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Abstract5

Metabolic pathway building is an active field of research, necessary to6

understand and manipulate the metabolism of organisms. There are dif-7

ferent approaches, mainly based on classical search methods, to find linear8

sequences of reactions linking two compounds. However, an important lim-9

itation of these methods is the exponential increase of search trees when10

a large number of compounds and reactions is considered. Besides, such11

models do not take into account all substrates for each reaction during the12

search, leading to solutions that lack biological feasibility in many cases.13

This work proposes a new evolutionary algorithm that allows searching not14

only linear, but also branched metabolic pathways, formed by feasible reac-15

tions that relate multiple compounds simultaneously. Tests performed using16

several sets of reactions show that this algorithm is able to find feasible linear17

and branched metabolic pathways.18
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1. Introduction21

Systems biology has quickly progressed thanks to the technical advances22

made in recent years to obtain quantitative and qualitative information of23

biological systems at different scales. These developments, in addition to24

contributions made by bioinformatics in several areas such as sequence anal-25

ysis, modelling of protein structures, and building of interaction networks,26

help to understand the functioning of living beings (Tenazinha and Vinga,27

2011). However, the increasing volume of data produced in biological exper-28

iments has led to the need to develop new computational tools capable of29

manipulating and analyzing it to extract knowledge (Bordbar et al., 2014;30

Chen and Zhang, 2014).31

In nature, metabolic processes do not occur in isolation, but rather32

through complex networks made up of metabolic pathways that branch and33

interconnect (Ravasz et al., 2002; Lacroix et al., 2008). They generate a large34

variety of compounds that are used, for example, for structural purposes or35

energy storage, or just as substrates for key reactions in other processes36

(Jeong et al., 2000). These networks are a natural way of organising rela-37

tions (biochemical reactions) between compounds. Each reaction acts as a38

rule that determines the compounds consumed (substrates) and produced39

(products) in the process. These intricate relations are frequently modelled40

employing different types of graphs (Arita, 2012). Determining the whole41

sequence of reactions to produce a compound from another one consists in42

searching for a path that links both compounds in the graph. This problem43

is of particular interest in systems biology nowadays. The effort is focused44

on developing tools that allow identification of metabolic pathways capable45

of being manipulated to produce compounds of interest (Lee et al., 2009;46
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Yim et al., 2011).47

There are different methods to automatically search for metabolic path-48

ways between two compounds. They are mainly based on classical search49

algorithms, such as breadth-first and depth-first search, and the A* algo-50

rithm (Russell and Norvig, 2010). All of them start by transforming the51

data into a type of graph appropriate for the search (Pey et al., 2011). One52

problem with these representations are the abundant compounds such as53

water and Adenosine 5’-triphosphate (ATP), which have a high connectiv-54

ity as they participate in a large number of reactions (Gerlee et al., 2009).55

Thus, frequently the solutions found by the search strategies do not make56

biological sense since they use abundant compounds as intermediate steps57

in the synthesis of the desired product, and the availability of the other58

required substrates is not verified.59

Different approaches to solve the problem of abundant compounds have60

been proposed. Croes et al. (Croes et al., 2005) propose a weighting scheme61

to search a pathway between two compounds. They assign to each node62

a weight equal to the number of reactions where it participates, and find63

the lightest pathways between both ends. This approach was extended by64

Faust et al. (Faust et al., 2009), who applied the weighting scheme to a65

graph where its edges indicates the transfer of atoms from one compound to66

another one. Employing structural information of the compounds, McShan67

et al. (McShan et al., 2003) built vectors of characteristic for each compound68

and performed the search by selecting the successive nodes using heuristics69

based on the distance between vectors. Similarly, Rahman et al. (Rahman70

et al., 2005) generated a binary fingerprint for each compound and applied71

similarity measures to guide the search process. Heath et al. (Heath et al.,72

2010) proposed an approach based on tracking the flow of atoms, from the73
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starting to the ending compound, trying to preserve as many of these atoms74

as possible. This allowed finding linear and branched pathways between75

two compounds. Branched solutions contain several alternative mechanisms76

to transfer atoms from the start to the end of the pathway. The main77

problem faced by those methods is the exponential growth of the search78

trees when a large number of highly connected reactions and compounds79

are involved. Recently, a method based on evolutionary algorithms to search80

metabolic pathways between two metabolites was developed (Gerard et al.,81

2013), which avoids the problems of working with growing search trees.82

These methods provide paths only between two compounds and take into83

account the last synthesized product to select a new reaction.84

Despite their characteristics, all these methods cannot find branching85

metabolic pathways that relate more than two compounds. In an effort86

to solve this issue, Faust et al. (Faust et al., 2010, 2011) extended their87

pathway search strategy to relate a set of compounds by means of a network88

of reactions. Thus, solutions found consist of networks built as a combination89

of linear pathways among all pairs of compounds specified. Even though90

these solutions have ramifications, the feasibility of solutions is not taken91

into account since the availability of all substrates is not guaranteed.92

While all these proposals provide sequences of reactions that relate the93

indicated compounds, the solutions found are often not biologically feasible.94

This is due to the assumption that all substrates are available, thereby the95

solution consists in finding a sequence of reactions to establish the relation.96

Thus, the availability of the compounds is not taken into account to perform97

the search and no restrictions are imposed on the possible reactions used to98

generate the solutions. Furthermore, given that all the previously synthe-99

sized compounds in the reactions chain are not taken into account to select a100
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new reaction, valuable information to guide the search is lost and not prop-101

erly used. It is important to highlight that there are cases where a pathway102

between two compounds needs a branching to be possible. For example, in103

the case where a reaction needs two substrates, and each one of them should104

be provided by independent reactions that must be carried out in parallel.105

Supposing that only feasible solutions should be found, algorithms searching106

lineal pathways could not find any solution in this case.107

This work proposes a new approach based on the expanded set of com-108

pounds concept (ESC), which allows to relate several compounds at the109

same time by means of a network of feasible reactions. Given a set of avail-110

able compounds and a feasible reaction from them, it is possible to expand111

this set by adding the products of the reaction. In this way, it is possi-112

ble for a higher number of reactions can take place from the new set of113

compounds. Following this idea, our method only needs an initial set of114

available compounds in order to search for a metabolic pathway that re-115

lates the compounds of interest. To efficiently explore the search space, an116

algorithm based on evolutionary computation is proposed. This family of117

algorithms are inspired in biology and employ the principle of natural selec-118

tion to evolve a population of potential solutions (Pal et al., 2006; Affenzeller119

et al., 2009; Boussäıd et al., 2013). These methods have been successfully120

applied to solve a wide range of problems in bioinformatics (Lee and Hsiao,121

2012; Kayaa and Şule Gündüz-Öğüdücü, 2013; de Magalhães et al., 2014;122

Garai and Chowdhury, 2015). The search is guided by the fitness of indi-123

vidual in the population, which is evaluated using functions without formal124

requirements. Each individual encodes a solution, evolved employing ge-125

netic operators that combine the information of different individuals and126

introduce small variations during the evolutionary process.127
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A web interface to the algorithm has appeared in (Gerard et al., 2015).128

That report simply described the software from a user point of view, without129

details of the model and its functioning, mainly with a focus on the usabil-130

ity of the tool and the visualizations provided. It has to be noticed that131

this present contribution, instead, develops the main ideas behind the tool,132

providing a detailed explanation of the evolutionary model, its internal pa-133

rameters and a wide experimental validation, with artificial as well as several134

real data of increasing complexity. The analysis of sensibility to parameters135

and robustness when facing a real problem is also included in the results.136

Moreover, a real case study for a well-known metabolic pathway that re-137

lates four biologically relevant compounds is presented, and two alternative138

solutions found to the standard metabolic pathway are described.139

The paper is organized as follows. Section 2 describes the model of sets140

of compounds employed, the encoding in chromosomes, and the elements of141

the evolutionary algorithm, analyzing in detail the proposed operators and142

the measures that make up the fitness function. Section 3 describes the data143

employed in the experiments, their processing, the measures used to evaluate144

the algorithm performance, and several aspects of the searched networks.145

Section 4 analyses the effect of the variation of different parameters of the146

algorithm, the ability of the algorithm to scale to larger spaces, and a real147

case study. Finally, Section 5 presents the conclusions and future work.148

2. Evolutionary algorithm based on expanded sets of compounds149

Metabolic networks are constituted by compounds and the biochemical150

reactions r relating them (Lacroix et al., 2008). These relations allow certain151

groups of substrates to be modified in order to produce new products. For-152
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mally, reactions can be represented by means of the relation S(r)
r←→ P (r),153

where S(r) and P (r) correspond to the substrates and products of the re-154

action. Clearly, these relations require all substrates to be present in order155

to take place. In some cases, substrates are available in the medium where156

the reaction occurs. In other cases, they must be provided externally or157

through a previous reaction. In any case, each reaction which takes place158

can increase the available compounds so that new reactions can take place.159

This idea can be employed to model a metabolic pathway by considering it160

as a set of reactions carried out with a given order, that starts from a speci-161

fied set of available compounds. Additionally, it is also possible to evaluate162

the feasibility of each reaction in the pathway by analyzing the availability163

of its substrates.164

In an evolutionary algorithm, the linear structure of genes into a chromo-165

some c can be easily used to represent the sequence of reactions, considering166

its order as indicative of the order that they take place in the pathway.167

Besides, it is possible to evaluate the feasibility of the pathway by associ-168

ating an initial set of available compounds C0 to c, and verifying whether169

each reaction is possible based on this set and the products of all feasible170

reactions that have been previously carried out. Additionally, the use of171

an ESC enables to model branched metabolic pathways, where two or more172

reactions must happen simultaneously in order to generate all the necessary173

substrates for a subsequent reaction. Therefore, each chromosome encodes174

a complete metabolic pathway, varying its size according to the number of175

reactions the pathway has.176

Figure 1 exemplifies a metabolic pathway encoded in a chromosome to-177

gether with the ESC associated to each reaction. The substrates required178

for the reaction rk must be available in the ESC Ck−1, otherwise the re-179
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Figure 1: Representation of the ESC model in a chromosome. Top: Chromosome

that encodes the reactions of a metabolic pathway. Bottom: The ESC for each

reaction (solid lines) and previous sets (dash lines). Squares indicate available

compounds. Filled circles correspond to new compounds generated in the metabolic

pathway. The empty circle corresponds to a substrate required by the reaction r3

that is not available in C2.

action will not be valid and the set of compounds will remain unmodified180

(Ck = Ck−1). Thus, if the substrates for the reaction rk are available181

in the ESC Ck−1 = Ck−2 ∪ P (rk−1), this reaction produces the new set182

Ck = Ck−1 ∪ P (rk). Therefore, the ESC continues to be updated until the183

set CN is reached.184

2.1. Description of the algorithm185

The proposed algorithm, named EvoMS (Evolutionary Metabolic Seeker),186

employs the sets of compounds model to search for feasible metabolic path-187

ways that relate a group D of specified compounds. In order to facilitate188

further explanations, the term initial substrate is introduced to denote the189

compound belonging to D used to find the pathway, and final products to190

indicate the remaining compounds in D after selecting the initial one. The191
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general structure of the algorithm and the selection operator are similar to192

the ones used in genetic algorithms (Bäck et al., 2000).193

Briefly, the algorithm starts with the initialization and fitness evalua-194

tion of the population in the first generation, f(P0), which is subjected to195

the evolution process until the stopping criterion is satisfied. This criterion196

consists of two elements: a maximum allowed number of generations GM197

and a fitness value 1.0. The evolutionary process comprises six steps: ex-198

tracting the best individual (chromosome c∗), selecting the parents XG for199

the new generation, creating the descendants CG through crossover of the200

selected parents and mutation of their offspring, building the new popula-201

tion PG+1 ← {c∗} ∪ XG ∪ CG and evaluating the fitness f(PG+1) of the202

new population. The solutions found by EvoMS correspond to networks203

of feasible reactions that use C0 to relate compounds in D. The feasible204

reactions which are not part of these links are filtered later. The crossover205

operator employed consists of a combination of one–point and two-point206

crossover operators. Given two parents, this operator selects a portion of207

genetic material from one parent and inserts it in a random position of the208

other one, discarding the original genetic material in the second parent after209

the point of insertion. The mutation operator and the initialization strategy210

consider the use of sets of compounds. These will be explained in detail in211

subsections 2.2 and 2.4.212

2.2. Initialization based on ESC213

The initialization of EvoMS is carried out employing a strategy based214

on ESC and taking into account the validity of the reactions. The use of215

this strategy has two objectives. On the one hand, it avoids using random216

initialization, which could lead to very poor initial solutions. On the other217
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hand, it introduces the use of subpopulations. Each one is made up by a218

set of individuals using the same initial substrate. It allows to overcome the219

problem of selecting the initial one when there is no information to make220

such decision. Thus, subpopulations will compete to determine the initial221

substrate for the metabolic pathway searched. The initialization process is222

carried out in two phases: identifying the number of subpopulations and223

initializing the individuals. Algorithm 1 describes the steps of this process.224

In order to initialize the population P, it is necessary to define a set of225

abundant compounds A, such as water and ATP, which will be available for226

all reactions during the search. This set is automatically updated during227

the initialization, incorporating the external compounds E to generate the228

set A′ = A ∪ E. The set E is made up of all substrates that cannot be229

synthesized by any reaction provided.230

The first phase of the initialization consists in determining the number of231

subpopulations to be generated (lines 7–12 of Algorithm 1). Each compound232

d ∈ D is evaluated in order to identify those which are used as substrate of233

any reaction. Used compounds and substrates of those reactions are stored234

in two lists, I and R, respectively. The amount of compounds in list I define235

the number of subpopulations that should be created.236

The second phase consists in the initialization of subpopulations, each237

one containing equal number of individuals (lines 13–26). This process is238

similar for all members. Firstly, the chromosome c is initialized as an empty239

list, and the number of genes NI that it should contain is randomly selected.240

Secondly, a set of available compounds C0 associated to the chromosome is241

built. It is made of the union of the abundant compounds (A) and the242

external ones (E), plus all the substrates (Qj) required by reactions that243

use the initial substrate Ij . The initial reaction r1 is randomly selected from244
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those using Ij as initial substrate, and its products update the set of available245

compounds C1 = C0 ∪ P (r1). Then, an iterative process is performed until246

the specified number of genes NI is reached, or there is no more reactions to247

insert. In each step, a reaction rk is selected at random, without repetition248

from all reactions than can take place from the compounds present in the set249

Ck−1. Afterwards, the set of accumulated compounds Ck = Ck−1 ∪ P (rk)250

is updated with products of the selected reaction. Finally, the individual251

is incorporated to the population P and the process is repeated. If the252

final population has more than M individuals, some members are randomly253

removed until the specified size is reached (lines 27–28).254
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Algorithm 1: Initialization strategy based on sets of compounds.

1 A′ ← A ∪ E

2 NM ← maximum pathway size allowed

3 M ← population size

4 N ← 0

5 Q, I ← empty list

6 U ← ∅

7 foreach d ∈ D do

8 U ←
⋃
∀r/d∈S(r) S(r)

9 if U 6= ∅ then

10 N ← N + 1

11 QN ← U

12 IN ← d

13 for j ← 1 to N do

14 for i ← 1 to
⌈
M
N

⌉
do

15 k ← 1

16 NI ← select a random integer in [NM
2 , NM ]

17 c ← empty list

18 C0 ← A′ ∪ (Qj −D) ∪ {Ij}

19 R ← {r/|S(r) ∩ Ck−1| = |S(r)| ∧ Ij ∈ S(r)}

20 while k ≤ NI and R 6= ∅ do

21 rk ← select one reaction from R not included in c

22 c ← insert rk

23 Ck ← Ck−1 ∪ P (rk)

24 k ← k + 1

25 R ← {r/|S(r) ∩ Ck−1| = |S(r)|}

26 P ← insert c

27 if |P| > M then

28 P ← randomly select M individuals from P

29 return P

255

2.3. Fitness function256

The fitness f(c) of the individuals in the population is evaluated em-257

ploying an additive function made up of four terms, each one focused on258

a specific property of the solution. The fitness function and its terms are259

normalized in [0, 1], and the maximum fitness is reached when a solution260
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is found. A metabolic pathway is considered a solution when it meets two261

conditions: i) each reaction has the necessary substrates, and ii) there is a262

sequence of valid reactions that relate the initial substrate with each final263

product. Therefore, the fitness function is defined as264

f(c) =
1

4
[V(c) + L(c) + I(c) + C(c)] , (1)

and the way of calculating the four measures is described below.265

2.3.1. Validity266

The term V(·) evaluates the proportion of reactions in the metabolic267

pathway that have the required substrates. In this sense, the reaction rk is268

valid if S(rk) ⊆ Ck−1, which corresponds to the set of accumulated com-269

pounds until the reaction rk−1. This measure is calculated as270

V(c) =
1

|c|

|c|∑
k=1

1S(rk)⊆Ck−1 , (2)

where |c| is the number of genes of c, and 1A⊆B is the indicator function,271

which takes the value 1 when A ⊆ B and 0 in another case. The validity of272

a metabolic pathway is maximum when each reaction has the substrates it273

needs.274

2.3.2. Linking275

The term L(·) in (1) evaluates two aspects of the metabolic pathway: i) if276

the initial substrate is used, at least, by one reaction, and ii) the proportion277

of the final products that are synthesized. This measure is calculated as278

L(c) =
1

2

(
|S∗(c) ∩ {d}|+ |P

∗(c) ∩ (D − {d}) |
|D − {d}|

)
, (3)
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where d denote the initial substrate of c , S∗(c) =
⋃
∀r∈c S(r) and P ∗(c) =279 ⋃

∀r∈c P (r) are the sets containing all substrates and products of the path-280

way, respectively. This measure reaches its maximum value when a reaction281

employs d as a substrate and all compounds D − {d} are produced.282

2.3.3. Innovation283

The term I(·) determines the proportion of reactions in the metabolic284

pathway that produce, at least, one compound that has not been previously285

generated in the sequence. Consequently, this term favours the incorporation286

of novel reactions that are not already present in the pathway and that287

produce new compounds. This measure is calculated as288

I(c) =
1

|c|

|c|∑
k=1

1P (rk)*Ck−1 . (4)

The maximum value is reached when each reaction produces, at least, a new289

compound.290

2.3.4. Connectivity291

The term C(·) in (1) evaluates the proportion of the final products for292

which there is a sequence of reactions that relates them with the initial293

substrate d. This measure is calculated in two steps. The first step consists294

in building a set of accumulated compounds Z, which is then used in the295

second step to calculate the connectivity. The set Z employed in the first296

step is built using Algorithm 2. From the initial set Z = {d}, the algorithm297

evaluates each reaction in the chromosome and verifies whether the reaction298

employs any of the compounds in Z as a substrate, updating this set with299

its products if the reaction is a valid one. The algorithm returns the set300
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Algorithm 2: Searching for compounds related to the initial sub-

strate.

1 Z ← initial substrate of c

2 for k ← 1 to |c| do

3 if |S(rk) ∩ Z| > 0 then

4 Z ← Z ∪
(
P (rk)− C0

)
5 if |S(rk) ∩ Ck−1| = |S(rk)| then

6 Ck ← P (rk) ∪ Ck−1

7 else

8 Ck ← Ck−1

9 return Z

of compounds that are employed to relate d with each member of D − {d}.301

Then, connectivity is calculated from the set Z obtained according to302

303
C(c) =

|Z ∩D| − 1

|D| − 1
. (5)

This measure takes its maximum value when there are sequences of re-304

actions that relate the initial substrate with each final product.305

2.4. Mutation based on ESC306

The proposed mutation operator introduces changes based on the com-307

position of the sets of accumulated compounds with a probability pm. These308

changes can be the deletion or insertion of one gene into the chromosome,309

with probabilities pe and 1 − pe, respectively. It introduces variations in310

the pathway size, because deletions remove randomly one gene from the se-311
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quence, and each insertion adds one reaction that was not already in the312

sequence.313

Insertion starts by randomly selecting a position k ∈ [1, N + 1], where314

the gene will be inserted. Afterwards, two lists of reactions are built from315

Ck−1 . When k = 1, C0 corresponds to the initial set of available compounds316

associated to the chromosome c. The list of valid reactions contains all the317

possible reactions from the compounds in Ck−1, while the list of invalid318

reactions has all the remaining reactions of the search space. The list of319

valid or invalid reactions from which the reaction will be selected is chosen320

with probabilities pv and 1 − pv, respectively. When the chosen position is321

in the interval [1, N ], the gene that is in that position and all genes coming322

after in the sequence are moved one place forward to allow the insertion.323

Figure 2 shows an example of the proposed mutation operator for a324

chromosome containing N = 10 genes. In the case of insertion, the chosen325

position is 4 and the set of accumulated compounds C3 is built considering326

the products of all valid reactions until the gene that contains r3. From327

this set, the list of valid reactions, whose substrates are available in C3, is328

generated, as well as the list of invalid reactions, which do not have all nec-329

essary substrates in C3. A reaction from these lists is randomly extracted,330

with probability pv for the list of valid reactions. In the example of deletion,331

the gene containing the reaction r8 is eliminated from the sequence, and332

adjacent reactions r7 and r9 are spliced. Clearly, in both cases the number333

of genes in the chromosome is modified.334
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deletion

r1 r2 r3 r4 r5 r6 r7
r8

r9 r10insertion

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

valid reactions

+ + +

+ +

+

+ + +

+

+

invalid reactions

+

+

++

+

+

+

+

+

+

+

+

rk

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

Figure 2: Diagram of the proposed mutation operator for a chromosome containing

N = 10 reactions. Left : Example of gene insertion in position 4 of the chromosome.

Available compounds in C3 are indicated as filled polygons. Right : Example of gene

deletion.

3. Data and evaluation measures335

3.1. Reactions information336

Reactions employed in the experiments were extracted from the KEGG337

database. Actually, reactions from other repositories, such as MetaCyc (Alt-338

man et al., 2013), could be used as well. The direction for each reaction was339

assigned using the information contained in the KGML files associate to340

the reference maps (Ogata et al., 1998; Goto et al., 2002). Each reversible341

reaction was modelled as a pair of independent reactions with opposite di-342

rection. For example, the reaction S(r) ←→ P (r) was separated into the343
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Table 1: Abundant compounds employed to search for branched metabolic pathways. The

table indicates the name of the compound and the corresponding KEGG code.

KEGG code name KEGG code name KEGG code name KEGG code name

C00001 H2O C00005 NADPH C00009 Phosphate C00020 AMP

C00002 ATP C00006 NADP+ C00010 CoA C00028 Hydrogen acceptor

C00003 NAD+ C00007 O2 C00011 CO2 C00030 Hydrogen donor

C00004 NADH C00008 ADP C00014 Ammonia C00080 H+

semi–reactions S(r) → P (r) and P (r) → S(r). The set of abundant com-344

pounds A employed in the experiments is shown in Table 1. The external345

compounds E were extracted automatically for each set of reactions.346

3.2. Measures to evaluate the output network and the algorithm performance347

The algorithm performance was analyzed on the basis of 30 runs for348

each combination of parameters. When results presented an asymmetric349

distribution, the median and the median absolute deviation were employed350

as robust estimators to characterize the distribution. The statistical analysis351

was performed using the Wilcoxon signed-rank test, because it does not352

assumes normal distribution on the data and the outliers have less effect353

than on a classical t-test (Derrac et al., 2011).354

Two measure groups were used to carry out the evaluations. The first355

one includes measures that evaluate the algorithm performance such as:356

NG, the number of generations employed to find a solution; Ng, number of357

generations required for all the population to be initialized with the same358

compound, and FS , the number of runs where compounds in D are linked359

for a metabolic pathway. The second group corresponds to measures that360

evaluate characteristics of the metabolic pathways found. The measures361

employed to characterize the metabolic pathways are:362
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• Reactions (NR): It provides information about the number of steps363

required to relate the compounds, counting the number of reactions364

the metabolic pathway has.365

• Branching (ρ): It evaluates the relation between the pathway reac-366

tions by measuring the mean number of reactions that employ a non–367

abundant substrate. Compounds belonging to A′ (abundant com-368

pounds) are not considered to calculate this measure, because the main369

interest is in the relationships among new compounds produced in the370

network. The pathway branching is calculated according to371

ρ(c) =
1

|S∗f |

|S∗f |∑
i=1

|c|∑
j=1

1si⊆S(rj), (6)

where S∗f are the substrates of all reactions in c after filtering the abun-372

dant compounds, |c| is the pathway size, 1 is the indicator function,373

and si is the i–th compound of the set S(rj) of substrates for reaction374

rj .375

• Leaves (λ): It counts the number of compounds produced by the376

metabolic pathway that are not employed as substrates by any re-377

action. This measure gives an idea of the degree of specificity the378

pathway has. A pathway with a high number of leaves indicates that379

it participates as an intermediary of a great variety of processes; a380

pathway with a low number of leaves indicates a high specificity for381

the synthesis of the indicated compounds. Let S∗(c) and P ∗(c) be the382

sets of substrates and products of all reactions encoded in c, respec-383

tively, the number of leaves λ is calculated as384
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λ(c) = |P ∗(c)−
(
S∗(c) ∪A′

)
|. (7)

• Difference between metabolic pathways (σ): This measure compares385

the sequence of compounds used to relate the elements in D and de-386

termines the proportion of compounds shared between two pathways.387

Let di and dj be the initial substrates of the chromosomes ci and cj ,388

respectively, and let389

Qi = (P ∗(ci) ∩ S∗(ci) ∪ {di})− A′ and Qj = (P ∗(cj) ∩ S∗(cj) ∪ {dj})− A′390

be the subsets of compounds belonging each pathway. The difference391

between both metabolic pathways is calculated as392

σ(ci, cj) = 1−
[
|Qi ∩Qj |

min(|Qi|, |Qj |)

]
. (8)

Two pathways have a difference σ(ci, cj) = 0 when they employ ex-393

actly the same compounds to relate the elements in D. This not im-394

plies that both are the same pathway, but rather one can be included395

in the other.396

4. Results and discussion397

In this section, the proposed algorithm performance is studied in three398

phases. The first one, presented in Section 4.1, studies the behavior of399

the algorithm for different parameters and operators. Section 4.2 analyzes400

the algorithm performance when the set of reactions previously employed401

is extended. Finally, Section 4.3 presents two case studies, where biological402

aspects of the solutions found are analyzed and discussed.403
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Experiments were conducted setting as finalization criteria a fitness equal404

to 1.0 and a maximum of GM = 1000 generations per search. Populations405

were initialized with M = 200 individuals and a maximum size of chromo-406

some NM = 100 genes, to appropriately explore the solutions space. In407

every case, the tournament selection strategy was employed with 5 individ-408

uals and a crossover probability px = 0.8, since that value produced the best409

results in preliminary experiments.410

4.1. Sensitivity to parameters and operators411

This section presents the performance measures for EvoMS. The effect412

of the crossover type is analyzed and the influence of the different prob-413

abilities that control the mutation operator is evaluated. In the experi-414

ments, metabolic pathways relating the compounds L-Glutamate (C00025),415

Fumarate (C00122), and L-Proline (C00763) were searched for. These par-416

ticular compounds were selected given their importance in the metabolism,417

and because only one (C00025) can be used to built a metabolic pathway418

that links the three compounds. Thus, this situation allows to test the419

method to determine the initial substrate. The search was carried out using420

the set of reactions belonging to the arginine and proline reference metabolic421

pathway (apdata)∗. A total of 139 reactions were extracted, 24 of which are422

reversible (broken down in 48 reactions) and 91 irreversible.423

4.1.1. Influence of the crossover type424

The EvoMS performance was compared using the standard one–point425

crossover and the proposed crossover operator. The performance analysis426

was evaluated in terms of the number of runs that produce a solution FS ,427

∗http://www.genome.jp/kegg/pathway/map/map00330.html
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Table 2: Effect of the crossover type on the evolutionary algorithm performance. The

median and the median absolute deviation values are provided for NG and Ng.

one–point modified

FS 0.83 0.97

NG 59±27 57±18

Ng 3±0 3±0

the number of generations required to find a solution NG, and the number428

of generations required to obtain a unique subpopulation Ng. Table 2 shows429

the results obtained with each operator.430

The most interesting fact observed in the table is the increase from 0.83431

to 0.97 in the fraction of runs that lead to a solution when the modified oper-432

ator is employed; there are not significant differences in the other measures.433

This increase can be explained by the way in which metabolic pathways are434

modelled. Since reactions are stored in the chromosome from left to right,435

the ones located on the far right are more sensitive to the changes intro-436

duced to the sequence, as they depend, to a greater extent, on the products437

of previous reactions. On the other hand, since the algorithm requires all438

reactions in the chromosome to be valid, incorporating a higher number439

of reactions than the one needed to relate the compounds in D translates440

into an additional effort the algorithm must make to meet this requirement.441

Therefore, the insertion of only one portion of the genetic material from the442

second parent decreases the number of reactions that do not probably meet443

the validity requirement. At the same time, a lower number of generations444

is required to find a solution.445
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Table 3: Generations required by EvoMS to find a metabolic pathway employing the

initialization with a variable chromosome size. Results correspond to the median

values and its deviations. † indicates experiments where a solution is found before

1000 generations and in more than 90% of the runs. The best results obtained with

each mutation probability are highlighted in bold

NG

pm = 0.02 pm = 0.05 pm = 0.08

pe = 0.20 pe = 0.50 pe = 0.80 pe = 0.20 pe = 0.50 pe = 0.80 pe = 0.20 pe = 0.50 pe = 0.80

pv = 0.20 87± 37† 72±25 41±10 164±65 60± 19† 36± 9† 256±130 69±18 39± 13†

pv = 0.50 57±18 56± 13† 40±11 102±42 49± 10† 35±11 159±80 70± 29† 33±8†

pv = 0.80 72± 35† 45± 6† 41±13 97± 48† 47±17 37± 12† 162± 95† 62± 28† 36± 8†

4.1.2. Variation of mutation probabilities446

The proposed mutation operator plays an important role by introducing447

specific modifications that can change the branching of the metabolic path-448

way, and favour the exploration of new regions in the search space. Inserting449

new reactions can lead to the production of compounds necessary for other450

reactions to occur. Deletion allows to eliminate reactions that can be invalid451

or redundant. An appropriate balance of these operations can reduce the452

number of generations required to find the solution. To find the combination453

of probabilities leading to the best results, the values pm = {0.02, 0.05, 0.08},454

pe = {0.20, 0.50, 0.80} and pv = {0.20, 0.50, 0.80} were analyzed. Table 3455

shows the median and deviation values for the number of generations em-456

ployed in the runs for a specific set of parameters. The table has three457

blocks, each one corresponding to one mutation probability. For each block,458

valid insertion and deletion probabilities are shown in rows and columns,459

respectively. The combinations of probabilities with which solutions were460

obtained before 1000 generations and in more than 90% of the runs are461
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indicated with a mark (†).462

In general terms, the combinations between deletion and valid insertion463

probabilities lead to the same tendencies for the three mutation probabili-464

ties evaluated. The increase in pe is accompanied by the reduction in the465

number of generations required to find a solution, as it is clearly seen when466

pm = 0.05 and pv = 0.5, where there is a decrease from 102 to 35 gen-467

erations when the value of pe is increased. This is to be expected since,468

during the initialization, a wide variety of reactions are incorporated, most469

of which should be discarded during the evolution. Thus, the application of470

mutations favoring the elimination of reactions will improve the algorithm471

performance. Moreover, although no clear tendency is observed regarding472

the effect produced by the valid insertion probability, in some cases, it is473

seen that the increase in pv is accompanied by a decrease in the number of474

generations (pm = 0.02 and pe = 0.5).475

As regards the mutation probability, it is possible to observe an increas-476

ing tendency on cases in which a solution is obtained in more than 90% of477

the runs with the raise of pm. This trend might be explained considering478

two effects produced by the mutation operator: increasing the genetic di-479

versity and contributing to the consolidation of the validity of the sequence480

of reactions. For that reason, there is an optimum number of insertions481

that contributes to perform the search in the lowest number of generations.482

Consequently, a low number of insertions makes the search slower, probably483

because of the lack of genetic diversity; whereas an excess in the number of484

insertions leads to the disproportionate increase of the pathways size and485

makes it difficult to preserve the sequences validity. When the mutation486

probability is low (few changes in the chromosome), the insertion of new487

reactions has a more important contribution than deletion (low values for488
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pe), probably collaborating to the generation of a sequence of valid reactions489

and introducing genetic diversity. Nevertheless, when the mutation proba-490

bility increases (a higher number of changes in the sequence), it is necessary491

to increase the deletion of reactions in order to keep the balance between492

insertions and the size of the pathways (containing unnecessary reactions).493

In addition, it should be remembered that these results correspond to runs494

in which the maximum number of generations is limited. Finally, it is ob-495

served that the lowest number of generations employed with each mutation496

probability (highlighted in bold) is obtained with pe = 0.80 and pv = 0.50,497

being minimum for pm = 0.08. Besides, this combination of probabilities498

also provides solutions in 90% of the runs.499

4.2. Scalability of the algorithm500

In order to study the ability of the algorithm to perform similar searches501

in spaces that scale in size, the search made in the previous section was502

performed expanding the set of apdata reactions. The new dataset (sdata)503

was built adding the reactions belonging to five reference metabolic path-504

ways†. Thus, sdata has 443 one-way reactions, 132 of which are reversible505

(broken down in 264 reactions) and 179 irreversible. Runs were carried out506

employing the best parameters obtained in Section 4.1.507

4.2.1. Algorithm performance and characteristics of the pathways508

Table 4 shows the evaluation measures for the searches performed with509

the two datasets. Blocks separate the performance measures (upper block)510

†Glycolysis / Gluconeogenesis (map00010), Citrate cycle (map00020), Pentose phos-

phate pathway (map00030), Pentose and glucuronate interconversions (map00040) and

Alanine, aspartate and glutamate metabolism (map00250) in KEGG.
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Table 4: Comparison of the algorithm performance employing the arginine and

proline dataset (apdata) and extended dataset (sdata).

apdata sdata

FS 1.00 0.97

NG 33±8 29±7

Ng 3±0 4±1

NR 8±1 6±1

ρ 1.2±0.1 1.3±0.1

λ 5±1 4±1

from the solutions quality measures (lower block). In general terms, no prac-511

tical differences are observed in the algorithm performance. In both cases,512

a solution is obtained in more than 90% of the runs (FS > 0.9). More-513

over, although the number of generations is lower when sdata is employed,514

this behavior is only at a tendency level since the confidence intervals are515

overlaped. Although the value of Ng is increased in one generation, from a516

practical point of view this difference is not important, as in both cases the517

winning subpopulation is quickly selected during the first generations.518

Regarding the measures associated to the structure of the metabolic519

pathways, a significant reduction is observed (p < 0.0001) in the size of the520

pathways (NR) found using sdata. This is to be expected since the number521

of possible connections between compounds is higher and makes possible522

the existence of smaller alternative paths that connect the compounds in D.523

The branching ρ calculated for the solutions found with sdata supports this524

explanation, as it experiences a significant increase (p < 0.005) from 1.2 to525

1.3. The number of leaves λ, indicating that the pathways found with sdata526
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Table 5: Values of the difference between groups of equivalent solutions found with

apdata and sdata. Difference values lower than 0.15 are highlighted in bold.

sdata

Ib IIb IIIb IVb Vb VIb VIIb

apdata

Ia 0.50 0.43 0.38 0.29 0.20 0.13 0.00

IIa 0.50 0.43 0.25 0.29 0.20 0.22 0.00

IIIa 0.38 0.43 0.38 0.29 0.20 0.22 0.00

IVa 0.25 0.29 0.38 0.29 0.00 0.22 0.00

Va 0.25 0.29 0.38 0.29 0.00 0.11 0.00

include reactions that generate a lower number of unnecessary products527

(p < 0.0001), is possibly due to the use of more specific process reactions.528

It should be highlighted that, regardless of the branching differences, both529

sets of reactions lead to solutions with values of ρ higher than the unit, since530

some compounds in the networks found act as a substrate in more than one531

reaction.532

4.2.2. Difference between solutions533

In order to measure if the proposed evolutionary algorithm is capable of534

reproducing the searches in a solutions space extended by the incorporation535

of additional reactions, the solutions found with both datasets were studied536

and compared to determine the number of novel metabolic pathways in537

common.538
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Typically, synthesizing a compound implies a number of steps until the539

desired product is reached. Thus, a sequence of several intermediate com-540

pounds linking the initial substrate and the final product is generated. How-541

ever, in many cases, those intermediate compounds can be produced by542

more than one reaction. This leads to metabolic pathways which are differ-543

ent in terms of reactions, but equivalent in terms of the sequence of com-544

pounds needed to perform the synthesis. According to (8), two metabolic545

pathways c1 and c2 will be equivalent when they have a difference value546

σ(c1, c2) = 0.0. Furthermore, this measure will increase when the number547

of shared compounds decreases.548

In a preliminary analysis, five groups of equivalent solutions were found549

for apdata and seven for sdata. Table 5 shows the difference values between550

the groups found with both sets of reactions. Rows and columns indicate551

the group of equivalent solutions for apdata and sdata, respectively. The in-552

tersection between a row and a column indicates the difference between the553

groups considered. It can be seen that some groups of solutions are equiva-554

lent, as it could be expected, since apdata and sdata share the mechanisms555

to synthesize the three specified compounds. For instance, group VIIb does556

not show differences with any of the solutions found with apdata. This is be-557

cause the five groups of equal solutions found with apdata employ the same558

sequence of compounds that the group VIIb, together with other additional559

compounds. The group of solutions IVb also shows a similar behavior, pre-560

senting a difference of 0.29 with all apdata solutions, which indicates that it561

shares a portion of the sequence of compounds.562

In order to analyze the differences found in more detail, two groups of563

solutions with extreme difference values were selected and one metabolic564

pathway representing each one was plotted. Figure 3 shows the metabolic565
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pathways corresponding to VIa and Vb groups, while Figure 4 contains the566

pathways of Ia and Ib groups. In every case, the pathways must be inter-567

preted in a descending manner, starting by the initial substrate C00025 (in568

red), and descending through the sequence of reactions and until each one of569

the final products (in yellow). Representations are simplified, not showing570

abundant compounds.571

Pathways representing solutions of groups IVa and Vb in Figure 3 do572

not show any difference according to (8). Clearly, pathway from IVa em-573

ploys almost twice the reactions as Vb to relate the same compounds. How-574

ever, analyzing in detail the sequences of compounds used by both path-575

ways, it is observed that the compounds used by Vb (QVb = {C00025,576

C03912, C00148, C00763, C00049, C00122}) are also employed by IVa577

(QVIa = {C00025, C01165, C03912, C00148, C00763, C00169, C00077,578

C00327, C03406, C00122}). Although the compound C00049 (which in579

the sequence is indicated in italics) is not shared by the pathways, it should580

not be considered to calculate the differences since it is part of the set of581

abundant compounds. As a consequence, both solutions relate members of582

D employing the same compounds.583

When analyzing the solutions from Ia and Ib (Figure 4) it can be seen584

that both contain the same number of reactions. However, the sequence of585

compounds used by Ia (QIa = {C00025, C00077, C00148, C00763, C00169,586

C00327, C03406, C00122}) presents a large difference compared to the587

one employed by Ib (QIb = {C00025, C01165, C03912, C00148, C00763,588

C00026, C00091, C00042, C00122}). On the one hand, the sequences of589

compounds used to synthesise C00763 from C00025 only share the inter-590

mediary compound C00148, which is produced through different reactions591

in each solution. On the other hand, the C00122 synthesis is carried out592
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R00245

R00150

C03912

C01165

C00025

C00763

C00148

C00169

C00062

R01086

C03406 C00013

R03314

R01248

R01255 R00671

C00122

C00327

R01954

R01398

C00077

a)

C00026

C00148

C00025

C00763

C00122

R00707 R00355

R01255

R00490

C00049C03912

R01248

b)

Figure 3: Pathways belonging to two groups of solutions found with apdata and

sdata, respectively. a) Examples for: IVa, b) Vb. The initial compound is indicated

in red (C00025), the compounds to be produced are indicated in yellow (C00122,

C00763), and the compounds produced by the metabolic pathway are indicated in

light blue. Reactions are indicated as blue squares. Available compounds are not

included in the metabolic pathway.

30

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. G

er
ar

d,
 G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

E
vo

lu
tio

na
ry

 a
lg

or
ith

m
 f

or
 m

et
ab

ol
ic

 p
at

hw
ay

s 
sy

nt
he

si
s"

B
io

Sy
st

em
s,

 2
01

6.



C00026 C00624 C00169

C00148 C00327

C00013C03406

C00062

C00025

C00763

C00122

R00667 R00150R02282

R00671

R01255

R01398

R01954

R01086

C00077

a)

C00026C01165

C03912

R00245 R00243

R01197

R00405

R02164

R03314

R01248

C00025

C00763

C00148

R01255

C00091

C00042

C00122

b)

Figure 4: Pathways belonging to two groups of solutions found with apdata and

sdata, respectively. a) Examples for: a) Ia, b) Ib. The initial compound is indicated

in red (C00025), the compounds to be produced are indicated in yellow (C00122,

C00763), and the compounds produced by the metabolic pathway are indicated in

light blue. Reactions are indicated as blue squares. Available compounds are not

included in the metabolic pathway.
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using sequences of completely different compounds in both metabolic path-593

ways, sharing only the compounds in the extremes. Thus, only 4 compounds594

(C00148 and the three compounds to be related) are shared between Ia and595

Ib, leading to a difference σ = 0.5 according to (8).596

4.3. Case study: searching for relations between 4 compounds597

The EvoMS performance in a more complex real problem was evalu-598

ated and compared with a state-of-the-art algorithm (Faust et al., 2011) for599

searching a metabolic pathway relating 4 specific compounds. The search in-600

volved the complete set of reactions stored in KEGG for the Escherichia coli601

bacterium metabolism. After the pre-processing, the search space was made602

up of 2354 reactions, 1061 of which were reversible (broken down in 2122603

one way reactions) and 232 irreversible. The reference pathway for lysine,604

threonine, and methionine biosynthesis (Figure 5) was taken as a case study605

of a branched metabolic pathway. It synthesizes compounds C00047 (L-606

Lysine), C00073 (L-Methionine), and C00188 (L-Threonine) from C00036607

(Oxaloacetate).608

The algorithm of Faust et al. (2011) combines several linear paths to609

build a network of relationships among compounds. It performs the search610

of the shortest path between each pair of compounds and combine all of611

them into a network. With this approach, the authors were able to find a612

pathway for the compounds using a high proportion (85%) of the reactions613

belonging to the reference metabolic pathway. In comparison, EvoMS was614

able to find a pathway with all the reactions (100%) of the reference pathway.615

Furthermore, another important advantage is that feasibility of the solutions616

found by EvoMS is guaranteed. EvoMS builds the pathway by verifying that617

all reactions use available substrates, while the other algorithm does not even618
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takes into account that information during the search.619

Besides the reference pathway, Figure 6 shows two other examples of620

metabolic pathways synthesized by EvoMS, for the same search. In both621

cases, solutions were fully feasible and allowed to relate the same 4 com-622

pounds. Figure 6a shows the metabolic pathway found with C00036 as623

initial substrate, containing four reactions also present in the reference path-624

way (R00355, R03260, R01286 and R00946). It must be noted that reaction625

R03260 plays a central function in the new pathway, producing two key626

compounds (C01118 and C00097) needed to synthesize C00073 and C00188.627

Also, it can be appreciated that the initial substrate has a key role in this628

pathway, being a precursor to synthesize C00027 (needed for C00047), and629

C00042 (needed for C00073 and C00188). Furthermore, the large number630

of interconnections among reactions in this pathway shows an important631

collaborative work to synthesize the final products.632

Figure 6b presents another alternative metabolic pathway that is also633

fully feasible and relates the same compounds. At a glance, it can be ob-634

served that this novel pathway could be more efficient to link the 4 com-635

pounds of interest than the previous one, because it requires a lower number636

of reactions to relate them. This solution uses C00073 as initial substrate,637

not sharing any reaction with the reference pathway. The novel pathway is638

built by two main branches starting from C00073, one of which produces639

C00047 and the other produces the remaining two products. As it can640

be seen, C00022 plays a key role as precursor in the synthesis of C00036641

and C00188. Similarly to the pathway in Figure 6a, C00022 in this novel642

pathway allows to infer a relation between the glycolysis (a reference path-643

way for many life forms) and the synthesis of both products. These exam-644

ples evidence the natural interconnections present among metabolic path-645
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ways in living organisms. This also highlights the importance of developing646

new algorithms for searching on large sets of reactions, providing branched647

metabolic pathways of feasible reactions that relate multiple compounds648

simultaneously.649

5. Conclusions and future work650

This work approached the problem of searching for metabolic pathways651

that relate a set of compounds through networks of feasible reactions. A652

model to build the pathways based on a set of compounds was proposed and653

a new evolutionary algorithm, called EvoMS was developed to search for the654

reactions required to build pathways between specific compounds. Also, new655

operators and an initialization strategy that employ the set of compounds656

model were developed. The fitness function was designed to evaluate essen-657

tial characteristics required in the metabolic pathways searched, in order to658

find feasible metabolic pathways. The tests carried out for a real problem659

showed that EvoMS was capable of reproducing known metabolic pathways660

and also finding alternative connections to synthesize the same final com-661

pounds. In all searches, the algorithm found branched metabolic pathways662

made up of feasible reactions from the initial compounds indicated. Besides,663

in cases where reactions require compounds that do not belong to the abun-664

dant ones, the algorithm was capable of previously incorporating reactions665

to generate them. In summary, the possibility of generating a wide range of666

connections between compounds, together with the ability to provide feasi-667

ble solutions makes EvoMS a simple and powerful method to find feasible668

networks connecting metabolic compounds. Moreover, flexibility of the eval-669

uation function allows to easily extend it to incorporate new objectives to670
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optimize in the solution.671

Future work will aim to improve the search process by adding informa-672

tion to the evaluation function, for example, regarding the stoichiometry and673

thermodynamics of the reactions, the degree of connectivity of compounds,674

and/or the availability of enzymes. In addition, the crossover operator will675

be modified to employ information of the compounds used by the metabolic676

pathway, and mechanisms to automatically adjust the parameters of the677

algorithm during the evolution will be studied.678

The full source code for EvoMS algorithm is available for free aca-679

demic use at http://sourceforge.net/projects/sourcesinc/files/evoms/. A680

web-interface to run the evolutionary algorithm proposed in this work is681

available online at http://fich.unl.edu.ar/sinc/web-demo/evoms/, whose main682

inputs, outputs, features and ways of use are explained in (Gerard et al.,683

2015).684
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Figure 5: Reference metabolic pathway involving lysine, threonine and methionine

biosynthesis. Note that reaction R00946 and R04405 produce the same compound

C00073 in two different ways. Initial substrate is in red and the compounds to

be produced are indicated in yellow. Reactions are indicated in blue, and their

substrates are products are in dashed and solid lines, respectively. To provide a

clearest view, only the more relevant compounds are shown.
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