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Abstract

Over the last years, researchers have addressed the automatic classification of calling bird species. This
is important for achieving more exhaustive environmental monitoring and for managing natural resources.
Vocalisations help to identify new species, their natural history and macro-systematic relations, while com-
puter systems allow the bird recognition process to be sped up and improved. In this study, an approach
that uses state-of-the-art features designed for speech and speaker state recognition is presented. A method
for voice activity detection was employed previous to feature extraction. Our analysis includes several clas-
sification techniques (multilayer perceptrons, support vector machines and random forest) and compares
their performance using different configurations to define the best classification method. The experimental
results were validated in a cross-validation scheme, using 25 species of the family Furnariidae that inhabit
the Paranaense Littoral region of Argentina (South America). The results show that a high classification
rate, close to 90%, is obtained for this family in this Furnariidae group using the proposed features and
classifiers.

Key words: Bird sound classification, computational bioacoustics, machine learning, speech-related
features, Furnariidae.

1. Introduction1

Vocalisations are often the most noticeable man-2

ifestations of the presence of avian species in dif-3

ferent habitats [1]. Birds have been widely used4

to indicate biodiversity since they provide critical5

ecosystem services, respond quickly to changes, are6

relatively easy to detect and may reflect changes7

at lower trophic levels (e.g. insects, plants) [2, 3].8

Technological tools (such as photographic cameras,9

video cameras, microphones, mass storage disks,10

etc.) are useful for collecting data about several11

patterns of bird populations. However, there are a12
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number of problems associated with them, such as13

poor sample representation in remote regions, ob-14

server bias [4], defective monitoring [5], and high15

costs of sampling on large spatial and temporal16

scales, among others.17

Bird vocalisations have become an important re-18

search field, influencing ethology [6, 7], taxonomy19

[8, 9, 10] and evolutionary biology [11, 12]. One of20

the main activities that benefits from vocalisation21

identification is ecosystems monitoring, where the22

technological advances allow registering and pro-23

cessing the recordings, and improving the data col-24

lection in the field [13]. This makes possible to25

gather data in large and disjoint areas, which is26

essential for conducting reliable studies.27

Although some works describe vocalisation28

changes in certain Furnariidae species [14, 15, 16,29

17, 18], none of them simultaneously evaluates sev-30

eral vocalisations of Furnariidae species from South31

America. In this study, vocalisations belonging32

to 25 Furnariidae species that are distributed in33

the Paranaense Littoral region (see Figure 1) are34
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Figure 1: Paranaense Littoral region (Argentina).

analysed. This region comprises the Argentinian35

Mesopotamia (Misiones, Corrientes and Entre Ŕıos36

provinces) along with the provinces of Chaco, For-37

mosa and Santa Fe, and it is lapped by great rivers38

of the Plata basin [19]. Over the last years, this39

region has become an interesting place for study-40

ing bird vocalisations [16, 17, 20, 21]. In addition,41

the work of researchers from the National Institute42

of Limnology (INALI) along with the availability43

of Furnariidae species would allow us to record and44

analyse these species in real-life conditions in future45

studies. Recently, some authors have researched the46

vocalisations and the natural history of Furnariidae.47

Zimmer et al. [15] used morphometric analysis,48

behavioural data and vocalisations to analyse the49

Pseudoseisura cristata. The role of several habitats50

as well as natural history, taxonomy, morphology,51

vocalisations and evolution for the Upucerthia sat-52

uratior was studied in [16, 17].53

Recognition of species in passeriformes is a chal-54

lenging task because to they produce complex songs55

and can adapt their content over time. It is inter-56

esting to note that the song content can be changed57

depending on the audience, for example, when the58

receiver is male or female [22], or in order to match59

it with that of their neighbours [23]. Furthermore,60

they can take possession of new songs or syllables61

during their lifetime [24]. The family Furnariidae62

produces several songs and some species manifest63

these as duets. It represents a synchroniation of64

physiological rhythms in a natural behaviour, which65

adds more complexity to the analysis. In addition,66

some species of the same family show similar struc-67

tures in their songs. These similarities are mani-68

fested in introductory syllables or in the trill for-69

mat, while the complexity of duets within the fam-70

ily makes the analysis and classification of vocalisa-71

tions more difficult. Previous studies demonstrated72

that there are differences in tone and note intervals73

between males and females [25, 17, 16, 15]. For this74

family, the complexity of vocalisations was proved75

by means of playback experiments. These showed76

that the different taxa express dissimilar responses77

to similar patterns.78

It should be noted that environmental condi-79

tions (humidity, wind, temperature, etc.) may80

alter the recording process, modifying the fea-81

tures that are present in the structure of songs82

and in the calls (e.g. frequency, duration, ampli-83

tude, etc.) [26, 27, 28]. Since these conditions84

may lead to errors and distort subsequent analy-85

ses and results, researchers usually use recordings86

from known databases. Even though these registra-87

tions can be also affected by environmental issues,88

their attributes and labels are validated by the sci-89

entific community and consequently, they are more90

reliable than ”homemade” records.91

As mentioned in [29], new frontiers have been92

opened in ecology (besides the analysis performed93

by expert ecologists) due to the propagation of94

projects like Xeno-canto1 and EcoGrid2. The ac-95

cess to multimedia data has promoted an inter-96

disciplinary and collaborative science for analysing97

the environment. Although human experts (who98

are sufficiently trained) can recognise bioacoustic99

events with a high performance, this is a labori-100

ous and expensive process that would be more ef-101

ficient if they had the technical support of a semi-102

automatic tool [30]. Finally, the goal pursued is103

the development of an automatic classifier that pro-104

vide a high accuracy and involve the expert only105

for evaluating the results. Automatic tools allow106

simultaneous studies to be conducted and diverse107

bird communities to be monitored in several areas108

at the same time, in order to identify when and109

how the species vocalise. In addition, said tools110

1http://www.xeno-canto.org/
2http://www.aiai.ed.ac.uk/project/ecogrid/
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could be used to create complete inventories of bird111

communities in unknown or restricted areas, which112

are essential for conservation or management plans.113

In particular the bird call identification task can114

be used in two ways [31]: call retrieval (detec-115

tion) and call classification. In the call retrieval116

task, the objective is to identify one or more calls117

in an audio recording, which can contain multiple118

calls of different species overlapped or at different119

times. In the classification task, a set of call classes120

must be defined and the classifier will be trained121

to recognise this fixed set. In this way, every in-122

put audio (expected to contain only one call) will123

be classified to one of those classes. A classification124

scheme can be defined as a pipeline of three mod-125

ules: preprocessing, feature extraction and classi-126

fication. The first one depends strongly on the127

recording process and involves filtering, segmenta-128

tion and enhancement of audio signals. Further-129

more, automatic methods for voice activity detec-130

tion (VAD) have been recently incorporated [32].131

Regarding feature extraction, time- and frequency-132

based information was employed [30, 1, 33, 34]. In133

addition, characteristics that were originally devel-134

oped for speech analysis are used in the context of135

bird call recognition. Some of the features present136

in the literature are mel frequency cepstral coeffi-137

cients (MFCCs) [35], linear frequency cepstral co-138

efficients (LFCCs) [36], and standard functionals139

(mean, standard deviation, kurtosis, etc.) com-140

puted over these [32, 37, 38]. Various techniques141

have been applied to bird call classification: Gaus-142

sian mixture model (GMM) [39], gaussian mixture143

model-universal background model (GMM-UBM)144

[40], support vector machines (SVM) [41], random145

forest (RF) [42], among others. In [32], LFCC fea-146

tures were used along with GMM-UBM to identify147

some subjects from the same bird species.148

A similar approach was proposed in [43] for recog-149

nising a single bird species using MFCCs. An in-150

teresting strategy based on the pairwise similar-151

ity measurements, computed on bird-call spectro-152

grams, was evaluated in [33], where the authors153

used different classifiers to recognise four species. In154

[37], thirty-five species were classified using a SVM155

classifier and six functionals were obtained from156

each MFCC. A different approach was proposed157

in [44], where a classifier based on hidden Markov158

models (HMMs) was used to recognise bird calls159

through their temporal dynamics. Previous works160

developing full-automatic methods for vocalisation161

recognition can be examined in [45, 46, 47, 48], and162

the current relevance of this topic is shown in some163

recent works [32, 43]. However, none of these works164

has addressed the vocalisation recognition of species165

belonging to the Furnariidae family, which present166

similar parameters in their vocalisations. More-167

over, only a small part of the state-of-the-art speech168

features have been employed in bird classification169

tasks. In [49], a large set of state-of-the-art speech170

features is described, comprising more than 6000171

features, and many of these are considered within172

this task for the first time in this work.173

This study proposes the development of a bird174

call recognition model for dealing with the fam-175

ily Furnariidae from the Paranaense Littoral re-176

gion of Argentina, which is the first approach for177

these species. Our model is designed to use state-178

of-the-art classifiers with speech-related parameter-179

isations, and some feature selection techniques are180

used to reduce dimensionality while maximising ac-181

curacy. As a first step, a method for performing the182

VAD is included. The model is tested in a cross-183

validation scheme in all cases. Furthermore, the184

best results are discussed, and the confusion matrix185

is analysed to introduce the misclassification and186

how some similarities among some species could be187

addressed in order to improve the performance.188

The following section introduces the proposed189

features and classifiers. Section 3 deals with the ex-190

perimental setup, presents the implementation de-191

tails and describes the validation scheme. The re-192

sults are presented and discussed in Section 4. In193

addition, the implementation of a web-demo and194

an android application for testing the model is ex-195

plained. Finally, conclusions are summarised and196

future work is commented in the last section.197

2. Proposed features and classifiers198

This section introduces the feature extraction199

process, two different feature selection techniques200

and the classifier models.201

2.1. Feature extraction202

As mentioned above, the use of speech-based203

features is known in bird call analysis, identifica-204

tion and classification. For these tasks, the LFCCs205

and MFCCs sets (standards in speech recognition)206

showed good performances [37, 32]. An extended207

state-of-the-art set of features related to human208

speech is introduced below.209
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2.1.1. Speech inspired features210

In the speech processing area, researchers have211

made a great effort to find the best set of features212

for speech recognition, speaker recognition, emotion213

recognition, illness state detection, etc. [50, 51, 52].214

In the INTERSPEECH 2013 ComParE Challenge215

[50], a set of 6373 features was presented which is216

considered the state-of-the-art in speech processing.217

The feature set is built from 65 low-level descriptors218

(LLDs) such as energy, spectral, cepstral (MFCC),219

voicing-related characteristics (F0, shimmer, jitter,220

etc.), zero crossing rate, logarithmic harmonic-to-221

noise ratio (HNR), spectral harmonicity, psychoa-222

coustic spectral sharpness, and their deltas (i.e.223

their first temporal derivatives). These features are224

computed on a time frame basis, using a 60-ms win-225

dow with 10-ms step for F0 (pitch) and zero crossing226

rate. The remaining features are computed using227

a window size of 20 ms and the time contour of228

each attribute is smoothed by a moving average fil-229

ter. Specific functionals are then computed for each230

LLD set. These include the arithmetic mean, maxi-231

mum, minimum, standard deviation, skewness, kur-232

tosis, mean of peak distances, among others. Ta-233

bles 1 and 2 provide an exhaustive enumeration of234

all the LLDs and functionals used to constitute the235

complete feature vector. In addition to the com-236

plete feature set obtained by combining all LLDs237

and functionals (Full-Set), this work also proposes238

a subset consisting of the complete set of function-239

als computed only from the MFCCs, which results240

in a set of 531 attributes (MFCC+Fun).241

To the best of our knowledge, no suitable baseline242

models are available for comparing the performance243

of our proposal. In order to create the baseline, pre-244

vious works [37, 53] were considered to define the245

classifiers and feature sets for the bird song identi-246

fication task. The first 17 MFCCs, their deltas and247

acceleration coefficients were computed using over-248

lapped frames. Then, the mean and variance for249

each feature (over the entire song) were calculated,250

which resulted in a 102-dimensional vector for each251

recording.252

2.1.2. Feature selection253

Feature selection techniques were defined in or-254

der to reduce the dimensionality of data while keep-255

ing the most relevant information. This allows less256

complex models to be generated, which reduces the257

number of parameters to estimate in the model and258

the computing cost, and provides a similar or even259

Table 1: Low-level descriptors (LLDs) [51]. +∆ means that
the first derivative is computed and appended, to the feature
vector computed for each analysis frame.

Low-level descriptors
Sum of auditory spectrum (loudness) + ∆
Sum of RASTA-style filtered auditory spectrum + ∆
RMS Energy + ∆
harmonic-to-noise ratio (HNR) + ∆
Zero-Crossing Rate + ∆
RASTA-style filtering. Bands 1-26 (0-8 kHz) + ∆
MFCC 1-14 + ∆
Spectral energy 25-650 Hz, 1 k-4 kHz + ∆
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 + ∆
Spectral Flux, Entropy, Variance + ∆
Skewness, Kurtosis, Slope + ∆
F0, Probability of voicing + ∆
Jitter (local, delta) + ∆
Shimmer (local) + ∆

improved performance. Feature or attribute se-260

lection is commonly carried out by searching the261

space of feature subsets, and each candidate subset262

is evaluated according to some criteria [54].263

In this study, the performance of two well-264

known attribute selection methods is compared:265

best first (BF) [55] and linear forward selection266

(LFS) [56]. The BF method performs a greedy267

hill climbing using backtracking, which means that268

it can search forward through a specified number269

of non-improving nodes before the algorithm goes270

back. This algorithm has proven to guarantee the271

best global subset without exhaustive enumeration,272

given that the criterion used satisfies monotonic-273

ity. The LFS algorithm is an extension of BF,274

which aims to reduce the number of evaluations per-275

formed during the search process. The number of276

attribute expansions is limited in each forward se-277

lection step, which drastically improves the runtime278

performance of the algorithm [56]. Both feature se-279

lection methods need a criterion to evaluate each280

considered subset; therefore the correlation-based281

feature subset evaluation (CFS) method [54] was282

applied. This method assesses the predictive ability283

of each attribute in the subset, and also considers284

the redundancy among them. Finally, the method285

picks up the subsets whose attributes are highly cor-286

related within the class and have low intercorrela-287

tion among classes. Both feature selection methods288

were implemented using WEKA library3[57].289

3Software available at http://www.cs.waikato.ac.nz/

ml/weka/
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Table 2: Functionals applied to LLDs [51].

Base functionals
quartiles 1-3
3 inter-quartile ranges
1 % percentile (≈ min), 99 % percentile (≈ max)
percentile range 1 %-99 %
arithmetic mean, standard deviation
skewness, kurtosis
mean of peak distances
standard deviation of peak distances
mean value of peaks
mean value of peaks - arithmetic mean
linear regression slope and quadratic error
quadratic regression a and b and quadratic error
simple moving average
contour centroid
duration signal is below 25 % range
duration signal is above 90 % range
duration signal is rising/falling
gain of linear prediction (LP)
Linear Prediction Coefficients 1-5
F0 functionals
percentage of non-zero frames
mean, max, min, std. dev. of segment length
input duration in seconds

2.2. Classifiers290

Several techniques from machine learning and291

computational intelligence have been used in bird292

call identification [32]. Based on previous studies,293

the analysis in this work was focused on some of294

the most commonly used classification algorithms.295

The following subsections briefly introduce three296

techniques: multilayer perceptron, random forest297

and support vector machines. WEKA and Scikit-298

Neuralnetwork4 libraries were employed to apply299

these classifiers.300

2.2.1. Multilayer perceptron301

A multilayer perceptron (MLP) is a class of arti-
ficial neural network that consists of a set of process
units (simple perceptrons or neurons) arranged in
layers. In the MLP, the nodes are fully connected
between layers without connections between units
in the same layer (Figure 2). The input of the MLP
is the feature vector (x), which feeds each of the
neurons of the first layer, the outputs of this layer
feed into each of the second layer neurons, and so
on [58]. The output of a neuron is the weighted sum
of its inputs plus the bias term, and its activation

4Software available at http://scikit-neuralnetwork.

readthedocs.org

Figure 2: Example of a MLP network model.

is a function (linear or nonlinear) as

y = F

(
n∑

i=1

ωixi + θ

)
. (1)

The output of the MLP (i.e. the output of the302

neurons in the last layer) is decoded to provide the303

predicted label for a given input example. The304

backpropagation method [58] is commonly used to305

obtain the synaptic weights for the connections in306

the network (ωi). This method computes the gra-307

dient of a loss function, with respect to all network308

weights. The weights are then updated according309

to the gradient, with the aim of minimising the loss310

function (usually the mean square error). Since the311

method requires a desired output for each training312

input in order to calculate the error, it is considered313

as a supervised learning technique.314

In this work, three architectures were considered:315

one hidden layer with the number of neurons set as316

(Num. of inputs+Num. of outputs)/2 (MLP1),317

one hidden layer with the number of neurons set318

to the number of inputs (MLP2), and two hid-319

den layers set as in MLP2 and MLP1, respectively320

(MLP3).321

2.2.2. Random forest322

Classification and regression tree (CART) mod-323

els, the so-called decision trees, are widely known in324

machine learning and data mining [59]. Some rele-325

vant properties include their robustness to different326

feature transformations, such as scaling, and their327

ability to discriminate irrelevant information while328
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x[1] > a

x[3] > b x[2] > c

x[3] < ex[1] < d R
1

R
6

R
5

R
4

R
3

R
2

Figure 3: Example of CART using feature vector ∈ R3.

producing easily analysable models. These models329

are constructed by recursive partitioning the input330

space and region-specific models are then defined331

for the resulting scheme [42]. This can be repre-332

sented with a tree, where the nodes indicate the333

decision functions and each leaf stands for a region334

(Figure 3).335

Random forest (RF) is an ensemble learning
method whose decision is based on the average
of multiple CARTs, which are trained on different
parts of the same training set, with the aim of re-
ducing the variance of CART overfitting. The com-
putation can be expressed in terms of the bagging
technique [59] as

f(x) =
1

K

K∑
k=1

tk(x) (2)

where tk is the k-th tree. Here, the RF was imple-336

mented following [42], considering 10 and 100 trees337

with unlimited depth.338

2.2.3. Support vector machine339

A support vector machine (SVM) is a supervised
learning method that is widely used for pattern
classification and is supposed to have good general-
isation capabilities [60]. Its aim is to find a hyper-
plane that can separate input patterns in a suffi-
ciently high dimensional space. The distances from
the hyperplane to the patterns that are closest to it,
on each side, is called a margin. This margin needs
to be maximised to reach the best generalisation.
In the binary case, this is done finding the w and
w0 parameters by means of a standard quadratic
optimisation [61, 60]:

min
1

2
‖ w ‖2

subject to
rt(wTxt + w0) ≥ +1,∀t

(3)

where {xt, rt} is a pattern with rt = −1 if xt is340

class #1, or rt = +1 in the other case.341

It is known that a nonlinear problem could be
solved as a linear problem in a new space by making
a nonlinear transformation [61]. The new dimen-
sions are then computed using the basis functions
by inner product. The kernel trick is a method that
solves this problem without mapping the features in
the new space; therefore, the kernel function is ap-
plied to the original space [61]. Some of the more
popular kernels used in SVMs are the polynomial
of degree q:

K(xt,x) = (xTxt + 1)q (4)

and radial-basis functions:

K(xt,x) = exp

[
−D(xt,x)

2s2

]
(5)

where xt is the centre, s is the radius and D(xt,x) is342

a distance function. In our experiments, the SVMs343

were trained using the sequential minimal optimisa-344

tion algorithm and considering the polynomial ker-345

nel.346

3. Experiments347

This section describes the experimental frame-348

work used in this study. First, a discussion on349

why and how the bird species were selected from350

the known databases. Then, the implementation351

details of the feature extraction and classifiers are352

presented. Finally, the validation scheme used to353

evaluate the models is explained. A general scheme354

of the whole process for the experiments is shown355

in Figure 4.356

3.1. Study area and target species357

The study area is located between358

22◦25′S 62◦12′W and 38◦0′S 57◦26′W (Figure359

1), and comprises several ecoregions along the360

Paraná River. These regions are Dry Chaco,361

Espinal, Pampa, Iberá Wetlands, and Delta and362

Islands of the Paraná River [2]. The family363

Furnariidae presents diverse vocalisations and364

some species can even sing male-female duets.365

In spite of that, the experts are usually able to366

identify them, reaching a good performance. The367

vocalisations obtained from species of this family368

might be similar and thus difficult to classify. In369

addition, the vocalisations from one species can370

change depending on its geographical location.371
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Figure 4: Conceptual flowchart of the general whole process for the experiments.

The family Furnariidae includes 68 genera com-372

posed of 302 species [62]. Being distributed in373

South America and in a region of Central Amer-374

ica [63], it is one of the most impressive examples375

of continental adaptive radiation. This family has376

probably the highest morpho-ecological diversity in377

birds, living in diverse habitats such as desert or378

arid regions, rocky coasts, ravines, swamps, grass-379

lands and forests [64, 65]. The characteristics de-380

scribed above plus the large number of studies381

about its taxonomy, the biological and natural his-382

tory [64, 66, 67, 68, 65, 17] and our own experi-383

ence at INALI make the family Furnariidae an in-384

teresting and open challenge to study. Figure 5385

shows the tree structure of the 25 studied Furnari-386

idae species/genera.387

3.2. Bird call corpus388

To obtain a suitable number of vocalisations for389

training the classifiers and evaluating the perfor-390

mance, records from two well-known databases were391

selected, obtaining a total of 206 recordings. From392

these, 90 recordings were selected from the Xeno-393

canto5 database [69, 1, 70] and 116 recordings were394

taken from the Birds of Argentina & Uruguay: A395

Field Guide Total Edition corpus [71, 21, 72]. This396

combination of different data sources involves an397

additional complexity that the model should be398

able to handle6.399

3.3. Feature extraction400

As mentioned earlier, the step prior to feature401

extraction is usually the preprocessing and it is car-402

ried out to standardise the audio signals. A Wiener-403

based noise filter [73] was applied to the audio sig-404

nals to reduce noise in the recordings. As all of the405

5http://www.xeno-canto.org/
6The list of audio files used in this work was included as

supplementary material.

Certhiaxis cinnamomeus

Coryphistera alaudina

Cranioleuca

Furnarius rufus

Limnornis curvirostris

Spartonoica maluroides

Limnoctites rectirostris

Phleocryptes melanops

Asthenes

Anumbius annumbi

Leptasthenura platensis

Phacellodomus

Schoeniophylax phryganophilus

Pseudoseisura lophotes

Syndactila rufosuperciliata

Synallaxis

Upucerthia dumetaria

Tarphonomus certhioides

P. sibilatrix

P. ruber

P. striaticollis

S. frontalis

S. albescens

S. spixi

A. hudsoni

A. baeri

C. pyrrhophia

C. sulphurifera

Geositta cunicularia

Furnariidae

Syndactyla rufosuperciliata

Figure 5: Tree structure of the 25 studied Furnariidae
species.

utterances have an initial silence, the noise could406

be modelled.407

The acoustic activity detection (where the infor-408

mation is contained) is an active area of research409

[74]. In this work, the endpoints of acoustic activ-410

ity were computed using a voice activity detector411

(VAD) based on Rabiner and Schafer’s method [75].412
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The openSMILE toolkit [76] was used to extract413

the state-of-the-art features [50] mentioned in the414

previous section. This is a feature extraction tool415

that allows a large set of audio features to be ex-416

tracted, and it is distributed free of charge for re-417

search and personal use7.418

3.4. Validation419

Coefficients in vectors were normalised using the420

maximum and minimum values (for each dimen-421

sion) in the training set as follows:422

Cnorm
i,j =

(Ci,j − Cmin,j)

(Cmax,j − Cmin,j)
, (6)

where Cnorm
i,j is the normalised coefficient j from423

recording i, Ci,j represents the original value, while424

Cmin,j and Cmax,j represent the minimum and425

maximum values of coefficient j from all the train-426

ing recordings.427

The recognition rate estimation may be biased428

if only one training partition and one test parti-429

tion are used. To avoid these estimation biases,430

a cross-validation was performed with the k-fold431

method [77]. For each experiment the classification432

results by 10-fold stratified cross-validation (SCV)433

were computed, where each fold was composed of434

90% of data for training and the remaining 10% was435

used for testing. Finally, the results were computed436

and averaged over the 10 test sets.437

Several classification measures were computed
for accurately visualising the performance of the
models. The weighted average recall or accuracy
(ACC) is the number of correctly classified in-
stances divided by the total number of instances.
Although this measure is widely used, it can be
biased when the classes are not balanced. If the
classes (species) are unbalanced, the unweighted av-
erage recall (UAR) gives a more accurate estima-
tion of the performance [78]. The UAR was com-
puted as the average of all class accuracies as:

UAR =
1

K

K∑
i=1

Aii∑K
j=1Aij

, (7)

where K is the number of classes and Aij is the438

number of instances belonging to class i that are439

classified as j.440

7Software available at http://www.audeering.com/

research/opensmile/

4. Results and discussion441

The baseline feature set and the proposed fea-442

ture sets were evaluated using all the classifiers de-443

scribed in Section 2.2, considering the normalised444

attributes explained in Section 3.4. Also, LFS and445

BF feature selection methods were used to reduce446

the size of the Full-Set (6373 features), maximising447

accuracy while keeping the most relevant informa-448

tion. Tables 3 and 4 present the results obtained in449

terms of accuracy and UAR, respectively6. Table450

3 shows that the baseline set (102 features) pro-451

vides high accuracy rates while the proposed sets452

improve these results, and the best results are close453

to 90%. However, the performance is lower when454

the Full-Set is used because the models cannot be455

properly trained. This means that the complexity456

of the classifiers is increased due to the high num-457

ber of inputs (especially in the case of MLP), and458

the small amount of data available is not enough459

for appropriately training them, which causes poor460

performance.461

In order to assess how the imbalance of classes462

affects the results, the UAR values should be anal-463

ysed, taking into account the hit rates for each464

class (Table 4). This table presents similar results,465

where the proposed feature sets improve the base-466

line performance. The MFCC+Fun set (531 fea-467

tures) performs better than the baseline for almost468

all classifiers, whereas both feature selection meth-469

ods applied over the Full-set achieve the best per-470

formances. It is interesting to note that MLPs and471

SVMs produce better results than RF for all the472

feature sets. Finally, one can be conclude that the473

best performance is obtained using the multilayer474

perceptron (MLP1) and applying the LFS method475

over the Full-Set.476

The dimension of the best feature set is 153,477

thus the system has kept a very low dimensional-478

ity in addition to achieving the best rates. The479

retained features include mostly spectral and cep-480

stral coefficients as described next. Thirty-six fea-481

tures were computed based on the MFCC coeffi-482

cients and some functionals (quartiles, percentiles483

and mean, among others). Eleven features obtained484

from the first derivative of MFCC (delta MFCC)485

[79] and the same functionals. Twenty-four spectral486

features were selected, including roll-off (percentile487

of the power spectral distribution), slope (which488

describes how rapidly the amplitudes of successive489

component change), harmonicity (which evaluates490

the total strength of harmonic structure) and flux491
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Table 3: Weighted average recall (accuracy) [%].

Feature vector MLP1 MLP2 MLP3 RF10 RF100 SVM
Baseline 85.92 86.89 78.64 68.45 80.10 84.95
MFCC+Fun 89.32 88.83 79.61 69.42 83.01 85.92
Full-Set 74.27 65.05 08.25 68.93 80.10 83.50
Full-Set + LFS 89.32 86.89 80.58 76.70 86.41 87.38
Full-Set + BF 89.32 89.32 80.58 76.70 86.41 87.38

Table 4: Unweighted average recall (UAR) [%].

Feature vector MLP1 MLP2 MLP3 RF10 RF100 SVM
Baseline 77.24 79.21 72.06 58.25 67.00 74.07
MFCC+Fun 79.96 80.85 69.16 58.08 70.43 75.18
Full-Set 61.90 53.55 05.06 55.74 65.24 72.46
Full-Set + LFS 82.21 78.74 68.65 64.20 73.65 77.82
Full-Set + BF 82.10 80.25 70.42 64.20 73.35 77.82

Table 5: Confusion matrix for the MLP1 and Full-Set+LFS. References for the classes are included in the supplementary
material.

Species CeC CoA CrP CrS FuR GeC LiC LiR PhM SpM TaC UpD AnA AsB AsH LeP PhR PhS PhSt PsL ScP SyA SyF SyR SyS #
CeC 11 11
CoA 13 13
CrP 4 1 5
CrS 6 6
FuR 1 0 1 2
GeC 2 1 3
LiC 4 1 1 1 7
LiR 9 1 10
PhM 1 3 1 1 6
SpM 5 5
TaC 11 1 12
UpD 8 8
AnA 1 14 15
AsB 1 7 8
AsH 7 7
LeP 1 7 8
PhR 9 1 10
PhS 1 1 1 1 4
PhSt 1 2 3
PsL 4 4
ScP 9 9
SyA 1 18 19
SyF 15 15
SyR 1 3 4
SyS 12 12
# 206

(a measure that indicates how quickly the power492

spectrum of a signal is changing) [76]. Twelve fea-493

tures computed as functionals from frequency band494

energies, particularly in bands of 250-650Hz and495

1000-4000Hz. Forty-four features obtained by ap-496

plying functionals to 26 spectral bands filtered with497

RASTA (RASTA uses bandpass filtering in the log498

spectral domain to remove slow channel variations)499

[80]. Eleven features computed from the auditory500

spectrum, which is inspired by psychoacoustic stud-501

ies on human primary auditory cortex and produces502

a time-frequency representation. Five features com-503

puted as functionals from the auditory spectrum504

filtered with RASTA [80]. Twelve features com-505

puted from the root mean square energy, voicing,506

harmonic-to-voice ratio, jitter and zero crossing507

rate.508

As the performance obtained is highly satisfac-509

tory (close to 90%) and the amount of data is lim-510

ited, a test of statistical significance like the paired511

T-test [81] is not relevant. However, our results512

suggest that 5 samples per species are required for513

properly training the model (see Table 5). Evi-514

dently, patterns from the same species present some515
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differences, therefore analyses where only one sam-516

ple is used to represent the species (as in [37]) could517

be not very reliable. Furthermore, confusions may518

be explained by certain similarities in vocalisations,519

such as waveform shapes, harmonic content, place-520

ment and separation of syllables, among others.521

These should be deeply explored in future analy-522

ses and modelled in order to improve the results.523

Since the limited amount of data might make the524

result obtained through 10-fold cross validation un-525

stable, the performance using leave-one-out cross526

validation (LOOCV) was also evaluated. LOOCV527

was performed for the alternative with the best528

performance (Full-Set + LFS features with MLP1529

classifier) and the baseline with best performance530

(baseline features with MLP2 classifier). As a re-531

sult, UARs of 85.09% and 80.18% were obtained532

for the proposed features and the baseline, respec-533

tively. The accuracy achieved was 91.75% and534

88.35% forthe proposed features and the baseline,535

respectively. Therefore, the results obtained with536

LOOCV show an even better improvement (almost537

5% for UAR) of the proposed approach over the538

baseline. Moreover, the performances for both al-539

ternatives were improved comparing the results ob-540

tained with LOOCV and 10-fold cross validation.541

Given the small amount of data available, it is rea-542

sonable that the higher number of training exam-543

ples used in each LOOCV iteration8 helps the clas-544

sifier to provide a better performance. These results545

suggest that the overall performance could be fur-546

ther improved if more data was available for train-547

ing the classifiers.548

The results can be further analysed by using con-549

fusion matrices. Confusion matrices give a good550

representation of the results per each class, which551

allows making a detailed analysis of performance552

and finding the main classification errors. The con-553

fusion matrix (adding all partitions) of our best554

model (MLP1 and Full-Set + LFS) is shown in555

Table 5. The rows correspond to the actual class556

labels, the columns show the predicted labels of557

bird species, and the main diagonal indicates the558

species that are correctly recognised. In this ma-559

trix there are no-major errors and the unbalance560

between the number of examples per species can561

be noticed. Some confusions (underlined numbers)562

might be due to the small amount of available pat-563

terns for these species when the model is trained564

8It is compared to the number of training examples in
each fold for 10-fold cross validation.

(see FuR, GeC, PhS and PhSt in Table 5). The re-565

maining confusions may be explained by the acous-566

tic likeness between species. By contrast, species567

of the same genus are not confused. Nevertheless,568

a deeper acoustic analysis would be very useful to569

define these “similarities”. The acoustic similari-570

ties could be exploited to define groups of species571

without taking into account information from the572

traditional taxonomy of the bird family. Therefore,573

a hierarchical classification scheme could be defined574

[82, 83], which allows the mistakes to be addressed575

more efficiently, classifying these groups at a first576

stage and then, the more confusing species within577

the groups.578

Figure 6 shows spectrograms of vocalisation579

segments from species Limnoctites rectirostris580

(LiR), Phleocryptes melanops (PhM), Upucerthia581

dumetaria (UpD), and Phacellodomus sibilatrix582

(PhS). Examples from these species were selected583

because they are highly confused by the model, as584

as presented in Table 5. The spectral characteris-585

tics of all the four vocalisations are very similar. For586

example, they show successive high energy peaks,587

which are regular in time and centred around 5000588

Hz. Similarly, all the spectrograms present some589

weaker energy peaks around 10kHz, which are also590

regular in time. Since most of the features we con-591

sidered are based on the spectrum, the auditory592

spectrum and the spectrogram, it is reasonable that593

these species be misclassified. Therefore, in order594

to obtain high a performance for these four species,595

it would probably be appropriate to include some596

features based on temporal dynamics of the vocal-597

isations, or to consider a dynamics models for the598

classification, like hidden Markov models [84].599

5. Conclusions and future work600

The identification of bird species is of increas-601

ing importance for ecologists in order to moni-602

tor the terrestrial environment, as it reflects im-603

portant ecosystem processes and human activities.604

This study explores the bird call classification using605

speech-related features, and compares the perfor-606

mance using different classification techniques and607

configurations. Species from the family Furnari-608

idae in the Paranaense Littoral region were anal-609

ysed, which are well-known in the community but610

were never studied considering a big group. In ad-611

dition, our work was motivated by the hypothesis612

that an extended state-of-the-art feature set, de-613
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Figure 6: Spectrograms of vocalisation segments from species Limnoctites rectirostris (LiR), Phleocryptes melanops (PhM),
Upucerthia dumetaria (UpD) and Phacellodomus sibilatrix (PhS).

fined for speech-related tasks, would obtain a better614

performance than the feature set used at present.615

The research demonstrated that the baseline re-616

sults can be improved using additional LLDs, keep-617

ing low-dimensional data. The results were poorer618

when the Full-Set was used, which is expectable due619

to the high dimensionality of data and the num-620

ber of samples used to train the multi-class models.621

This means that the large number of inputs makes622

the model more complex, and the scarce number of623

examples available is not enough for appropriately624

training it. Finally, the best performances (ACC625

and UAR) were obtained, keeping a low dimension-626

ality, when feature selection techniques were used.627

This indicates that said techniques are appropriate628

for extracting the more discriminative information629

from the full set of features, and exhibit a good630

behaviour with unbalanced data. Particularly, the631

best result is reached using a MLP classifier and the632

LFS technique. From an ecological monitoring and633

management point of view, our approach would be634

useful for developing autonomous tools that allow635

ornithologists to know which species are present in636

particular areas. Specifically, it could reduce the637

effort of manually reviewing recordings of Furnari-638

idae species for labelling. Moreover, it would enable639

ornithologists to perform remote and simultaneous640

monitoring in different areas.641

In future research, the model will be improved to642

detect more than one species in each audio file, per-643

forming a dynamic analysis of the vocalisations, i.e.644

frame by frame instead of using static (averaged)645

features. This could be achieved by matching every646

frame with short “templates” [85] that should be647

first obtained for the species. Said matching could648

be done in terms of cross correlation [86] or dynamic649

time warping [87]. Then, a “dictionary” should be650

built including several templates that capture the651

characteristics of each species. In addition, it would652

be interesting to extend this research to perform the653

classification considering a large number of families654

with all the genus and species included. A hierar-655

chical classification scheme could also be used, in656

which the first step would classify bird families, the657

second step would classify genus and the last step658

would determine the species. This means that the659

first classifier would focus on families only. The660

second step would consist of a set of different clas-661
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sifiers, each of which would be trained to recognize662

the genus of a particular family, which would be de-663

termined in the previous step. Finally, the last step664

would consist of a classifier for each of the genus un-665

der study, which would determine the species given666

the genus predicted in the previous step. The pos-667

sibility of developing a semi-automatic tool to pro-668

vide a list of the most probable species could be669

also considered. Ornithologists could then select670

the correct species from the list provided, based on671

their expertise.672

6. Web-demo for reproducible research673

A web interface was implemented using the web-674

demo tool [88] in order to obtain further details and675

test our proposal with some experimental setups.676

This web interface is available at http://fich.unl.677

edu.ar/sinc/blog/web-demo/furnariidae/. Also, an678

android application with the same functionalities was679

developed, which can be downloaded from the men-680

tioned web page. The system can be tested using an ex-681

ample register or uploading a register. The preprocess-682

ing can be set to use or not to use Wiener-based filter683

and acoustic activity detector. Then, after the feature684

extraction process, the sample is classified by the best685

model trained using all the reported data. Moreover,686

the graphical results of the audio file preprocessing, the687

features file (arff format), the trained model and the688

recognised species are freely available for download.689
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