693,ko00052
pathways ko00511,ko00531

ko00600,ko00604

Cluster D sucrose sucrose
aspartate glutamate
5oxoproline proline

LE23B16∗

LE23N08∗

Common ko02010 ko02010
pathways ko00330, ko00970
∗ does not participate in a well-known pathway.
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