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Abstract

We present an effective model for timing-dependent synaptic plasticity (STDP) in

terms of two interacting traces, corresponding to the fraction of activated NMDA recep-

tors and the Ca2+ concentration in the dendritic spine of the postsynaptic neuron. This

model intends to bridge the worlds of existing simplistic phenomenological rules and

highly detailed models, constituting thus a practical tool for the study of the interplay

between neural activity and synaptic plasticity in extended spiking neural networks.

For isolated pairs of pre- and postsynaptic spikes the standard pairwise STDP rule

is reproduced, with appropriate parameters determining the respective weights and time

scales for the causal and the anti-causal contributions. The model contains otherwise

only three free parameters which can be adjusted to reproduce triplet nonlinearities in

both hippocampal culture and cortical slices. We also investigate the transition from

time-dependent to rate-dependent plasticity occurring for both correlated and uncorre-

lated spike patterns.

Keywords: STDP, spike triplets, frequency dependent plasticity
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1 Introduction

The fact that synaptic plasticity can depend on the precise timing of pre- and postsy-

naptic spikes (Bi et al., 2005; Rubin et al., 2005), indicates that time has to be coded

somehow in individual neurons. If the concentration of a certain ion or molecule, which

we will refer to as a trace, decays in time after a given event in a regular fashion, then

the level of that trace could serve as a time coder, in the same way as the concentration

of a radioactive isotope can be used to date a fossil.

A range of models have been proposed in the past that formulate long-term po-

tentiation (LTP) and long-term depression (LTD) in terms of traces in the postsynaptic

neurons (Karmarkar et al., 2002; Badoual et al., 2006; Shouval et al., 2002; Rubin et al.,

2005; Graupner et al., 2012; Uramoto et al., 2013). Several of these models successfully

reproduce a wide range of experimental results; including pairwise STDP, triplet and

even quadruplet nonlinearities. Most models, however, require fitting of a large number

of parameters individually for each experimental setup and involve heavily non-linear

functions of the trace concentrations. While possibly realistic in nature, the study of

neural systems modeled under these rules from a dynamical point of view becomes a

highly non-trivial task. At the other end, the connection between predictions of sim-

plified models, constructed as phenomenological rules (Badoual et al., 2006; Froemke

et al., 2002), and the biological underpinnings is normally hard to establish, as they

usually aim to reproduce only the synaptic change and do away with the information

stored in the the traces themselves.

In the present work we propose a straightforward model formulating synaptic po-

tentiation and depression in terms of two interacting traces representing the fraction of
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activated N-methyl-D-aspartate (NMDA) receptors and the concentration of intracel-

lular Ca2+ at the postsynaptic spine, with the intention of bridging these two worlds.

Having a low number of parameters and being composed of only polynomial differ-

ential equations, the model is able nonetheless to reproduce key features of LTP and

LTD. Moreover, since the parameters of the model are easily related to the dynamical

properties of the system, it permits to make a connection between the observed synaptic

weight change and the behavior of the underlying traces.

2 The model

Plasticity in our model will be expressed in terms of two interacting traces on the post-

synaptic site, which we denote x and y, representing the fraction of open-state NMDA

receptors (or NMDARs) and theCa2+ concentration in the dendritic spine of the postsy-

naptic neuron, respectively. For a clarification we shortly recall the overall mechanism

of the synaptic transmission process in a glutamatergic synapse, as illustrated in Fig. 1.

A presynaptic spike results in the release of glutamate molecules across the synaptic

cleft, which will activate a series of receptors on the postsynaptic spine, including the al-

ready mentioned NMDA receptors, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) receptors (or AMPAR)(Meldrum, 2000). Na+ ions will then flow through

the AMPAR channels into the dendritic spine of the postsynaptic cell, triggering a cas-

cade of events which may eventually lead to the activation of an axonal spike at the soma

of the postsynaptic cell, and of an action potential backpropagating down the dendritic

tree. This action potential has two effects captured within our model: the first is the
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Figure 1: Illustration of a glutamatergic synapse. Primary AMPA receptors (AMPAR)

are directly activated by glutamate, voltage gated calcium channels (VGCC) by the

backpropagation action potential. NMDA receptors (NMDAR) are also activated by

glutamate and allow the influx of calcium if they additionally unblock, which occurs

when the backpropagating action potential removes the blocking Mg2+ ion.

activation of voltage-gated Ca2+ channels (VGCC), allowing an influx of Ca2+ ions,

resulting hence in an increase of the Ca2+ concentration y; the second is the unblocking

of NMDAR channels, as we detail in what follows.

Ca2+ ions may flow into the postsynaptic spine also through the NMDAR channels

(Meldrum, 2000), but for this to happen two conditions need to be fulfilled. NMDARs

are activated when glutamate binds to them, which in turn opens the receptor’s Ca2+

permeable channel. The channels are said to be open when the protein’s conformational
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state permits ions to flow through them, and closed otherwise. At resting membrane po-

tential, however, Mg2+ ions are present in the channel’s pore, blocking the channel and

preventing Ca2+ ions from permeating the neuron (Mayer et al., 1984). This block is

temporarily removed by a back-propagating action potential. For Ca2+ to flow into the

postsynaptic spine two conditions need hence to be fulfilled. The presence of glutamate

in the synaptic cleft, triggered by a presynaptic spike, and a back-propagating action

potential, signaling a postsynaptic spike. The NMDA receptors are hence the primary

agents, within our model, for the interaction of pre- and postsynaptic neural activities

in terms of axonal spikes. They are hence also the primary agents for causality within

the STDP rule.

2.1 Trace dynamics

We denote with {tσpre} and {tσpost} the trains of pre- and postsynaptic spikes, respec-

tively. The update rules for the fraction x of open but blocked NMDA receptors and the

concentration y of postsynaptic Ca2+ ions are then given by
ẋ = − x

τx
+ Ex (x)

∑
σ δ(t− tσpre)

ẏ = − y
τy

+ (x+ yc)Ey(y)
∑

σ δ(t− tσpost)
(1)

where τx and τy represent the time constants for the decay of x and y respectively.

In absence of presynaptic spikes, glutamate in the synaptic cleft is cleared by passive

diffusion and glutamate transporters (Huang et al., 2004). Ca2+ concentration in the

postsynaptic site will decay, in turn, in absence of postsynaptic spikes (Carafoli, 1987).

In our model, each incoming presynaptic spike produces an increase in the number x of

open NMDA channels due to glutamate release, and the Ca2+ concentration y increases
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Figure 2: a) Plot of the limiting factor Ex, as defined by (2), as a function of the trace

concentration, here exemplified by x (the same applies to y). b) Plot of the LTP thresh-

old (y − b)θ(y − b) present in (3).

only when a postsynaptic spike is present, viz when a backpropagating action potential

reaches the postsynaptic spine. Calcium increase in (1) is composed of two terms; a

constant value yc, representing the contribution of VGCCs, and a term proportional

to the fraction of open NMDA receptors. In this simplified approach, every NMDAR

channel still open from the presynaptic spike, is then unblocked by the backpropagating

action potential. Therefore the transient calcium current through NMDA receptors is

modeled as proportional to x.

The efficacy factors Ex and Ey included in (1) are defined as:

Ez (z) = θ(zb − z)

(
1− z

zb

)
, θ(z) =


0 z ≤ 0

1 z > 0

(2)

where z is either x or y, and determine the efficacy of spikes in increasing trace con-

centrations. For trace levels above the respective reference values xb and yb no further

increase is possible (see Fig. 2 a) and the trace concentration can only decay exponen-
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tially. This determines a refractory period, as shown in Fig. 3. The duration of this

period is in this case a function of the decay constant of the trace and the magnitude

of the overshoot above the reference value. Below this level, E will tend asymptoti-

cally to unity as the trace concentration decays. In this way, previous spikes decrease

the efficacy of future spikes. Similar mechanisms of reduced spike efficacy have been

proposed in the past in models of STDP (Froemke et al., 2002).

Two forces therefore compete to drive nonlinear plasticity in our model: trace accu-

mulation and spike suppression, the latter formulated in the present effective model via

a saturation term.

The update rules (1) for the traces are reduced, in the sense that all superfluous

constants have been rescaled away, as discussed further in the Appendix.

2.2 Update rules for the synaptic weight

We now formulate the updating rules for the synaptic weight, or synaptic strength, in

terms of the trace concentrations. To this end we consider the contribution of two

pathways mediated by distinct enzymes (Colbran, 2004); which, for simplicity we will

denote as LTP and LTD pathways. Calcium is involved in both the LTP and the LTD

pathways (Cormier et al., 2001; Neveu et al., 1996; Yang et al., 1999), with high levels

of calcium resulting in LTP and moderate and low levels resulting in LTD. We propose

the following rule for the plasticity of the synaptic weight w,

ẇ = αx(y − b)θ(y − b)
∑
σ

δ(t− tσpost)− βxy
∑
σ

δ(t− tσpre), (3)

with θ being the same previously defined step function which, in this case, serves as

a lower bound. The first term in (3) leads to an increase of the synaptic weight; it is
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Figure 3: Illustration of the effect of the limiting factor Ex (dashed red line, upper

panel), compare Fig. 2 and Eq. (2), on the trace dynamics (solid blue line, lower panel,

compare Eq. (1)). Here for the x-trace (the behavior is qualitatively the same for y).

Two spikes t1pre and t2pre are present and indicated as solid green vertical bars, with the

height being proportional to Ex. The system ignores further incoming spike whenever

x > xb, resulting in respective refractory periods (shaded grey areas). For finite values

of x < xb the efficacy of incoming spikes is reduced proportionally to xb − x.

triggered in the presence of a postsynaptic spike and by the calcium concentration y,

but only if y is larger than a given threshold b, see Fig. 2 b). A threshold in the calcium

concentration Ca2+ for LTP has been experimentally observed (Cormier et al., 2001)

and its dependence with the previous synaptic activity has been studied (Huang et al.,

1992). In the present work we will consider a constant b = yc, and we will show in the

next section that the standard STDP curve is obtained with this choice.

8

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

 &
 C

. G
ro

s;
 "

T
w

o-
tr

ac
e 

m
od

el
 f

or
 s

pi
ke

-t
im

in
g 

de
pe

nd
en

t s
yn

ap
tic

 p
la

st
ic

ity
"

N
eu

ra
l c

om
pu

ta
tio

n,
 V

ol
. 2

7,
 N

o.
 3

, p
p.

 6
72

-6
98

, 2
01

5.



The second term in (3), in turn, leads to decrease of the synaptic weight and needs

a finite level for both the calcium concentration y and for the fraction of open NMDA

receptors x (which can be taken as a measure of the glutamate concentration in the

synaptic cleft), in addition to the presence of a presynaptic spike, which acts as a second

coincidence detector as proposed by Karmarkar et al. (2002). The parameters α > 0

and β > 0 represent the relative strengths of these two contributions.

The pre- and postsynaptic spikes tσpre/post mark the timing of the synaptic update

in our model (3) for the synaptic plasticity. Here we considered δ-like spikes and one

needs, for numerical simulations using small but finite time steps, to update the traces

via (1) before updating the weights via (3).

2.3 The pairwise STDP rule

In the limit of low frequencies, the traces decay to zero in between the occurrence of

two pairs of spikes, which may hence be considered as isolated.

We denote with ∆t the time between the pre- and the postsynaptic spike, with a

positive value corresponding to a causal pre-post order and a negative ∆t to an anti-

causal post-pre ordering. For an isolated pair of spikes one can easily integrate (1) and

(3), obtaining:

∆w =


αe−|∆t|/τx

(
e−|∆t|/τx + yc − b

)
∆t > 0

−βyce−|∆t|/τy ∆t < 0

(4)

The synaptic weight is always depressed for an anti-causal time ordering of the spikes

with ∆t < 0, and potentiated for yc ≥ b and a causal time ordering corresponding to

∆t > 0. The LTP term becomes a simple exponential decay for b = yc. We have
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chosen in our model a fully decoupled formulation for LTP and LTD. While the LTD

term is always negative, the restriction on the LTP term to be always positive could be

relaxed by removing the step function in equation (3). Then, with the choice b > yc, a

depression window would arise after the peak of potentiation. This window has indeed

been observed in the past in CA1 cells from rat hippocampal slices (Nishiyama et al.,

2000). By setting b < yc, on the other hand, the decay would be composed of two

exponentials. In the LTD term we have not included a threshold. Alternatively, one

could replace the calcium level y by an expression (y − bLTD)θ(y − bLTD), analogous

to the LTP term, which is identical to the case we present for bLTD = 0 since y is always

positive. It is however worth discussing the cases where bLTD 6= 0. Apart from the step

function θ, the LTD threshold represents only a vertical shift of the negative portion of

the STDP window by a factor βbLTD. If bLTD < 0 the plot is shifted downwards, which

means depression occurs even for isolated presynaptic spikes (∆t → −∞). This is

usually not the case, as seen in Bi et al. (1998) and Froemke et al. (2002). If bLTD < 0,

on the other hand, the plot is shifted upwards but, because of the step function, the

LTD term is always negative and then the tail of the exponential would be cut-off. By

looking at the experimental results in Figs. 4 and 6, one observes that the data seems

in fact quite noisy to determine the exact shape of the decay functions. In absence of

further detail, we have chosen in the present work to keep b = yc and no threshold

(or a threshold at 0) for LTD, therefore respecting the exponential fits proposed in the

original papers (Bi, 2002; Froemke et al., 2002).

Rewriting the constants α, β, τx, and τy as α = A+, β = A−/yc, τx = 2τ+, and

τy = τ− where A+, A−, τ+ and τ− represent the maximal intensities and timescales of
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LTP and LTD for isolated spike pairs, we obtain with

∆w =


+A+e−|∆t|/τ+ ∆t > 0

−A−e−|∆t|/τ− ∆t < 0

(5)

the classical fit for pairwise STDP proposed both in hippocampal and cortical neurons

(Bi, 2002; Froemke et al., 2002). This result is independent of yc, xb, and yb and these

three parameters can be hence be used to reproduce additional experimental observa-

tions. In what follows we will use the amplitudes A± as primary parameters, instead of

α and β and rewrite the plasticity rule (3) as

ẇ = A+x(y − yc)θ(y − yc)
∑
σ

δ(t− tσpost)−
A−

yc
xy
∑
σ

δ(t− tσpre). (6)

This is the final shape of the equation for the evolution of the synaptic strength that we

will use throughout this work, it allows to interpret the results for a variety of spike pat-

tern situations in terms of the known spike-pair STDP parameters. The representations

(6) and (3) are, in any case, equivalent.

2.4 Spike triplets

The effect of a pair of pre- and postsynaptic spikes has been experimentally shown

to depend, in a non-linear fashion, not only on its inter-spike interval but also on the

presence of additional spikes temporally proximal to the pair. The contribution of spike

triplets, the simplest case of spike-pair interactions, cannot be described as a linear sum

of two individual contributions of spike-pairs (Froemke et al., 2002; Wang et al., 2005).

In the following sections, we will study the model’s results for either two pre- and

one postsynaptic spikes in a pre-post-pre order, or one pre- and two postsynaptic spikes

11

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

 &
 C

. G
ro

s;
 "

T
w

o-
tr

ac
e 

m
od

el
 f

or
 s

pi
ke

-t
im

in
g 

de
pe

nd
en

t s
yn

ap
tic

 p
la

st
ic

ity
"

N
eu

ra
l c

om
pu

ta
tio

n,
 V

ol
. 2

7,
 N

o.
 3

, p
p.

 6
72

-6
98

, 2
01

5.



in a post-pre-post ordering. For example, with 15Post5 we denote a pre-post-pre order-

ing,

15Post5,
{
tσpre
}

= {−15, 5},
{
tσpost

}
= {0} (7)

and with 10Pre20 a post-pre-post ordering,

10Pre20,
{
tσpre
}

= {0},
{
tσpost

}
= {−10, 20} , (8)

where the times tσpre/post of the spikes are given in milliseconds.

As for spike pairs, the weight-change induced by low-frequency triplets can be com-

puted analytically, obtaining

∆w = + A+exp
(
− |∆t1|

τ+

)
− A−exp

(
− |∆t2|

τ−

)[
1 +

exp
(
− |∆t1|

τx

)
yc

] [
1 + exp

(
− |∆t1|+|∆t2|

τx

)(
1− 1

xb

)]
(9)

for pre-post-pre triplets, and

∆w = − A−exp
(
− |∆t1|

τ−

)
+ A+exp

(
− |∆t2|

τ+

) [
1 + ycexp

(
− |∆t1|+|∆t2|

τy
+ |∆t2|

τx

)(
1− exp(−|∆t2|/τx)+yc

yb

)]
(10)

for post-pre-post triplets, where we have assumed that the traces are below their respec-

tive reference levels, xb and yb respetively, by the time a second spike arrives (the case

of the second spike arriving while the trace is above the reference level is discussed

later in this section). The saturation effect can reduce the effect of a new spike to zero

but not reverse the sign, as seen in expression (2).

We see that the first term in Eqs. (9) and (10), corresponding to the first pair, remains

in both cases unchanged, by construction, with non-linearities appearing in the second

contribution. In the second term of Eq. (9), we find a first factor (the first parenthesis)

12

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

 &
 C

. G
ro

s;
 "

T
w

o-
tr

ac
e 

m
od

el
 f

or
 s

pi
ke

-t
im

in
g 

de
pe

nd
en

t s
yn

ap
tic

 p
la

st
ic

ity
"

N
eu

ra
l c

om
pu

ta
tio

n,
 V

ol
. 2

7,
 N

o.
 3

, p
p.

 6
72

-6
98

, 2
01

5.



corresponding to a correction produced by the interaction between the two traces (the

calcium inflow through NMDAR channels), and a second factor corresponding to the

balance between trace accumulation and spike suppression. In Eq. (10) we also find

a term balancing trace accumulation and spike suppression. The multiplicative factor

exp(|∆t2|/τx) inside the brackets comes from the way we have decided to factorize the

equation, since τx = 2τ+.

If the third spike would instead come within the respective refractory period (see

Fig. 3), the expressions (9) and (10) would reduce to

∆w = + A+exp
(
− |∆t1|

τ+

)
− A−exp

(
− |∆t2|

τ−

)(
1 +

exp
(
− |∆t1|

τx

)
yc

)
exp

(
− |∆t1|+|∆t2|

τx

) (11)

for pre-post-pre triplets, and:

∆w = −A−exp
(
−|∆t1|

τ−

)
(12)

for post-pre-post triplets, where in Eq. (12) the second pair is directly inhibited by the

LTP threshold. While this last situation is not encountered for the low frequency triplet

configurations presented in this work, it becomes relevant in high frequency scenarios.

This condition could be relaxed by replacing the strict threshold by a smooth sigmoidal.

2.5 Interpretation of the variables and parameters in the model

The here proposed model contains a relative small number of variables and parame-

ters and can be considered an effective approach with the biological underpinnings of

STDP being governed by a substantially larger number of variables and parameters

whose functional interdependences are naturally far more complex than the polynomial
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descriptions here proposed. Any effective model will however pool together within

each effective variable or parameter several effects which might depend on a variety of

different factors in the biological neuron.

In section 2.1, we defined x as the fraction of open but unblocked NMDAR chan-

nels. When paired with a postsynaptic spike, and under the simplifications assumed in

the model, the value of x can be then associated with a transient calcium current and a

comparison with experimental results of the parameters related to x would reflect this

role. The time window for LTP, for instance, results in our model from the value of

τx = 2τ+ (as we showed in section 2.3). τx can then be interpreted in this context as

the decay time of the transient calcium current. It has been argued by Hao et al. (2012)

that the narrow window for LTP results from AMPA-EPSP in the postsynaptic spine.

In fact, as reviewed in the same article, the whole spine seems to work as an electrical

amplifier, locally prolonging the depolarization time at the spine. It is therefore not sur-

prising to find different values of the time constants in different neurons or even within

different synapses within the same neuron. In our model we do not compute AMPA

currents directly and reduce the overall effect of the spine to the effective value of τx.

Similarly, τy represents the timescale for decay of the effective calcium concentration

at the spine.

We have included in this work saturation terms for both variables x and y. As it has

been proposed in the past (Froemke et al., 2002), triplet nonlinearities in visual cortical

neurons indicate strong suppression effects on future spikes by previous spikes of the

train. The saturation terms included in the model provide one possible effective way

of dealing with spike suppression, reducing a biological complex phenomena further
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down the cascade of processes, leading eventually to LTP and to LTD respectively.

3 Results for the Hippocampus

Our model, as defined by (1) and (6) contains overall seven adjustable parameters. Four

of these parameters, namely A+ = α, A− = β/yc, τ+, and τ−, enter explicitly the iso-

lated spike-pair STDP rule (5) and are determined directly by experiment. For cultured

rat hippocampal neurons

A+ = 0.86/60, A− = 0.25/60, τ+ = 19 ms, τ− = 34ms (13)

have been measured (Bi, 2002) and we will use these experimental values throughout

the hippocampus part of this study. In Fig. 4 we present, as an illustration, both the

experimental and the theory results, with the latter reproducing, by construction, the

experimental fit. For the model simulation, the experimental protocol of 60 repetitions

spaced by one second has been used. However, the 1Hz frequency of spike pairs is so

low that (5) could be directly used without any discernible difference.

Three parameters entering (1) and (6), namely yc, xb, and yb are to be selected. In a

continuous time evolution scenario, xb and yb determine strict maximal concentrations

for the traces. In the discrete time scenario, overshoots are however possible, due to the

finite increase in the traces after every spike. In this context, and in a low frequency

situation, the first spike in the stimulation pattern is unaffected by the limiting factor,

and only the efficacy of the following spike is reduced. Since xb and yb then do not

affect pairwise STDP, they need to be selected from higher order contributions to the

weight-change. In this case, we selected the values of yc, xb, and yb from triplet results,
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Figure 4: Weight change after a train of 60 pairs at a constant frequency of 1 Hz as a

function of the time delay ∆t between pre- and postsynaptic spikes. The red open cir-

cles are the experimental data for hippocampal neurons (Bi et al., 1998). The continuous

blue line represents the model’s results when the parameters are set to A+ = 0.86/60,

A− = 0.25/60, τ+ = 19ms, τ− = 34ms, which correspond to a fit of the experimental

data, as presented in Bi (2002).

as presented in what follows.

In Fig. 5 we now compare our results for triplets, as described in section 2.4, with

experiments for cultured rat hippocampal neurons (Wang et al., 2005). The triplet stim-

ulation experimental protocol consists of a regular train of 60 triplets with a repetition

frequency of 1 Hz and we use the identical protocol for the theory simulations. We also

keep the pairwise STDP parameters (13) valid for cultured rat hippocampal neurons and

adjust the remaining three free parameters yc, xb, and yb by minimizing the standard de-

viation (SD) between the numerical and the experimental results, obtaining yc = 0.28,

yb = 0.66, and xb = 0.62 (with an SD of 6.76).
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Figure 5: Synaptic strength change in hippocampal neurons induced by triplets com-

posed of either two pre- and one postsynaptic spike, left side of the diagram, compare

(7), or one pre- and two postsynaptic spikes, right side of the diagram, see (8). A to-

tal of 60 triplets are presented, with a repetition frequency of 1 Hz. Full blue boxes

correspond to the model’s results, empty red bars to experimental data (Wang et al.,

2005), and the green lines represent the linear addition of the PostPre and PrePost pairs

each triplet contains via (6). Simulation parameters: A+ = 0.86/60, A− = 0.25/60,

τ+ = 19ms, τ− = 34ms, yc = 0.28, xb = 0.62, and yb = 0.66.

We found that the SD varies smoothly, and relatively weakly, with the exact choice

of the three free parameters, as can be expected from the analytical expressions, and that

this freedom can be used to obtain a range of functional dependencies of the synaptic

plasticity upon spiking frequencies, as discussed in Sect. 5.

We have also included in Fig. 5 the expected synaptic weight changes for the case

of a linear superposition of the two respective interspike contributions via (6). One ob-

17

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

 &
 C

. G
ro

s;
 "

T
w

o-
tr

ac
e 

m
od

el
 f

or
 s

pi
ke

-t
im

in
g 

de
pe

nd
en

t s
yn

ap
tic

 p
la

st
ic

ity
"

N
eu

ra
l c

om
pu

ta
tio

n,
 V

ol
. 2

7,
 N

o.
 3

, p
p.

 6
72

-6
98

, 2
01

5.



serves that the discrepancy between the non-linear and the linear interactions is much

stronger for pre-post-pre than for post-pre-post triplets. With the former leading to

an overall reduced synaptic weight change and the later configuration to a substantial

potentiation. It is interesting to observe here that spike suppression, as proposed in

Froemke et al. (2002) from cortical neurons cannot explain nonlinearities in hippocam-

pus. Suppression of the second presynaptic spike in the triplet would reduce depression

and the overall result would be supralinear potentiation, contrary to the experimental

observation. Trace accumulation is the dominant effect driving nonlinearities in hip-

pocampal neurons.

4 Results for the Cortex

We repeat now the procedure presented previously for the hippocampus, comparing the

results of the proposed plasticity rule to experimental data obtained from slices of the

visual cortex. As in the previous section, the values of A+ = α, A− = β/yc, τ+, and τ−

are determined directly by experiment. We use

A+ = 1.03/60, A− = 0.51/60, τ+ = 13.3 ms, τ− = 34.5ms (14)

as obtained by Froemke et al. (2002) for pyramidal neurons in layer 2/3 (L2/3) of rat

visual cortical slices. Both experiment and the STDP curve are shown in Fig. 6, where

we have reproduced, for the simulation, the experimental protocol, using 60 repetitions

at 0.2 Hz. Once again, the frequency of spike pairs is so low that (5) could be directly

used without any discernible difference.

To select yc, xb, and yb we once again resort to triplet results. In Froemke et al.
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Figure 6: As in Fig. 4, now for visual cortical neurons. The stimulation frequency is

now 0.2 Hz, as in the experiment (Froemke et al., 2002). The red open circles are the

experimental data (courtesy of Robert C. Froemke and Yang Dan) and the continuous

blue line represents the model’s results when the parameters are set to A+ = 1.03/60,

A− = 0.51/60, τ+ = 13.3 ms, τ− = 34.5ms, corresponding to the fit of the experi-

mental data presented in Froemke et al. (2002).

(2002), the change produced by triplets of either two pre- and one postsynaptic spikes

or one pre- and two postsynaptic spikes was also measured. The data consist in this

case however of a large set of specific triplet timing configurations, with every indi-

vidual triplet configuration measured once. We decided to treat all measurements on

an equal footing, fitting the complete set by minimizing the mean square error without

introducing any further bias.

We obtain in this case yc = 11.6, yb = 10.9, and xb = 0.5. The obtained SD of 37.4

is, in this case, much larger than the one found for hippocampus, though that is partly

due to the variance in the experimental data themselves, corresponding to individual
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Figure 7: As in Fig. 5, now for visual cortical neurons. The stimulation frequency is

now 0.2 Hz as in the experiment (Froemke et al., 2002). Full blue boxes correspond

to the model’s results for the best fit of the parameters, empty red bars to experimental

data, and the green lines represent the linear addition of the two PostPre and PrePost

pairs each triplet contains. With diamonds, the model’s results for an alternative set

of parameters is presented. While the quantitative differences are larger with this pa-

rameter choice, the model still qualitatively reproduces cortical triplet nonlinearities.

Simulation parameters: A+ = 1.03/60, A− = 0.51/60, τ+ = 13.3 ms, τ− = 34.5ms,

Best fit: yc = 11.6, yb = 10.9, and xb = 0.5. Diamond points: yc = 1.0, yb = 0.9, and

xb = 0.4.Experimental data courtesy of Robert C. Froemke and Yang Dan.

data points and not to averaged results. Another consequence of the large variance in

the data is that the minimum in the SD is relatively broad. We will discuss these points

in detail in what follows.

In order to compare the results for cortical neurons with the previous section on hip-
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pocampal neurons, as presented in In Fig. 5, we have performed a smooth interpolation

of the set of individual experimental results for cortical triplets by means of gaussian

filters. In Fig. 7 we compare the theory results with the interpolated experimental data.

Contrary to hippocampal triplet results presented in Fig. 5, experiments in cortical

slices show that post-pre-post triplets lead to strong depression and pre-post-pre triplets

to potentiation. Post-pre-post triplets deviate, in addition, somewhat more from a lin-

ear superposition of the contribution of the two inherent spike pairs than the pre-post-

pre configuration. While the predictions of the model presented in Fig. 7) are clearly

not as good as the ones obtained for hippocampal culture, they are still qualiatively in

agreement with the experimental results, successfully capturing the asymmetry between

post-pre-post and pre-post-pre triplets. While, there is still room for improvement in this

regard, we believe it is important that the model can switch from the hippocampal to

the cortical regime in terms of triplet nonlinearities.

As we previously mentioned, the data itself has a much larger variance in this case.

To have an idea of of the variability of the data, we computed the standard deviation

of the data to the smooth gaussian interpolation of width 5ms that we used for the

visual comparison of Fig. 7, which yields an SD of 32.5 (as compared to the SD of 37.4

between model and experiment). For this reason, we believe that a reasonable goal in

this case is to reproduce the distinct qualitative feature of the triplet nonlinearities, more

than an accurate quantitative approximation.

The optimal value of yc = 11.6 obtained when fitting the experimental triplet re-

sults, see Fig. 7, seems to be too large, in particular when compared to the one obtained

for hippocampal neurons. This result can be traced back to the occurrence of a broad
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minimum for the least-square fit together with a relative high variability of the experi-

mental data. We have hence also examined parameter configurations with lower values

for yc. Also included in Fig. 7 is an example with yc = 1.0, also representing the ob-

served experimental features qualitatively. We find that the particular cortical structure

of triplets arises from strong saturation, being a consequence of yb < yc.

5 Frequency dependence

So far, we have considered only pairs or triplets of pre- and postsynaptic spikes coming

at low frequencies and with very precise timings. This will not necessarily be the case in

a natural train of spikes. It is therefore interesting to examine the model’s prediction for

spike trains with different degrees of correlation between pre- and postsynaptic spikes.

A neuron usually receives input from about ten thousand other neurons. While the

correlation of the postsynaptic neuron will be higher for a strong synapse driving the

neuron, the postsynaptic neuron will in general not be correlated with all of its inputs.

We therefore study both types of connections.

We begin in section 5.1 by studying the case of uncorrelated trains of pre- and

postsynaptic spikes and then analyze in section 5.2 the case of a driving synapse with

different degrees of correlation. In these sections we numerically evaluate the synaptic

strength change as a function of the pre- and postsynaptic neuronal firing rates.
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5.1 Plasticity induced by uncorrelated spikes

We begin by evaluating the synaptic change produced by uncorrelated trains of Pois-

son pre- and postsynaptic spikes. In these simulations we use the same parameters as

fitted from pairwise and triplet experiments in Hippocampus and Cortex, refering to

hippocampal and cortical neurons respectively.

The results of the simulations for hippocampal neurons are presented in Fig. 8. We

present two kinds of plots in the diagram: a plot where the pre- and postsynaptic firing

rates are equal, and plots of constant presynaptic frequency for varying postsynaptic

firing rate. We observe in this last type, that the sign of the weight changes, as a function

of the postsynaptic activity for a constant presynaptic frequency, generically switching

from negative to positive at a certain threshold θH . This threshold increases with rising

presynaptic frequency, resulting in a sliding threshold. In other rate-based learning rules

like BCM (Bienenstock et al., 1982), similar thresholds for potentiation are determined

by appropriate long term averages of the postsynaptic activity. In our model, θH is

set by the level of the presynaptic activity, as measured on timescales of the respective

traces. This feature would allow the neuron to adjust the threshold of each synapse

independently, setting in each case the level of what constitutes a significant activity.

The overall synaptic change becomes Hebbian for large pre- and post- firing rates

fpre and fpost, in the sense that it is then proportional to the product fpre · (fpost − θH).

This weight change is influenced in a substantial way by the value of yc and we have

presented in Fig. 8 two sets of parameters, one with yc = 0.28 (left panel) and one with

yc = 0.8 (right panel), yielding otherwise similar SDs when fitting the experimental

triplet data (6.76 and 7.37 respectively).
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Figure 8: Average weight change, for hippocampal neurons, produced by one-second

trains of uncorrelated Poisson-distributed pre- and postsynaptic spikes, as a function of

the postsynaptic firing frequency fpost and for various constant presynaptic firing rates

fpre (full lines). Also included is the case for identical pre- and postsynaptic firing rates

(dashed line). The pair-STDP values (13) have been used and two sets of values for

the remaining three free parameters, yielding both otherwise very similar results for the

spike triplets. a) yc = 0.28, yb = 0.66, and xb = 0.62. b) yc = 0.8, yb = 1.34, and

xb = 1.82.

Potentiation dominates for larger values of yc, as seen in Fig. 8 b). These results

seem, at first sight, counterintuitive given the role of yc as a threshold for LTP. Note

however, that yc contributes to the increase in y through (1) and both LTP and LTD are

dependent on y in the plasticity rule (6), with the LTD contribution being proportional

to 1/yc.

Comparing Figs. 8 a) and b) we observe that yc can be used to regulate the thresh-

old for potentiation in the rate-encoding limit, without changing the behavior of isolated
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Figure 9: As in Fig. 8, now for visual cortical neurons. Full lines show the weight

change for specific constant presynaptic frequencies fpre, as a function of the post-

synaptic rate fpost. For the dashed line, pre- and postsynaptic firing rates are equal.

The pair-STDP values (14) have been used and two sets of values for the remaining

three free parameters, yielding both otherwise similar results for the spike triplets. a)

yc = 11.6, yb = 10.9, and xb = 0.5. b) yc = 1.0, yb = 0.9, and xb = 0.4.

spike triplets substantially. yc is hence a vehicle for also adapting the overall postsy-

naptic activity level and it would be interesting, for future research, to study how this

regulative mechanism would interact with other known ways to regulate the overall

level of the postsynaptic neural activity, such as intrinsic plasticity rules (Triesch, 2007;

Marković et al., 2012; Linkerhand et al., 2013).

It has to be remarked that the full lines in Fig. 8, representing weight changes as a

function of the postsynaptic frequency for a constant presynaptic firing rate, while of

theoretical interest to understand the behaviour of θH , will not correspond to a usual

physiological functional relationship between the rates, at least for a driving synapse. If
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the presynaptic synapse drives the postsynaptic neuron, the postsynaptic activity will in

general be an increasing function of the presynaptic rate. Here we have chosen fpre =

fpost (the dashed lines in Fig. 8 and 9) as an illustration, but a more detailed transfer

function should be selected for accurate and quantitative comparisons with experimental

results. In this sense, the parameter configuration of Fig. 8 b) shows a better agreement

with experimental procedures, such as that of Sjöström et al. (2001), where potentiation

is shown to become stronger with higher frequencies.

No complete set of experimental results has hitherto been published, unfortunately,

where all pairwise, triplet, and frequency dependent plasticity have been measured for

the same type of synapse and with the same experimental stimulation procedure. A full

consistency check between model and experiment is hence not possible to date.

In Fig. 9 the results of numerical simulations for L2/3 cortical neurons for the same

protocol of Fig. 8 are presented. In this case, depression is found for all combinations

of pre- and postsynaptic frequencies, a robust prediction of the model. Different values

of yc were selected to test this behavior, and in each case the rest of the parameters were

fitted to the triplet results. In each case, the value of yb obtained by this fitting turned out

to be lower than yc. The y-trace has hence a hard time to overcome the threshold yc for

LTP, as calcium increase by further spikes is prevented. As a test, if yb was artificially

set to values larger than yc, potentiation for larger frequencies was recovered but the

fit of the experimental triplet data deteriorated substantially, obtaining potentiation for

PostPrePost triplets, contrary to the experimental results. This indicates that triplet

nonlinearities found in L2/3 cortical neurons result from spike suppression, contrary to

the predominant trace accumulation effect present in hippocampal neurons.
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These results, predicted for L2/3 neurons as fitted from Froemke et al. (2002), would

then be in stark contrast to those of Sjöström et al. (2001) for L5 neurons in visual cortex

where LTP dominates for large frequencies. It should be pointed out, however, that the

pairwise STDP plot presented in Sjöström et al. (2001) is already different from that

of L2/3 neurons, raising the question of to what extent results coming from different

neurons, or obtained via different stimulation procedures, should be alike.

On the other hand, the prediction of overall depression dominating for uncorrelated

spike trains in certain cortical neurons seems to be in line with, or at least does not

contradict, experimental findings for deprivation experiments. In cortical areas, where

topological maps are usually found, deprivation of sensory input has been shown to

result in depression of the respective synaptic connections (Trachtenberg et al., 2000;

Feldman, 2000). At the same time, correlation has been found to substantially decrease

after these procedures, in areas projecting to cortex (Linden et al., 2009), suggesting

that decorrelation of spike trains could be responsible for the observed depression in

cortical neurons.

A possible reason behind the observed differences in these studies might be the

stimulation protocol employed. While in Bi et al. (1998) and Wang et al. (2005), plas-

ticity is triggered by eliciting the firing of the pre- and postsynaptic neurons by dual

whole-cell clamp, in the cortical results from Froemke et al. (2002), extracellular presy-

naptic stimulation is performed, clamping only the postsynaptic neurons. This creates

an asymmetry between Pre-Post-Pre and Post-Pre-Post triplets. Moreover, in the case of

extracellular stimulation, the question remains to what extent other synapses are being

affected, potentially triggering, in turn, other forms of plasticity such as local synaptic
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scaling.

It is important to stress that the robust depression found here for higher frequen-

cies is a direct consequence of the triplet results, and indeed vanishes if one uses

hippocampal-like triplet results. The same suppression effect present for triplets also

affects higher frequency trains, resulting in depression.

For lower frequencies, the pairwise contribution dominates when determining the

balance between potentiation and depression. In Izhikevich et al. (2003), the authors

show how a straightforward application of the pairwise rule to Poisson uncorrelated

spike trains (as in our simulation), adding up linearly the effect of every pair in the train

according to the pairwise STDP rule with cortical parameters, always leads to depres-

sion, since the pairs simply sample the STDP curve which has an overall negative area

(the opposite is true in hippocampal neurons, as we show below). Our model is by

construction, equivalent in the low frequency limit to the linear pairwise model since

isolated spikes produce no synaptic change in our model and triplets and higher order

configurations become very infrequent if the frequency is low. For low pre- and post-

synaptic frequencies the trains of Poisson spikes can be considered as pairs of random

duration that sample the pairwise STDP curve.

As previously mentioned, the overall integrated area of the pairwise STDP curve for

L2/3 cortical neurons is negative while it is positive for hippocampal neurons. One can

easily integrate the exponentials and one obtains a relation A for the areas:

A =
A+τ+

A−τ−
. (15)

While for hippocampal neurons A = 1.92, we find in cortex A = 0.77. This
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means that, in absence of higher order contributions (which is true if both the pre-

and the postsynaptic frequencies are low), uncorrelated spikes will on average lead

to depression in cortical neurons and to potentiation in hippocampal neurons. If the

frequencies tend to zero, the average interspike interval will be long compared to the

STDP window duration and the net amount of synaptic change, whether positive or

negative, will be low. In the following section this fact will become clear when the

synaptic change of correlated and uncorrelated spikes are compared.

As the frequencies of pre- and postsynaptic spikes increase, the interspike period

decreases and when this becomes comparable to the timescale of the STDP window

(which is related to the trace timescale), the pairwise approximation will break down

since interactions can no longer be neglected. When both the pre- and postsynaptic fre-

quencies are on the order of 10Hz the average time between a pre- and a postsynaptic

spike is on the order of 50ms and interactions are to be expected. This is where the par-

ticular models for the underlying dynamics will differ. Also in the work by Izhikevich

et al. (2003), the authors show with their Nearest-neighbor Implementation that synap-

tic change goes from general depression (in the all-to-all implementation) to BCM-like,

when they consider only the closest previous and posterior postsynaptic spike to each

presynaptic spike to compute the linear sum of pairs.

This choice, which at first glance would seem an approximation independent of any

underlying dynamics, actually has strong implications for the biological underpinnings

that could actually implement this algorithm. A first neighbor approximation requires

to hard reset any traces possibly present, forgetting completely anything that happened

outside that window. The nearest-neighor implementation has, in addition not the aim
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to explain triplet non-linearities as the PrePostPre triplet protocol.

The interspike interaction is in our model driven by the undelying traces. We have

chosen in our simulation to use for the frequency-dependence protocol the same param-

eters obtained from pairwise and triplet fits. As observed in cortical PostPrePost triplets,

strong suppression severely limits potentiation of further spikes (compare PostPrePost

to linear superposition results). At high frequencies triplet interactions become relevant

and the same suppression should then be evidenced for frequency dependent plasticity.

We believe then, that any model aiming to reproduce time-dependent plasticity up to

triplet order as measured by Froemke et al. (2002), should show depression also for

high frequencies in cortical neurons.

5.2 Plasticity induced by correlated spikes

So far we have analyzed the effect of uncorrelated spikes on the synaptic weight change

both in hippocampal and in cortical neurons (Figs. 8 and 9). It is however interesting to

see the predictions of the model for a strong synapse driving the postsynaptic neuron.

In this case pre- and postsynaptic spikes should be correlated, at least partially, together

with a certain positive delay.

To reproduce this effect with our model, we simulated trains of correlated spikes

where, with each presynaptic spike, a postsynaptic spike can occur with probability p,

after a certain delay d. As an example, if every presynaptic spike triggers a postsynaptic

spike then p = 1. This would mean, however that the postsynaptic frequency fpost

changes with p (fpost = p fpre). In order to compare our results for different values

of p and keep fpost independent of p, we complete the train of postsynaptic spikes
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with Poisson spikes of frequency (1 − p)fpre. In this way, fpost is independent of p,

which now regulates the degree of correlation between pre- and postsynaptic spikes:

p = 0 represents the fully decorrelated case, since all the postsynaptic spikes are drawn

from the poisson distribution, and p = 1 represents the fully correlated case already

mentioned.

In Fig. 10 we present the synaptic changes produced by trains spikes for different

values of p. In this case, results for a delay of 5ms are presented. The same tests were

performed with delays from 2ms to 10ms with only quantitative but not qualitative

differences.

We observe in Fig. 10, both for hippocampal and cortical neurons, that correlated

spike trains induce an increasing amount of potentiation for low to intermediate fre-

quencies (∼ 1 − 10Hz). In the correlated scenario, and since in this case we are simu-

lating a driving synapse, postsynaptic spikes follow presynaptic spikes in a causal order.

When the frequency is higher than 10Hz, the interspike period becomes comparable to

the STDP time window and each postsynaptic spike will also ”see” the following presy-

naptic spike, thus triggering the LTD term. Depending on the trace saturation constants,

LTD or LTP will eventually dominate for large frequencies. If LTD dominates, depres-

sion results and after a certain reversal frequency the behavior is switched from Hebbian

to Anti-Hebbian. This is the case for the triplet fitted values presented in Fig. 10.

It is important to note that the model is also able to produce Hebbian behavior within

the entire physiological range of activities by changing yc. The smaller the saturation

effects are, the larger this reversal frequency becomes. In fact, with the second set of

parameters used in Fig. 8 b), no such reversal is found within physiological frequencies
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Figure 10: Simulation results of the synaptic weight change induced by a one-second

train of spikes with different degrees of correlation, as a function of the frequency f =

fpre = fpost. The fraction p of correlated spikes takes the values 0, 0.5, and 1 in these

plots. The delay between pre- and postsynaptic spikes was taken to be 5ms in these

simulations. The case p = 0 corresponds to the dashed lines in Figs. 8 and 9. a) The

pairwise hippocampal parameters (13) were used, together with yc = 0.28, yb = 0.66,

and xb = 0.62, corresponding to the triplet fit. b) Here the pairwise cortical parameters

(14) were used, together with yc = 11.6, yb = 10.9, and xb = 0.5, corresponding to the

triplet fit.

(not shown here).

If observed, such a reversal, which is yet another side of the suppression effect,

would have the benefit of being self-stabilizing, tuning synaptic strength to help keep

neural activities bound.

The kink observable for the fully correlated curve (p = 1.0) of 10 b) results from

the particularly strong suppression effects in cortical neurons, captured in our model by
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yb < yc. For frequencies above a certain threshold (∼ 28Hz) the trace concentration y

is always below the yc and LTP never triggers.

A fundamental difference between plots a) and b) is the different qualitative be-

havior between correlated and uncorrelated spikes. While in hippocampal neurons,

Hebbian, increasing potentiation, is always present for low to intermediate frequencies

(whether the spikes are correlated or not), in cortical neurons, our model predicts un-

correlated spikes always produce depression and therefor Hebbian learning requires the

neurons to be at least partially correlated.

6 Comparison to other models

The problem of formulating plasticity in terms of the specific timing of pre- and post-

synaptic spikes can be approached at different levels of detail and accuracy, ranging

from simplistic phenomenological rules to detailed and complex models describing the

different steps of the biological machinery responsible for STDP. In sections 3 and 4 the

comparison of our model to simple forms of phenomenological rules has already been

established, noting that linear combinations of spike pairs are generically not sufficient

to explain the experimentally observed triplet non-linearities.

We have also shown that, while linear combinations of pairs, plus additional sup-

pression, is enough to explain the triplet nonlinearities of cortical neurons, as shown

in Froemke et al. (2002), hippocampal triplet non-linearities cannot be explained by

suppression and a trace accumulation mechanism seems to be taking place in these

synapses. In any case, this kind of phenomenological rules are not likely to gener-
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alize well to arbitrary spike patterns since no information of the underlying plasticity

mechanism is present in the formulation.

Other models, like Albers et al. (2013) and Pfister et al. (2006), present interesting

dynamical formulations of plasticity in terms of generic decaying markers or traces,

but do not attempt to establish a link to the biological underpinnings of STDP. Cal-

cium concentration and NMDA receptors have been shown to play a central role in

time-dependent LTP and LTD, and we therefore believe it is important to formulate

plasticity in those terms. Our model, though simplified, is formulated in terms of these

key ingredients and may therefore help to bridge the worlds of functional and realistic

models.

An alternative approach has been proposed by Appleby et al. (2007), where plas-

ticity is described in an ensemble-based formulation. The authors there argue that the

observed synaptic changes produced by standard protocols cannot be explained at a sin-

gle synapse level, but rather state that the observed results arise at a population level.

The authors then show how the pairwise STDP curve can be recovered at the ensemble

level from all or nothing potentiation or depression at the single synapse level. The

dependency of the model to the specific timing of triplets is however in this case not

computed.

The model we present in this work belongs to the family of calcium-based spiking-

neuron models. Within this family, models formulating synaptic plasticity exclusively

in terms of the calcium levels (Uramoto et al., 2013; Graupner et al., 2012), while tuned

to reproduce a variety of experimental results, tend to show paradoxical results when

tested in other setups. The model presented by Uramoto et al. (2013), for example,
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predicts synaptic changes even when only postsynaptic spikes are present. The model

in Graupner et al. (2012), in turn, shows plasticity also when either pre- or postsynaptic

spikes are absent, since both pre- and postsynaptic spikes contribute directly to the

calcium level in this model, without the need of coincidence. To avoid this, in our

model we demand the simultaneous presence of both pre- and postsynaptic spikes for

plasticity to arise, being proportional to the products of traces x and y in our rule. We

believe this to be an important feature for simulations in situations of complex spike

patterns where the pre- and postsynaptic firing rates do not necessarily match.

7 Discussion

We propose a basic trace model for timing-dependent plasticity that incorporates, in

a first order approximation, the fundamental mechanisms acknowledged to be taking

place in STDP. We show that the model successfully captures several main features

of time-dependent plasticity, including the standard shape for low frequency pairing,

experimentally observed triplet nonlinearities, and large frequency effects.

The decay constants for the two traces and the relative intensities of LTP and LTD

can be extracted directly from the standard STDP curves, as measured for isolated pairs.

The model is left hereafter with only three further parameters, which can be used to fit

higher order contributions to plasticity. The model successfully reproduces the distinct

and contrasting nonlinearities found in both hippocampal cultures and cortical slices.

While the model predicts a similar frequency dependence for correlated (or partially

correlated) pre- and postsynaptic spikes both for hippocampal and cortical neurons,
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the effect of uncorrelated spikes (although smaller) differs qualitatively in these two

types of neurons. In this case, the sign of the resulting plasticity depends for lower

frequencies on the overall area of the pairwise STDP curve, resulting in potentiation for

hippocampal neurons and depression in cortical ones, and for higher frequencies on the

balance between spike suppression and trace accumulation.

We show that the model is able to reproduce typical frequency-dependencies for

uncorrelated spikes, while fitting pairwise and triplet hippocampal parameters. We do

also find, that fitting triplet results for L2/3 cortical neurons invariably leads to depres-

sion, for higher frequencies and of uncorrelated spikes, contrary to observations in L5

neurons. The question then arises, to which extent plasticity results for different neu-

rons, or performed under different stimulation conditions, can be expected to match. It

seems then essential to have available a consistent sets of experiments where pairwise,

triplet, and frequency results are measured for the same type of neuron and with the

same stimulation protocol. Otherwise one runs the risk of possibly trying to build a

complete picture out of mismatching parts. In this sense, we hope that our predictions

serve as a motivation to revisit and to complete triplet and frequency dependent studies

for different types of neurons.

In order to compare our results with rate encoding plasticity models, we have also

shown, by setting the presynaptic frequency to a constant value, that the amount of

synaptic change is proportional, for hippocampal neurons, to the product of the activi-

ties, with a threshold that depends on the presynaptic firing rate. While the system lacks

a longer term average threshold, as the one present in BCM, the presynaptic activity acts

as a value of reference for the significant level of activity. If the postsynaptic activity
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exceeds this level then potentiation occurs, otherwise, depression arises.

For correlated spikes, we have shown that the model leads to similar results for hip-

pocampal and cortical neurons, with an initial hebbian behavior for small to medium

frequencies and, depending on choice for the parameters, a reversal to anti-hebbian be-

havior for large frequencies, which could have the virtue of being self-limiting, avoiding

runaway growth of synaptic connections. It has been shown recently (Echeveste et al.,

2014), that this self-limitation results naturally, for rate encoding neurons, from the

stationarity principle for Hebbian learning. By tuning the value of yc, the reversal fre-

quency can be made larger, to the point of producing Hebbian behavior within the entire

physiological range of activities.

The simplicity of the here proposed model makes it a useful tool for simulations and

studies of the dynamical properties of networks adapted via these rules. Firstly, the cal-

culations required are straightforward, making it computing time efficient. The relative

small number of free parameters and their direct link to both the biophysical properties

of the postsynaptic complex and to the dynamical features of the trace dynamics makes

it suitable when studying the interplay between neural and synaptic dynamics in neural

systems.
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Appendix: Dimensionality Analysis

In section 2 we could have started by initially denoting by x′ and y′ the fraction of

NMDA receptors and the Ca2+ concentration, respectively, where the time evolution of

these traces is written as:


ẋ′ = − x′

τx
+ c1Ex

∑
σ δ(t− tσpre)

ẏ′ = − y′

τy
+ (c2x

′ + y′c)Ey

∑
σ δ(t− tσpost)

(16)

where τy and τx represent the time constants in the decay of x′ and y′, and now two

additional parameters c1 and c2 are included. c1 represents the increase in x′ caused by

a single presynaptic spike (which in this simplified model we assume constant) and c2

represents the increase, per unit of x′, in y′ concentration. y′c is the constant contribution

per postsynaptic spike to y′ of the voltage-gated Ca2+ channels. Again a spike efficacy

E is included that limits trace concentrations, where E is still calculated as in (2).

Now, by a change of variables:

x = x′/c1, xb = x′b/c1, y = y′/c1c2, yc = y′c/c1c2, yb = y′b/c1c2

(17)

we re-write (16) as:


ẋ = − x

τx
+ Ex

∑
σ δ(t− tσpre)

ẏ = − y
τy

+ (x+ yc)Ey

∑
σ δ(t− tσpost)

which is the exactly the expression presented in section 2. By this procedure we

have reduced the number of parameters for the trace evolution to 5.
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