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Abstract Clustering is fundamental to understand the structure of data. In the

past decade the cluster ensemble problem has been introduced, which combines a set

of partitions (an ensemble) of the data to obtain a single consensus solution that

outperforms all the ensemble members. However, there is disagreement about which

are the best ensemble characteristics to obtain a good performance: some authors

have suggested that highly different partitions within the ensemble are beneficial for

the final performance, whereas others have stated that medium diversity among them

is better. While there are several measures to quantify the diversity, a better method

to analyze the best ensemble characteristics is necessary. This paper introduces a new

ensemble generation strategy and a method to make slight changes in its structure.

Experimental results on six datasets suggest that this is an important step towards

a more systematic approach to analyze the impact of the ensemble characteristics on

the overall consensus performance.

Keywords: Consensus Clustering, Ensemble Diversity, Cluster Ensemble Generation.

1 Introduction

Clustering is fundamental to understand the structure of a dataset [2]. It has
been used in a wide range of areas, including physics, engineering, medical sci-
ences, social sciences and economics. Clustering algorithms partition data into
groups called clusters, in such a way that data objects inside the same cluster are
more similar than those in different ones [20]. The output of these techniques is
called partition. The correct choice of a clustering algorithm, or even the setting
of its parameters, requires the user to have at least some knowledge about the
dataset, which data distribution the algorithms assumes and how its parame-
ters setting could affect the final result [11]. In fact, clustering algorithms are
developed to solve a wide range of different problems, and there is no universal
technique to solve all of them. Different and equally valid solutions can be ob-
tained from different algorithms. That is one of the reasons why clustering is
accepted in the community as an ill-posed problem [11, 12, 21, 22]. Therefore,
the inexperienced user runs the risk of picking an inappropriate algorithm, or
even a proper one with a wrong set of parameters. While all these issues are
some of the main motivations behind cluster ensembles [10, 19], another inter-
esting applications include the possibility to reuse the current knowledge about
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the data and perform distributed data mining [18], where different partitions of
the data are present in geographically distributed locations.

In the past decade, cluster ensembles have emerged as an important ap-
proach to combine a set of partitions of the data, called ensemble, into one
consolidated solution that has an improved overall accuracy [14, 18, 19]. Given
the ill-posed nature of clustering, accuracy or performance is typically measured
by comparing the final solution against a known reference partition, generally
based on the class labels that come with the dataset used [10, 15, 22]. Although
this reference partition may not be the only valid structure of the data [7], many
studies have tried to find how ensembles should be built or which characteristics
they should have to obtain a high performance. Namely, the level of disagree-
ment between ensemble members, which is called ensemble diversity, has been
identified as a fundamental factor for success [7, 18], and many diversity mea-
sures have been proposed [3, 14].

In the literature, different opinions can be found when analyzing the rela-
tionship between ensemble diversity and performance. Some studies suggest
that more diverse ensembles are better to get more accurate solutions [3, 10],
while others, in contrast, have proposed that a medium diversity is the preferred
choice [7]. In addition to these contradictory statements, a high variability has
been found when a proposed approach is used not only from one dataset to
another, but also when different ensemble generation strategies are employed.
The diversity vs accuracy plots also reveal that ensembles with similar diver-
sities can have very different accuracies. When this is observed, two possible
explanations can be formulated as hypothesis: 1) while one type of diversity is
being measured and changed, another hidden types, not measured, are changing
as well, thus leading to confusing results; 2) it is difficult to precisely generate
ensembles with different diversity values, which could cause a biased analysis.

The previous facts lead us to propose a method to improve the analysis of
cluster ensembles by making slight changes in their structures. For this purpose,
a new strategy to generate ensembles is introduced, along with a method to
smoothly change the diversity of an ensemble. Results show that this method
is able to precisely generate ensembles with different diversities, representing a
first step towards a more systematic approach to analyze the impact of diversity
on the final solution.

This paper is organized as follows. Section 2 describes the cluster ensem-
ble problem and a diversity measure. In Section 3, a new strategy to generate
ensembles is introduced, in addition to a novel method to smoothly change the
diversity of an ensemble. Section 4 describes the evaluation procedure and the
results found, while Section 5 summarizes the conclusions, possible improve-
ments and future work.

2 The Cluster Ensemble Problem

The cluster ensemble problem was firstly defined a decade ago and several exten-
sions have been presented since then. It consists in combining a set of partitions
to obtain a single consolidated one without accessing the data features or the
algorithms that generated that set of partitions [18]. In this section, a cluster
ensemble framework is described, along with a fundamental factor for its success
that has been studied in the literature: the ensemble diversity.
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Figure 1: The cluster ensemble framework and its components.

2.1 A Cluster Ensemble Framework

A cluster ensemble framework for knowledge reuse was initially introduced
in [18], and it is depicted in Figure 1. The data, shown at the left, is processed
by clustering algorithms, which are called clusterers and denoted as Φi. As an
example, three different clusterers could be k-means [8] with k = 5, k-means
with k = 3, or a SOM [13] with a map size of 4 × 4. Each clusterer produces
one partition of the data, Πi. There are M clusterers in the framework, thus
M partitions are generated. The set of partitions Π1, . . . ,ΠM produced by the
clusterers is called ensemble. The ensemble is the input of the next component,
the consensus function Γ, which produces a single consolidated partition Π∗,
called consensus partition.

The objective of Γ is to maximize the information shared between the consen-
sus partition and the ensemble members. To measure the information shared
between two partitions, the Normalized Mutual Information (NMI) has been
proposed [5]

Υ(Πi,Πj) =
I(Πi,Πj)√
H(Πi)H(Πj)

, (1)

where I(Πi,Πj) represents the mutual information between partitions Πi and
Πj , while H(·) is the partition entropy. NMI is a symmetric measure and ranges
from 0 to 1.

To quantify the information shared between a single partition Π
′

and a set
of partitions Λ = Π1, . . . ,ΠM , the Average Normalized Mutual Information
(ANMI) is defined as

Ῡ(Λ,Π
′
) =

1

M

M∑
i=1

Υ(Π
′
,Πi). (2)

Therefore, the objective function for Γ can be formally defined and consists
in deriving a consensus partition Π∗ that maximizes the ANMI:

Π∗ = arg max
Π′

M∑
i=1

Υ(Π
′
,Πi). (3)

Several consensus functions have been proposed to solve the cluster ensemble
problem. They use different approaches to combine an ensemble into a single
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consensus partition, for instance: 1) by using graph theory, which employs
graph representations and partitioning algorithms [18]; 2) by using the cluster
labels as features and clustering them [19]; 3) by relabeling the clustering results
to minimize their disagreement [6]; 4) by using the link analysis methodology
to find the similarities between clusters [10]; 5) by using a pairwise similarity
matrix for data objects and a similarity-based clustering algorithm over it [3, 7].
Among the graph-based approaches, a well-known consensus function is the
Meta-CLustering Algorithm (MCLA), which will be used in this paper.

It has been been stated that the consensus partition Π∗ has better aver-
age performance than all the individual partitions in the ensemble [3, 19]. The
performance or accuracy typically refers to the degree of similarity between the
consensus partition and a known reference partition, which can be calculated us-
ing (1). Although the objective of the consensus function consists in maximizing
the information shared, some studies evaluate it by using the accuracy [1, 10].

2.2 Ensemble Diversity

Diversity among a pair of partitions can be defined as a measure that quantifies
the degree of disagreement between them. A simple diversity measure consists
in calculating the complement of a similarity measure [3], like D(Πi,Πj) =
1 − Υ(Πi,Πj). Ensemble diversity, on the other hand, refers to the level of
disagreement among ensemble members.

Two main approaches have been proposed to measure ensemble diversity [7]:
pairwise and non-pairwise. In the former, every partition member of the ensem-
ble is compared to the rest. In the latter, a consensus partition is first derived
from the ensemble and every partition member is then compared with it. The
NMI or the Adjusted Rand Index (ARI) [9] are generally used as the indices
to compare a pair of partitions [3, 10]. A pairwise measure based on NMI is
defined as

Dp(Λ) =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

(1−Υ(Πi,Πj)), (4)

where the p subindex stands for a pairwise approach.
Several approaches exist to generate diversity in ensembles: by using dif-

ferent clustering algorithms [18], varying their parameters [7, 10], projecting
data into different subspaces [3, 21], using different features of the dataset [18],
based on bagging and boosting [16, 17] or a combination of them [23]. These
approaches consist in randomly generate a set of ensembles by following a gener-
ation strategy and hoping to obtain a wide range of diversities. However, there
is no method to generate an ensemble with a determined diversity.

3 A Method to Slightly Change the Diversity

The cluster ensemble framework, depicted in Figure 1, suggests the need of
two main activities: 1) the ensemble generation, and 2) the application of a
consensus function to obtain a consensus partition, which can be seen as the
final result of the whole process. The main contribution of this article is focused
on the first activity, the ensemble generation. In this section, a new approach to
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generate an ensemble is proposed, along with a method to smoothly change its
diversity. This method represents a step towards a more effective way to analyze
the impact of the diversity on the quality of the final consensus partition.

First, a strategy to generate an ensemble based on groups of partitions is
described. After that, a novel process to make small changes in the original
ensemble is proposed, which leads to a better way to analyze cluster ensembles.
This process heavily depends on the generation strategy, and consists in taking
its output and produce a set of modified ensembles. By finding the relationship
of each group with the rest of the original ensemble, the method is able to
produce a smooth change in the diversity of the output ensembles.

3.1 Ensemble Generation Using Groups of Partitions

While there are several methods to create an ensemble, a common approach
involves the process of creating different partitions of the data by using a fixed
algorithm and randomly varying some of its parameters. For this purpose,
k-means is generally used and some of the following schemes for selecting the
number of clusters is employed: k is fixed and the cluster centers are randomly
initialized; k is chosen randomly within an interval [kmin, kmax] [4, 7, 14].

The proposed method uses a combination of both approaches: rather than
using a fixed k for all the ensemble members, an interval of k values is determined
and used. For each k value in this interval, the corresponding clusterer is run
a number of times with random initializations, producing a group of partitions.
Therefore, the ensemble is composed by these groups of partitions, and there are
as many groups as k values in the interval. Each group is composed by partitions
Πi,j generated by the same clusterer Φi → Λi = {Πi,1,Πi,2, . . . ,Πi,Ni

}. All
these groups of partitions form the ensemble, and there are as many groups as
k values: Λ = {Λ1,Λ2, . . . ,ΛM}. Although each group can have different sizes
Ni, the original ensemble has groups with a fixed size.

The ensembles generated by this method have a known structure: groups
of partitions where each partition within a group is generated by the same
clusterer, only varying from the other group members in the initialization of
the cluster centers (which is random). Decoupling this definition from centroid-
based algorithms and thus making it more generic, each group member differs
from the rest of the group only by one random component of the clustering
algorithm used for its creation.

3.2 Representative Partitions for Group Comparison

The generation strategy described in the previous section should provide some
benefit to achieve our final goal of better analyzing a cluster ensemble. As
the ensemble structure is already known, it is possible to take advantage of
it by analyzing the relationship between each group. A naive way to get this
information would be to generate all possible combinations of groups taken
by 2 and compare all the members of the first group against members of the
second one. While it seems correct, this calculation could be very computational
intensive, and the number of groups and their sizes would be an important limit
when generating ensembles.

To reduce the computation complexity when comparing groups, a different
approach is proposed here. Note that it is known that all partitions within a
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group share the same clusterer. Therefore, each group itself could be considered
as a kind of cluster inside the whole ensemble. Partitions within each group
should be similar, or at least it can be assumed that they share some structure.
Then, instead of the naive comparison described above, it could be possible to
take advantage of the ensemble structure and obtain a representative partition
for each group in the ensemble. This representative partition (also referred
just as the representative) should be the single partition that best represents
the complete group from where it was taken or derived. Assuming that good
representatives can be obtained, then a simple comparison between them would
provide the comparative information needed about groups, without excessive
computation. A convenient definition for the representative partition could be
the one that maximizes the mutual information among group members, similar
to (3). So its objective function is defined as

Π̂i = arg max
Π̂

Ῡ(Λi, Π̂). (5)

As each group of partitions was generated with a clusterer using the same k = i,
a group Λi and its representative Π̂i share the same subindex, which identifies
the clusterer configuration.

The similarity between (3) and (5) suggests that any existing consensus
function could be used as a method to get a representative partition. An alter-
native approach could be to look among the group members for a representative
partition, thus the group member with the highest ANMI is chosen as the rep-
resentative for its group. It is worth mentioning that, while the first approach
would produce a completely new partition, different to all group members, the
second one always chooses an existing one.

3.3 Slight Changes of the Ensemble Diversity

Once the representative partitions are obtained, a comparison between them
could provide useful information about the groups of partitions. This informa-
tion can be used to modify the original ensemble, thus obtaining a diversity
change. That is achieved by changing the group sizes in the new ensemble,
according to their relationship with the other groups.

For the comparisons, a relationship matrix R can be computed. For example,
if the measure chosen is Rs = Υ(Π̂i, Π̂j), then a similarity matrix is obtained.
On the other hand, a dissimilarity matrix can be generated if the measure is
Rd = 1−Υ(Π̂i, Π̂j). As an example, Figure 2 shows the Rs for the Iris dataset
using k-means. By looking at the averages of the columns, r̄i, it can be seen
that the group using k = 2 is the most different to the rest, with an average
NMI of 0.59.

It is interesting to note that the structure of the ensemble allows to play with
the groups proportion (number of members in each group) while still preserving
most of the original ensemble. If a new ensemble is created from the original
one and the number of members of the most diverse group is decreased at some
factor, what would be the change in its diversity? By making small changes in
the groups according to the information gathered in the relationship matrix R,
it could be possible to explore its effects on the final diversity. An intuitive idea
is that, if small decreases in diversity are desired, a possible action can be to
slightly reduce the size of the most diverse groups and increase the proportion of
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0.86
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0.59 0.71 0.76 0.78 0.75 0.72

Figure 2: Similarity matrix generated for the Iris dataset using k-means with
k ∈ [2, 7]. The last row represents the column average (discarding the main
diagonal).

the most similar ones. The opposite operation would produce diversity increases
instead.

The averages r̄i can serve as a guide to change the group proportions and
obtain the desired diversity change through representative weights, wi , r̄i.
These weights will be used to graduate the proportion of the groups in the new
ensemble Ñi = wi|Λ|/

∑
i wi. Once the new sizes are estimated, the groups in

the new ensemble are made up by uniformly sampling from the original group
members. The new groups can have repeated partitions, as the new size could
be larger than the number of available partitions for that group.

However, this procedure, which uses plain averages, generates only one new
ensemble with a different diversity. The method should be able to generate
ensembles according to a desired level of diversity. To achieve this, a function
to gradually emphasize the differences between the values of r̄i can provide such
mechanism. We propose to use the sigmoid function

s(r̄i, h) =
1

1 + e−h(r̄i−r̄)
, (6)

where parameter h controls its shape. When h approaches 0, the function turns
into a linear weighting. Larger values for h, however, change its behavior into
a step function. If small values for h are used, the new groups will have similar
sizes, and there will be almost no change from the original ensemble to the new
one. When larger values for h are employed, larger differences in the new group
sizes will be observed, causing the new ensembles to smoothly differ from the
original.

The sigmoid function seems to be a good option to change the averages r̄i
into differently contrasted weights, according to the desired diversity change.
This transformation is depicted in Figure 3, where two histograms are shown:
a) the distribution of the averages wi = r̄i and b) how it is changed when the
final weights are calculated after applying wh

i = s(r̄i, h). Clearly, the differences
are more sharply contrasted.
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(a) wi = r̄i.

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) wh
i = s(r̄i, h) with h = 150.

Figure 3: Histograms of (a) the similarity matrix averages and (b) the final
weights for representatives after applying a sigmoid function. The Iris dataset
was used.

Once the final weights wh
i are calculated using the sigmoid function with

parameter h, the sizes for each group are obtained using Ñi = wh
i |Λ|/

∑
i w

h
i ,

and their members are chosen by sampling from the original group members.
Increasing values for h result in smooth changes in the ensemble diversities.

Finally, it is worth mentioning something more about the relationship ma-
trix and how it affects the results. As it was previously said, each time h is
increased, wi values will be more sharply contrasted. If R is a similarity matrix,
this means that the groups more similar to the rest of the ensemble will be priv-
ileged (obtaining larger weights), while the more diverse will be reduced or even
completely discarded, as suggested by Figure 3(b). This results in a decrease of
the new ensemble diversity. The opposite effect can be achieved if a dissimilarity
matrix is used instead, that is to say, the diversity will be increased.

4 Results and Discussion

In this section, the proposed method to make slight changes in the ensemble
along with the generation strategy were evaluated in different test cases. Real
and artificial datasets from UCI1 were used: 1) Iris, real dataset, 150 data
objects, 4 features, 3 classes; 2) Wine, real dataset, 178 data objects, 13 features,
3 classes; 3) Ionosphere, real dataset, 351 data objects, 34 features, 2 classes;
4) Difficult Doughnut, artificial dataset, 500 data objects, 12 features, 2 classes;
5) Four Gaussian, artificial dataset, 100 data objects, 4 classes; 6) 8D5K [18],
artificial dataset, 1000 data objects, 8 features, 5 classes.

4.1 Representative Partitions

It is important for this study to assess the quality of the representative partition,
that is to say, its representativeness for the group. It is possible to exactly
measure this quality according to the objective function defined in (5). Two
methods to obtain a representative partition for a group, MCLA and Maximum
ANMI, described in the previous section were evaluated. The results are shown

1http://archive.ics.uci.edu/ml/index.html
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Table 1: Representative quality test for two methods, MCLA and Maximum
ANMI. The Four Gaussian dataset was used with group sizes equal to 20.

k
ANMI Time [s]

MCLA rep. Max rep. MCLA rep. Max rep.
2 0.746 0.751 0.037 0.941
3 0.747 0.763 0.069 1.054
4 0.922 0.922 0.046 1.174
5 0.896 0.883 0.047 1.295
6 0.857 0.848 0.056 1.420
7 0.813 0.825 0.062 1.550
8 0.794 0.804 0.062 1.676
9 0.784 0.798 0.072 1.767
10 0.773 0.793 0.079 1.883
11 0.778 0.794 0.078 2.047
12 0.796 0.796 0.085 2.181
13 0.794 0.798 0.092 2.290
14 0.804 0.806 0.097 2.377
15 0.806 0.812 0.103 2.524
16 0.814 0.818 0.108 2.638
17 0.819 0.823 0.112 2.754
18 0.825 0.829 0.120 2.844

in Table 1 for the Four Gaussian dataset. The first column indicates the k
values considered: [2, 18]. This means that the ensemble contains 17 groups of
partitions (M = 17). All group sizes are the same with Ni = 20. The second
and third columns indicate the ANMI values obtained by the MCLA and the
Maximum ANMI methods. The last two ones are the average elapsed time
for both methods to get a representative partition, respectively. Although it is
not shown in the table, the average of the ANMI of all group members against
their own group was also measured. These values serve as a lower bound to
measure the quality of the representatives. Both MCLA and Maximum ANMI
produced a representative with an ANMI larger than this value. In Table 1 it
can be seen that, although the representatives obtained by Maximum ANMI
are the best in comparison to MCLA for almost all groups, their computation is
much more intensive than MCLA. Similar results were observed for all the other
datasets. This test, intended to measure the representative quality obtained by
both methods, suggests that there seems to be no significant improvement to
be worth the computation complexity. Therefore, the MCLA method has been
chosen for obtaining the representative partitions.

4.2 Slight Changes in Diversity

The evaluation of the method was carried out by firstly creating an original
ensemble based on groups of partitions. Once the original ensemble was created,
its diversity was measured. After that, a representative partition per group was
obtained and all were compared, thus getting a relationship matrix. Once the
representative weights were calculated, our method was employed by using the
sigmoid function with an interval of values for h. One new ensemble per h value
was generated, and its diversity measured.

The results of this experiment are shown in Figures 4 (real datasets) and 5
(artificial datasets). In each figure, there are six plots, two per dataset, one
using Rd and the other Rs. Each figure shows the diversity as a function of the
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Figure 4: Diversity change for three real datasets (one per column), using Rd

(first row) and Rs (second row).
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Figure 5: Diversity change for three artificial datasets (one per column), using
Rd (first row) and Rs (second row).

sigmoid parameter h. The diversity of the original ensemble is indicated with
dashed lines, and the solid ones show the diversity of the new ensembles. It can
be seen that, while different patterns are observed in each dataset, the method
produces a smooth diversity change in any case when Rd or Rs are used.

A closer look at the figures using Rd reveals that, although differently in
each dataset, the method finds a point where the diversity is not incremented
anymore. This could be explained by the fact that as the averages r̄i are being
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contrasted, there is a value for h where the more diverse groups in the original
ensemble are now similar to the rest of the new ensemble. This idea is reinforced
by the fact that higher values for wi produce groups with repeated partitions. It
can be seen that, when using Rd (Figures 4(a), 4(b), 4(c), 5(a), 5(b) and 5(c)),
after the method reaches the maximum diversity, it finally converges at some
value. In fact, as higher values for h are used, minor changes are observed in
the sigmoid function, thus there is almost no differences in groups proportion
among newly created ensembles. At this point, the only source of change are
the group members randomly chosen from each group. For that reason, it is
expected to find equally diverse ensembles at high values for h. On the other
hand, when Rs is used (Figures 4(d), 4(e), 4(f), 5(d), 5(e) and 5(f)) the diversity
is monotonically decreased until it converges.

It is important to recall here something about how evaluation is generally
carried out with cluster ensembles. As it was previously said in the introduction,
studies in the area typically evaluate their new proposed methods by using the
class labels that come with the dataset. As long as their results are more similar
to the reference partition derived from these labels, more accurate they would
be. Although this reference can represent a valid partition of the data, there
could be no correspondence between the class labels and another equally valid
structures found by a clustering algorithm. This is the unsupervised nature that
is inherent in any clustering task. When a cluster ensemble framework is used,
it is important to note that its components have different objectives, and it is
sensible to evaluate them differently. Namely, the objective for the consensus
function consists in maximizing the information shared between the consensus
partition and the ensemble, as it was presented in (3). If this is not kept in
mind, a low accuracy could be wrongly interpreted as a bad performing of the
consensus function, or viceversa.

The other component of the cluster ensemble framework is the ensemble
generation strategy. Although the ensemble diversity was found to be essential,
it seems not to be clear enough how much diverse should an ensemble be, or even
what diversity means. If the ensemble is good enough, the consensus function
could obtain a better partition of the data. What a good ensemble is and what
is the strategy to generate it seems to be related to its diversity, but it is still
part of current research. In this work, we have presented a contribution to the
area through a method to precisely produce a set of ensembles with different
diversities. This represents an advance to study the impact of the ensemble
characteristics on the final consensus.

5 Conclusions

In this paper we have introduced a novel method to make slight changes in
the diversity of ensembles. It starts by creating an original ensemble based
on groups of partitions, where its structure is appropriately used to estimate
the relationship between each group. With this comparative information, the
groups are weighted according to their impact on the ensemble diversity. By
changing a parameter in the proposed method, it is possible to obtain ensembles
with higher or lesser diversity. The empirical results suggest that this method
is able to precisely change the diversity of ensembles, what represents a step
toward a consistent approach to study the impact of diversity on the consensus
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partition.
Future work includes an extensive study of another diversity measures like

the non-pairwise ones, as well as some changes in the method to handle wider
ranges of diversity. Besides, the individual study of the groups diversity could
provide useful information to obtain better consensus partitions.

References

[1] Carlotta Domeniconi and Muna Al-Razgan. Weighted cluster ensembles:
Methods and analysis. ACM Trans. Knowl. Discov. Data, 2(4):17:1–17:40,
2009. ISSN 1556-4681. doi: 10.1145/1460797.1460800.

[2] Brian S. Everitt, Sabine Landau, and Morven Leese. Cluster Analysis.
Wiley, 4th edition, 2009. ISBN 0340761199.

[3] Xiaoli Zhang Fern and Carla E. Brodley. Random projection for high
dimensional data clustering: A cluster ensemble approach. In ICML-2003,
pages 186–193, 2003.

[4] Ana L. N. Fred and Anil K. Jain. Combining multiple clusterings using ev-
idence accumulation. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 27:835–850, 2005. doi: 10.1109/TPAMI.2005.113.

[5] Joydeep Ghosh, Alexander Strehl, and Srujana Merugu. A consensus frame-
work for integrating distributed clusterings under limited knowledge shar-
ing. In In Proc. NSF Workshop on Next Generation Data Mining, pages
99–108, 2002.

[6] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering
aggregation. volume 1, New York, NY, USA, March 2007. ACM. doi:
10.1145/1217299.1217303.

[7] Stefan T. Hadjitodorov, Ludmila I. Kuncheva, and Ludmila P. Todorova.
Moderate diversity for better cluster ensembles. Information Fusion, 7(3):
264–275, 2006. ISSN 1566-2535. doi: 10.1016/j.inffus.2005.01.008.

[8] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering
algorithm. Applied Statistics, 28(1):100–108, 1979. ISSN 00359254. doi:
10.2307/2346830.

[9] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal
of Classification, 2(1):193–218, 1985. ISSN 0176-4268. doi: 10.1007/
BF01908075.

[10] N. Iam-On, T. Boongoen, S. Garrett, and C. Price. A link-based approach
to the cluster ensemble problem. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 33(12):2396–2409, 2011. ISSN 0162-8828.
doi: 10.1109/TPAMI.2011.84.

[11] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn.
Lett., 31(8):651–666, June 2010. ISSN 0167-8655. doi: 10.1016/j.patrec.
2009.09.011.

12

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
A

 M
et

ho
d 

to
 I

m
pr

ov
e 

th
e 

A
na

ly
si

s 
of

 C
lu

st
er

 E
ns

em
bl

es
"

R
ev

is
ta

 I
be

ro
am

er
ic

an
a 

de
 I

nt
el

ig
en

ci
a 

A
rt

if
ic

ia
l, 

V
ol

. 1
7,

 N
o.

 5
3,

 p
p.

 4
6-

56
, 2

01
4.



[12] Jon Kleinberg. An impossibility theorem for clustering. In Neural Infor-
mation Processing Systems, pages 446–453. MIT Press, 2002.

[13] Teuvo Kohonen. Neurocomputing: foundations of research. chapter Self-
organized formation of topologically correct feature maps, pages 509–521.
MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.

[14] L. I. Kuncheva and D. P. Vetrov. Evaluation of stability of k-Means clus-
ter ensembles with respect to random initialization. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 28:1798–1808, 2006. doi:
10.1109/TPAMI.2006.226.

[15] Liu Limin and Fan Xiaoping. A new selective clustering ensemble algo-
rithm. In e-Business Engineering (ICEBE), 2012 IEEE Ninth International
Conference on, pages 45–49, 2012. doi: 10.1109/ICEBE.2012.17.

[16] M. Okabe and S. Yamada. Clustering by learning constraints priorities. In
Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages
1050–1055, 2012. doi: 10.1109/ICDM.2012.150.

[17] Elaheh Rashedi and Abdolreza Mirzaei. A hierarchical clusterer ensemble
method based on boosting theory. Knowledge-Based Systems, 45(0):83 –
93, 2013. ISSN 0950-7051. doi: 10.1016/j.knosys.2013.02.009.

[18] Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles -
a knowledge reuse framework for combining multiple partitions. Journal of
Machine Learning Research, 3:583–617, 2002.

[19] A. Topchy, A.K. Jain, and W. Punch. Clustering ensembles: models of
consensus and weak partitions. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(12):1866–1881, 2005. ISSN 0162-8828. doi: 10.
1109/TPAMI.2005.237.

[20] Rui Xu and Don Wunsch. Clustering. Wiley-IEEE Press, 2009. ISBN
9780470276808.

[21] Donghui Yan, Aiyou Chen, and Michael I. Jordan. Cluster forests.
Computational Statistics & Data Analysis, (In press, available on-
line), 2013. ISSN 0167-9473. doi: 10.1016/j.csda.2013.04.010. doi:
10.1016/j.csda.2013.04.010.

[22] Jinfeng Yi, Tianbao Yang, Rong Jin, A.K. Jain, and M. Mahdavi. Robust
ensemble clustering by matrix completion. In Data Mining (ICDM), 2012
IEEE 12th International Conference on, pages 1176–1181, 2012. doi: 10.
1109/ICDM.2012.123.

[23] Zhiwen Yu, Hau-San Wong, and Hongqiang Wang. Graph-based consensus
clustering for class discovery from gene expression data. Bioinformatics,
23(21):2888–2896, 2007. doi: 10.1093/bioinformatics/btm463.

13

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
A

 M
et

ho
d 

to
 I

m
pr

ov
e 

th
e 

A
na

ly
si

s 
of

 C
lu

st
er

 E
ns

em
bl

es
"

R
ev

is
ta

 I
be

ro
am

er
ic

an
a 

de
 I

nt
el

ig
en

ci
a 

A
rt

if
ic

ia
l, 

V
ol

. 1
7,

 N
o.

 5
3,

 p
p.

 4
6-

56
, 2

01
4.


	Introduction
	The Cluster Ensemble Problem
	A Cluster Ensemble Framework
	Ensemble Diversity

	A Method to Slightly Change the Diversity
	Ensemble Generation Using Groups of Partitions
	Representative Partitions for Group Comparison
	Slight Changes of the Ensemble Diversity

	Results and Discussion
	Representative Partitions
	Slight Changes in Diversity

	Conclusions

