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Dimensional Affect Recognition from HRV: an
Approach Based on Supervised SOM and ELM

Leandro A. Bugnon, Rafael A. Calvo, Senior Member, IEEE , Diego H. Milone, Member, IEEE

Abstract—Dimensional affect recognition is a challenging topic and current techniques do not yet provide the accuracy necessary for
HCI applications. In this work we propose two new methods. The first is a novel self-organizing model that learns from similarity
between features and affects. This method produces a graphical representation of the multidimensional data which may assist the
expert analysis. The second method uses extreme learning machines, an emerging artificial neural network model. Aiming for
minimum intrusiveness, we use only the heart rate variability, which can be recorded using a small set of sensors. The methods were
validated with two datasets. The first is composed of 16 sessions with different participants and was used to evaluate the models in a
classification task. The second one was the publicly available Remote Collaborative and Affective Interaction (RECOLA) dataset, which
was used for dimensional affect estimation. The performance evaluation used the kappa score, unweighted average recall and the
concordance correlation coefficient. The concordance coefficient on the RECOLA test partition was 0.421 in arousal and 0.321 in
valence. Results shows that our models outperform state-of-the-art models on the same data and provides new ways to analyze
affective states.

Index Terms—Physiological measures, affect sensing and analysis, supervised self-organization, extreme learning machines,
dimensional affect estimation.
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1 INTRODUCTION

A FFECTIVE states, including emotions, moods, and feel-
ings have a key role in the communication and

decision-making process of a person. To improve human-
computer interactions (HCI) and human-human computer
mediated interactions (as in teleconferences), emotions, en-
gagement and even psychological well-being should be
taken into account [1].

The first step to improve interactions is the affect recog-
nition, which can be of two types: categorical or continuous
[2]. If the target labels are categories, the recognition task
is known as classification. For example, the classes can be
the basic emotions summarized by Ekman [3] or those more
commonly used in HCI [4]. On the other hand, when labels
take continuous values, the task is a regression or estimation
of those values. In affective computing, this happens when
dimensional models with arousal and valence as continuous
variables are used [5]. The dimensional model of affect has
also been frequently used in a classification context [6], [7].
In those cases, the labels were the result of a quantization
over discrete values. For example, by defining the low,
medium and high labels for arousal. These approaches will
be referred in this work as classification tasks, leaving the
term dimensional affect estimation only when the target
affects take the original continuous values.
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Several works have shown that physiology is correlated
with mental states [8], thus it has been used for affect
recognition [2]. One advantage of using physiological sig-
nals in real world HCI is that signals can be recorded
continuously and may be more unconscious (due to the
autonomic response) than traditional sources like voice and
facial expressions [9]. Moreover, as one feels less noticed
during the sensing of physiology, it may be less invasive
in terms of privacy [10]. This is interesting in applications
where the user does not want (or does not need) to be
recorded by a camera or a mic, such as when playing
games [11] or selecting a song playlist [12]. Another relevant
case is when people have communicational impairments
that makes difficult to analyze other sources [13]. Still, the
sensing intrusiveness, the recording noise and the natural
variations unrelated to emotions are challenging [7], [14].
The challenges have been addressed in studies using mul-
tiple physiological signals: electroencephalography (EEG)
[15], [16], [17]; respiration patterns (RP) [18]; skin derived
signals such as superficial temperature [19] or electrodermal
activity (EDA) [20], [21], [22]; pupillary response [23]; and
heart related signals such as electrocardiography (ECG)
[24], [25] or photoplethysmography (PPG) [26]. Multimodal
combinations of different sources have been addressed to
improve recognition rates [2], [27], [28], [29]. Also, several
efforts have been made to develop multimodal datasets;
for example the DEAP dataset [30] combines EEG, PPG,
EDA, RP, facial electromyography and skin temperature,
along with audiovisual channels to analyze the impact of
multimedia content on users.

The search for a minimally intrusive method is impor-
tant for real-world applications. In this work, we use Heart
Rate Variability (HRV) that has received attention for being
related to the autonomic nervous system [14] and basic
emotional processes [8]. HRV is the evolution of changes
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in the beat-to-beat interval over time, and can be acquired
using only one ECG lead (for example a chest strap) or it
can be estimated from PPG using a specialized wristband.
The advances of sensor engineering have lowered the costs
and improved precision of HRV wearable devices, enabling
to obtain this signal in a natural environment [31]. Studies
have shown that the mean HR can be estimated from a
smartphone accelerometer [32] and remotely from video
[33], widening the possibility of a HCI system to include
physiological analysis in their framework.

Current affective computing techniques can be improved
in a number of areas. For example, most of the techniques
require the use of multiple physiological signals, which ne-
cessitates more sensors [34] and intrusiveness [7] to the user.
There is evidence that affect classification using a source
with low intrusiveness like HRV is feasible [35], yet it is not
accurate enough for real-world applications. Furthermore,
unlike classification approaches, the dimensional estimation
of affects has not been widely explored yet. Currently, im-
proving the classifiers performance with novel approaches
is an important challenge that should be addressed. Never-
theless, methods usually focus on performance estimation,
but omit analyzing the hidden relations in the data. Novel
methods for identification and visualization of the subjacent
models of affect and its relation with the inputs should be
evaluated.

In this work we approach physiological affect recog-
nition with two different methods. For the first method,
we propose a novel algorithm based on supervised self-
organizing maps (sSOM) to improve recognition rates and
also to provide a graphical representation of the underlying
model. This representation can relate the features space with
the target in a compact way. Opposed to a black-box, this
type of models might allow an expert to find, in the trained
model, new relations between physiology and affects. For
the second method, we propose the use of extreme learning
machines (ELM) [36]. ELM are emergent methods for pat-
tern recognition which have shown improved recognition
rates with low computational cost in different applications
[37]. They have shown to be faster and more accurate
than traditional multi-layer perceptrons and support vector
machines (SVM) in several benchmarks [38]. ELM have been
selected because of their theoretical capacity of dealing with
the features non-linearity, the fast training algorithm and a
simplistic computational framework.

Models were evaluated in two different datasets: one
for classification and the other for dimensional affect es-
timation. The first dataset was recorded by Monkaresi et
al. [39] and consists of multiple-subject recordings of emo-
tions induced with pictures. The labels are binary self-
reports in the four quadrants of the arousal-valence (AV)
space. The other is the RECOLA dataset [40], composed of
multimodal recorded interactions between pairs of subjects
during a problem solving task. For each interaction, this
dataset contains a dimensional rating in the AV space, which
was performed by six external annotators. These datasets
have different experimental protocols including: type of
interactions, emotional elicitation, spontaneity and labeling
methods. In all cases, we use ECG features as input, with
special interest in the HRV component. This provides a
rich evaluation set for proposed methods. A web-demo

[41] interface to rapidly test the methods is available1. The
source-code of proposed methods is also freely available for
academic purposes2.

In the next section, related works on affect recognition
using HRV are reviewed. In Section 3 the datasets used in
this work, the feature extraction stage and the experimental
setup are presented. In Section 4.1 a sSOM for affect recog-
nition is presented. In Section 4.2 different ELM classifiers
are introduced. In Section 5 the most relevant results are
presented and discussed. Finally, the conclusions of this
work are presented in Section 6.

2 RELATED WORKS

Several works used the HRV for AV classification. Valenza
et al. [42] proposed a nonlinear method for feature ex-
traction from HRV, along with EDA and RP, followed
by principal component analysis (PCA) and a quadratic
discriminant classifier. Authors obtained promising results
using the standard International Affective Picture System
(IAPS) as stimuli. Following a similar methodology, relevant
improvements have been achieved with sound elicitation
for classification in five classes in arousal and valence,
using only HRV features [43]. Monkaresi et al. explored
the binary classification in the AV space [44] and engage-
ment recognition during a writing-reviewing process [45].
In these works, the authors combined remote HR sensing
and facial expressions using a voting classifier composed by
SVM, k-nearest neighbor (KNN), decision trees and logistic
regression. These works have shown that affect classification
using a source with low intrusiveness like HRV is feasi-
ble. Currently, improving the classifiers performance is an
important challenge that can be addressed by research on
novel methods.

Although the categorical approach to affect recognition
has been employed successfully in several applications,
many human states or traits vary continuously rather than
in the rigid classes used in categorical approaches. In such
cases the quantization into a few categorical labels might
lead to a loss in model representativeness [7]. In comparison
with the categorical problem, only a few publications have
addressed the dimensional recognition challenges, yet it has
become a trend in the affective computing community [7],
[40], [46], [47], [48], [49]. Some works approximated dimen-
sional affect indicators with fine-grained quantization scales
on segmented data, as in [42]. Haag et al. [50] proposed an
assessment of IAPS ratings using a multi-layer perceptron
as regressor with multimodal inputs. Later, Bailenson et
al. [51] used the same method to estimate levels of sad-
ness and amusement with external raters. However, true
dimensional affect estimation with physiological signals is
quite recent. Ringeval et al. [52] used HRV, along with other
physiological and audio-visual sources, to estimate arousal
and valence levels during spontaneous interaction between
humans. Several multimodal recognition systems have been
tested with the dataset of this work, using for example
PCA and linear regression (LR) [53], SVM for regression
(SVR) [35], [54], [55], deep neural networks (DNN) [56],

1. http://fich.unl.edu.ar/sinc/web-demo/
dimensional-affect-recognition/

2. https://sourceforge.net/projects/sourcesinc/files/emoHR

http://fich.unl.edu.ar/sinc/web-demo/dimensional-affect-recognition/
http://fich.unl.edu.ar/sinc/web-demo/dimensional-affect-recognition/
https://sourceforge.net/projects/sourcesinc/files/emoHR
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variations of the long-short-term memory recurrent neural
network (LSTM) [57], [58], [59], [60], [61], relevance vector
machines (RVM) [62], ensembles of random forests (RF)
and neural networks [63], and more recently, an end-to-
end approach using convolutional and recurrent networks
[64]. The accuracy with physiological signals, particularly
for HRV, is promising but should be improved to aim for
naturalistic interaction applications.

3 MATERIALS AND EVALUATION SETUP

Datasets, preprocessing and further postprocessing of the
output of classifiers are presented in this section. Then, the
experimental setup is detailed for both classification and
dimensional estimation tasks.

3.1 Classification

The dataset used for classification consisted of 16 laboratory
sessions recorded by Monkaresi et al. [39]. Affects were
elicited for different subjects using the IAPS and emotions
were recorded as self-reports. Each session consisted of
approximately 75 images, while one-lead ECG signal was
being registered. Images were displayed sequentially in
blocks with similar AV score. Each image was shown for
10 s, after which the subjects reported their affective state
from 1 to 9 in the Self-Assessment Manikin (SAM) scale.
Valence label was binarized in negative and positive classes.
For arousal, low and high classes were defined. Our exper-
imental setup with this dataset followed the same proce-
dure of the authors. Sessions were segmented in chunks
of one IAPS image. We used the same features provided
by the authors: 84 classical features from ECG, including
the distances between fiducial points of the PQRS complex,
mean heart rate value and first order statistics. The RELIEF-
F method was used for feature selection [65]. Each feature
was normalized as x̌n,j = (xn,j − µj)/aj , where µj is the
mean feature value and aj one measure of deviation. The
features of the validation partition were normalized using
the training partition parameters.

The classifiers were tested for the classes defined above,
using one classifier for each subject, one for arousal and
another for valence (single-dimension approach) as in [39].
A nested cross-validation was used, including partitions for
training, parameter optimization and validation. The hyper-
parameters optimization was performed without using the
validation partition to get an unbiased performance esti-
mation, including the model optimization. We used two
performance measures. The first one is Cohen’s Kappa [66],

κ =
A0 −Ac

1−Ac
, (1)

whereA0 is the classification accuracy andAc the by-chance
probability observed in the confusion matrix. It takes into
account a baseline reference for classification, being κ = 0
when there is no evidence that the classifier performs better
than a random guess, and κ = 1 for perfect classifica-
tion. The second measure is the unweighted average recall
(UAR),

UAR =

∑nc

i Ai

nc
, (2)

where Ai is the accuracy for class i data and nc the number
of classes. These coefficients are more robust to class imbal-
ance than the simple accuracy.

3.2 Dimensional estimation
The RECOLA dataset [40] is a multimodal corpus that
consists of recordings from dyadic interactions of subjects
through an online communication channel (i.e. teleconfer-
ence). Audio, video, ECG and EDA were registered while
the participants were discussing how to solve a survival
task. During the interactions affects were expressed spon-
taneously by the participants. Affects were tagged by six
external raters as they perceived them. Their rating was
based in a dimensional model of affects, using continu-
ous values in arousal and valence. Also, the rating was
annotated frame by frame for the first 5 minutes, thus all
the variations in the AV space (according to the raters) are
represented. A gold standard target was proposed by the
dataset authors to convert the information of the six raters
into a unique frame-by-frame rating. To do so, the target
was defined as a weighted average of the raters based on
their mutual agreement [67]. From the total of 46 subjects,
27 have a complete record of physiological signals. This set
was divided by the authors into training, development and
test partitions, containing 9 subjects each. In this work we
use the 18 subjects that are publicly available (training and
development partitions). Proposed methods with optimal
hyper-parameters were also evaluated in the test partition.

The HRV signal was estimated from the ECG recording.
First the R peaks were identified using the Pan-Tompkin
method [68]. Then, the HR was estimated by taking the
inverse of R-R distance and interpolating at ECG sam-
pling frequency. Well-known HR features were obtained
with a Hamming window of 20 s and a step of 0.5 s. This
window length makes possible to have enough data for
feature extraction without losing time resolution [49]. In
time domain, the HR mean and standard deviations were
calculated. From spectral domain, low frequency band (0.04-
0.15 Hz), high frequency band (0.15-0.4 Hz) and their ratio
were used to estimate autonomous regulations. The spectral
decay slope, modeled with a quadratic regression, provided
more information of these regulations [69]. Additionally,
the total spectral power, 5 fixed bands from 0.04-1 Hz and
high order statistics (skewness and kurtosis) were included.
The window length permits nearly continuous estimation
with sufficient sample length for low frequency features
[70]. The first and second derivatives of the features were
computed to get information on how they changed in
time. Contextual information was also considered by using
frame stacking. Given a features vector, xn, a new set was
constructed by adding the m frames before and after each
frame, x̌n = [xn−m, . . . ,xn, . . . ,xn+m]. The features were
normalized with the methods detailed above in a session-
basis, as described in [67]. Two postprocessing methods
were applied to the models outputs. First, a filter was
applied to reduce the outputs noise. It was optimized from
two common methods in time series processing, the moving
average and the exponential smoothing. Then, an output
correction factor was tested to adjust the output amplitude.
This factor was defined as the mean ratio between filtered
outputs and target amplitudes in the training set.
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The set of sessions was divided in a 3-folds nested
cross-validation scheme, so each session was used either for
training or testing at a time. To compare the estimations
with the targets, we used the Lin’s concordance correlation
coefficient ρc [71], which is the scoring metric used by other
works on the RECOLA dataset and it is the official metric
of the Audio/Visual Emotion Challenge and Workshop
(AVEC) since 2015. This metric is defined as

ρc(y, ŷ) =
2ρσyσŷ

σ2
y + σ2

ŷ + (µy − µŷ)2
, (3)

where ρ is the Pearson’s correlation coefficient, µy is the
mean and σy is the standard deviation. The range of ρc
is [-1,1], taking values around 0 if there is no concordance
evidence, and 1 for a perfect concordance. This coefficient is
an improvement of ρ, as it considers the correlation of the
signals in time along with the mean square error.

The proposed methods were tested in different scenarios.
In all cases, the gold standard rating was used as the
estimation target. In first place, the methods were faced to
the single-dimension estimation, training models for arousal
and valence independently. However, it has already been
shown that arousal and valence are dependent during emo-
tional elicitation [72]. Thus, the two-dimensions AV estima-
tion was conducted for comparison. In this experiment, the
two outputs were estimated simultaneously by one model,
whose parameters were optimized to maximize the mean
ρc of both targets. As a baseline, two standard classifiers
were evaluated. One is a SVR with Gaussian kernel3, the
regularization factor (C) optimized in the range [2−5, 225]
and the Gaussian exponential (γ) in the range [2−30, 2−5].
The other classifier is a RF4, in which the number of trees
was optimized in the range [5, 150] and the size of the
features subsets from 5 to the whole feature set for each
tree. To compare the results with previous works, additional
experiments were conducted. The best models were trained
with the training partition, and validated on the develop-
ment partition. In this case, the best hyperparameters were
taken from cross-validation experiments as in [63], thus
minimizing model overfitting. A final evaluation was made
using the test partition. The optimal models from cross-
validation experiments were trained with the whole public
set (training and development partition) and labels were
estimated on the test set of features. These estimations were
made only once and sent to the authors of the RECOLA
dataset for evaluation.

4 METHODS

4.1 Supervised self-organizing maps
A self-organizing map is a neural network generally com-
posed by one bi-dimensional layer of units. This model
has been proposed for dimensionality reduction, clustering
and classification [73]. In this section, we propose a novel
method to train a sSOM for dimensional affect estimation.
To this end, the inputs in the training stage will be the
features extended with the target affects. Rather than mini-
mizing an error function between the model output and the

3. Implemented with the quadratic programming functions of Mat-
lab. It is included in the provided source code.

4. Standard Matlab implementation: TreeBagger class.

expected targets, an unsupervised method creates a map
based on the similarity between the extended input vectors.
Different regions are conformed on this map, associating the
values of features and targets. When new unlabeled data
is presented, the features are compared with the learned
weights of all units in the map and the closest unit is chosen
as output unit. Then, the affect learned by this unit is the
estimated target, which was chosen based on the spatial
structure of the map previously defined by the training data.
An important advantage of this method is that the high-
dimensional input space is mapped into a 2D representa-
tion. Therefore, new relations between the features and the
affective space can be discovered by simple inspection.

Formally, given a set of N samples with F -dimensional
features and P -dimensional continuous targets, lets define
the input matrix X = [x1, . . . ,xN ]T , with xn ∈ RF , n =
1, . . . , N , and the target matrix Y = [y1, . . . ,yN ]T , with
yn ∈ RP . The features and targets in the training set are
concatenated as a single input matrix. The new input matrix
is given by X̌ = [x̌1, . . . , x̌N ], with x̌n = [xn, λyn] ∈ RF+P ,
where the scaling factor λ must be set to balance the influ-
ence of the targets in the map topology.

The sSOM have a rectangular array of units sj , with j =
1, . . . , J . For a given input x̌n, the output of sj is given by

hj = ϕ(x̌n, w̌j), (4)

where w̌j = [wx
j ,w

y
j ] ∈ RF+P is the synaptic weight vector,

composed by the feature weights wx
j and the target weights

wy
j . The operator ϕ is a similarity function, usually based in

the euclidean distance. Weights are traditionally instanced
at random [73]. However, the data distribution can be used
to avoid local minima and speed up the training. Thus,
an alternative to random initialization is to use PCA in
the input space. First, the method finds the two greater
eigenvalues and eigenvectors from the training set. Then,
the weights of the map are generated by linear spanning in
the two dimensions. In this way, the main data variability is
initially arranged along the main axes of the map.

The sSOM training is an iterative procedure. At each
time t = 1, . . . , T , a sample x̌(t) is presented to the map.
The best matching unit is the one with higher similarity
with the input pattern. It is found by solving

s∗(t) = arg min
j
||x̌(t)− w̌j ||2. (5)

The method rewards the neuron s∗ by adjusting w̌s∗ for
a better matching with the sample. To induce a topologi-
cal ordering in the map, the rewarding effect is scattered
through the neighbouring units. The neighbours are defined
in hexagonal shape, thus a 1-unit neighbourhood is a set of
6 units plus the central unit. Then, the weights are updated
using the steepest-descent gradient optimization

w̌j(t+ 1) =

{
w̌j(t) + α[x̌(t)− w̌j(t)], if sj ∈ Ns∗

w̌j(t), if sj /∈ Ns∗
, (6)

where 0 < α < 1 is the learning factor, and Ns∗ is a
neighbourhood function around s∗. For the early iterations,
the Ns∗ radius and α take large values. This configuration
leads to a rough ordering of the map, defining the main
topographic zones. In the later iterations, Ns∗ and α are
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reduced until only s∗ is affected by the optimization algo-
rithm. This results in a fine-tuning of the map while the
main topological structure is conserved. In addition to the
traditional planar sSOM, a toroidal form can be defined
by linking opposed border units of the plane in a same
neighborhood, thus every unit will have the same amount of
neighbours. Preliminary evaluations of toroidal model have
not provided better estimations than the planar one, and
graphical analysis of a toroid is more complicated. Thus,
only the planar map will be used.

Once the sSOM training is complete, similar inputs will
lead to closer winner units. As training inputs contains the
features and targets, each region of the map will model
the spatial relations of both spaces. Then, in the recognition
stage only the feature weights wx

j are used. Thus, the best
matching unit is obtained with

s∗ = arg min
j
||x−wx

j ||2, (7)

and the output estimation is given by

Ỹs∗ =
wy

s∗

λ
. (8)

The smoothness of the outputs may depend on both the
input data and the size of the map. Therefore, a spatial
interpolation method is incorporated as last step. Given the
input x, the K closest units are determined, [s∗1, . . . , s

∗
K ],

with s∗1 the best matching unit as in (7). Then, the smoothed
output is obtained with the weighted average

Ȳ =
K∑

k=1

γkỸs∗k
, (9)

where

γk =
||x−wx

s∗k
||−12∑K

j=1 ||x−wx
s∗j
||−12

(10)

is the normalized inverse distance for each s∗k in the feature
space. With this expression, the closest s∗k in the feature
space receives the higher weight.

4.2 Extreme learning machines
The theoretical context of ELM includes several related
methods [74]. In this section, two different ELM approaches
are introduced: the original model as a neural network, and
a later derivation based in kernels.

In the first conception of ELM, the classifier can be seen
as a neural network with one hidden layer (nELM). The
central paradigm is that the hidden units are randomly
generated, thus the tuning of their parameters is avoided.
As a direct consequence, the training time is dramatically
reduced compared with other training methods. For a for-
mal derivation, consider J hidden units with F inputs and
P output units. The output of the hidden layer is given by

hj = Φ(vT
j x + bj), (11)

where Φ is the activation function, vj the input weights and
bj the bias for the j-th hidden unit. This can be expressed
in a matrix form by defining the hidden-layer output matrix
H = [h1, . . . ,hN ]T , also called the feature projection matrix,
and W = [w1, . . . ,wP ] as the output layer weights, with

wp ∈ RJ and p = 1, . . . , P . Then, the nELM output can be
written as

Ỹ = HW. (12)

If Φ is an infinitely differentiable function, and (vj , bj)
are randomly selected, it can be demonstrated that for any
pair (X,Y) there exist a number J < N such ||Ỹ−Y|| < ε
for any small ε [74]. This means that the ELM can approxi-
mate the target Y of a given input X by adjusting only the
number of hidden units and the output weights. To find W,
the problem can be stated as

minimize
W

||HW −Y||2, (13)

which is a least square optimization problem. The smallest
norm solution is given by

Ŵ = H†Y, (14)

where H† is the Moore-Penrose pseudo-inverse [75].
A generalized ELM method based on kernels (kELM)

can be derived from this theory [38]. To improve the solu-
tion stability and generalization, a regularized optimization
problem was proposed as

minimize
W

1

2
||W||2 + C

1

2

N∑
n=1

||εn||2

subject to hnW = yT
n − εTn ,

(15)

where εn is the training error vector for the sample xn and
C a regularization factor. The solution is given by

Ŵ = HT

(
1

C
I + HHT

)−1
Y. (16)

Let be H̆ the feature projection of the training set (X̆, Y̆),
and H the projection of any other set (X,Y). The estimation
of Y is given by (12) and (16)

Ỹ = HŴ = HH̆T

(
1

C
I + H̆H̆T

)−1
Y̆. (17)

With the selection of a kernel function K : (RF ,RF ) → R,
the kernel matrix for the inputs (X,X′) is defined as

Ω(X,X′) = HH′T : Ωi,j = hi · hj = K(xi,x
′
j). (18)

Thus, (17) becomes

Ỹ = Ω(X, X̆)

(
1

C
I + Ω̆

)−1
Y̆, (19)

where Ω̆ is the training kernel matrix. From (19), it can
be seen that the kernel function replaces the projection
matrices.

Several hyper-parameters detailed in Section 3 and 4
were optimized with a grid search. The order of feature
derivatives, frame stacking size and post processing pa-
rameters were optimized for each case. The feature nor-
malization factor a was the standard deviation for sSOM
and the maximum amplitude of the data for ELM. For
sSOM, we explored different map architectures (size and
shape), the scaling factor λ, the spatial interpolation method
and training length. For nELM, a hidden layer of variable
size and standard activation functions were used, including
sigmoid, hard-limit, and sinusoidal functions. The kELM
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was implemented with a radial basis function, with the ex-
ponential coefficient γ and associated regularization factor
C being tuned in a grid with logarithmic scale.

5 RESULTS AND DISCUSSION

In the first part of this section we show the classification
performance of the proposed methods in comparison with
baseline classifiers and previous works. In the second part
we show experimental results for dimensional affect estima-
tion on the RECOLA database. We show the distinctive use
of sSOM as a qualitative model to explore affects and their
relations with the physiological features. Then we compare
the proposed models and the baselines in a quantitative way
with cross-validation results. In the last part, we make a
comparison with state-of-the-art works by using the same
dataset partitions.

5.1 Categorical affect classification

The results shown in Table 1 are the average of 10 random-
ized cross-validation repetitions on the categorical dataset.
The columns are the single-dimension classification tasks,
while in the rows are listed our models, baseline classifiers
(SVM with radial basis function kernel and RF) and the
reference for comparison. In [39], a vote classifier was used
to combine the decision of four standard classifiers: SVM,
KNN, decision trees and logistic regression. From Table 1
it can be seen the most effective classifiers are kELM for
arousal and SVM for valence.

Our methods outperformed previous results on the clas-
sification task. Although that classes were balanced and
selected to be contrasting (high versus low, and positive
versus negative), the score was considerably higher for
valence. This may suggest that the selected features from
ECG had a better discriminability or the elicitation process
was more effective in valence. This was consistent with
the results reported by the authors of the database [39].
When comparing arousal results with the reference, our
methods show a higher difference in the kappa score. By
using a single classification model as proposed here, instead
of several classifiers, the number of tuning parameters has
been reduced, making a simpler model for the problem. As
it was shown, by using the same features and experimental
setup, the classifiers proposed here can improve the results
for binary categorization of arousal and valence.

Comparing now the models with higher scores, SVM
and kELM show similar results. Both methods share the
theoretical objective of projecting data to a higher dimen-
sion where data may be easier to separate, in this case
using the same kernel function. However, kELM is faster
and uses less memory during the optimization. Differences
between kELM, nELM and RF are significant (p < 0.01, one-
way ANOVA) for arousal and valence in both performance
measures. However, kELM required more resources as the
algorithm uses the training data to provide estimations. The
trained sSOM is represented in a small set of parameters,
thus the memory usage for training is considerably low.
The sSOM seems to be effective as well, which may be
explained by the unsupervised association of features and
affects, providing robustness to outliers. This model also

shows a significant difference with nELM and RF for valence
and nELM for arousal (p < 0.01). The better scores provided
by kELM can probably be explained by its capacity for non-
linear modeling of the feature space.

TABLE 1
Mean κ and UAR for binary affect classification on Monkaresi et al.

dataset.

Arousal Valence
Classifier κ UAR κ UAR

Vote classifier [39] .071 - .191 -

SVM .143 .570 .213 .607
RF .109 .558 .163 .582
sSOM .137 .566 .202 .597
nELM .068 .541 .119 .559
kELM .148 .576 .208 .603

Performance for the classification task is lower than
the dimensional estimation (as will be detailed in the next
section). The general differences between our framework
in classification and dimensional estimation tasks could be
explained by the effect of several factors. In the first place,
emotion expression is different in the datasets. Emotions
in both datasets are naturally expressed, this is not acted.
However, the dataset used for classification involves in-
duced emotions (using IAPS) and the dimensional estima-
tion dataset involves spontaneous emotions. The report is
also different; the use of affect reports of several raters in
RECOLA may involve a better estimation. Last but not least,
categories in the classification case are binarized from a
dimensional model. This may restrain emotion expression,
as extreme emotions are in the same category than near-
neutral values. In this way, continuous labels may be more
difficult to register but they have a richer expression that the
classifiers can use.

5.2 Dimensional affect estimation

We analyze first the interesting visual information obtained
from sSOM trained on the RECOLA dataset. The high-
dimensional space of the features and targets can be reduced
to intuitive bi-dimensional representations. Some of them
are shown in Fig. 1. Each one represents the distribution of
a coefficient of the synaptic weights w̌j in the map. Let us
take for instance the Arousal plane. As explained in Section
4.1, arousal is part of an extended input of the model during
training. The hexagonal cells represent the sSOM units,
placed with their neighbours as they are in the model. The
value of the input, in this case the arousal level, is modeled
with the w̌j of each unit. This value is indicated in the image
with a color scale that ranges from blue at the minimum
to red at the maximum value. Upon visual inspection, one
consequence of the training algorithm is that similar values
are arranged in neighbouring units. In the Arousal plane
it can be seen that the low-arousal zone was ordered in
the upper-left of the image, increasing approximately along
with the vertical axis to the bottom, which is the high-
arousal zone. In the same way, looking now at the Valence
plane, we can see a smooth value progression in an almost
perpendicular direction to the Arousal plane.
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V alenceArousal

σHRP ′1

LF/HF

LF/HF ′

µHRHF

MaxMin

Fig. 1. Graphical representation of the inputs and targets in a trained
sSOM. On the top, six features layers are shown: the first derivative of P1

frequency band (P ′
1), the low and high frequency bands ratio (LF/HF )

and its first derivative (LF/HF ′), the high frequency band (HF ), the
amplitude of HR (σHR) and its mean (µHR). On the bottom, the target
layers for arousal and valence are displayed, along with the color-bar for
reference.

Comparing now the targets (arousal and valence) with
the other input planes (the actual features), relations be-
tween them can be assessed in a qualitative form. Although
all features are considered in a multidimensional way to
obtain an accurate estimation, this analysis can contribute to
finding relevant features. From Fig. 1, it seems that P ′1 and
LF/HF ′ are strongly related with arousal. This can be seen
by observing that the high P ′1 zone and the low LF/HF ′

zone are overlaid with the high-arousal zone. In a similar
way, LF/HF , HF and the HR statistics (σHR and µHR)
can be associated with the valence distribution. It has been
argued that the HRV is related with valence and well-being,
specifically HF being directly correlated with valence [76].
It can be seen in Fig. 1 that low valence has a coincident
area with low and medium HF , as well as with σHR and
µHR, thus adding empirical support to the argument. This
type of analysis provides a tool to visualize the relationship

Arousal

Valence

Fig. 2. Graphical representation of the AV space using sSOM. Output
components of the trained map are superposed in the same plane.
Arousal is represented in red and valence in blue. The level of these
variables in each sSOM unit is coded by the size of each hexagon.
Notice that this is the same information displayed by the trained model,
now summarized in one single image.

between affects and important features from the data.
For a practical and compact representation of the emo-

tion model learnt by sSOM, we can merge the arousal and
valence maps from Fig. 1 in a unique map as in Fig. 2.
The targets are shown in colors, red for arousal and blue
for valence. Now their values are coded in the size of the
hexagons instead of a color scale. This map provides an
idea at a glance of the structure and relation of arousal and
valence in the model. The sSOM units are represented in
the same positions as in Fig. 1, so the topological relations
between features can be related with this new target map.
Even more, if it is used to estimate dimensional affects in
real-time, the AV map could serve as a display to show
graphical interactions between the variables, highlighting
the winner unit at each moment.

The relationship between the traditional AV plane and
the new data-driven representation is schematized in Fig. 3.
The gray dots in the AV plane are theoretical affects that
may be reported by a subject during an affect elicitation
experiment. Some idealized cases (stressed, excited, relaxed
and sad) are displayed in both representations. Thus, Fig. 3
illustrates how affects can be mapped from the theoretical
AV plane to the sSOM by looking to the arousal and valence
levels. Using this relationship, the sSOM graphical represen-
tation can be discussed using the following example case.
It has been reported that affective stimuli (like audiovisual
resources) are not equally effective to induce affects all
over the AV plane [30], [72], [77]. In fact, in those works
it was found that with low arousal levels there is very little
possible variation in valence, which stays near the neutral
point. However, for high arousal it can be reached the full
spectrum of valence expression. That is, if the affects are
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Excited

Fig. 3. Representation of the mapping between the theoretical AV space
and the sSOM graphical model. The pictured affects (stressed, excited,
sad and relaxed) are illustrated to exemplify the data-driven mapping.

plotted in a Cartesian AV space, the dots are inscribed in
a parabolic shape, as seen in Fig. 3. If we now compare
this results and the map of Fig. 2, we can see a similar
behaviour in the affect representation of our experiment.
The complete range of valence is only observable in high
arousal zone (the bottom part of the map), while in low
arousal zones the valence is between neutral and nega-
tive. This way, the theoretical relations between arousal
and valence have been warped to the sSOM, using only
the training data. This mapping provides an alternative
representation of the AV space given the mutual closeness
between the feature and target samples, as a direct property
of the sSOM training algorithm. Moreover, this example case
of data-driven representation provides empirical evidence
to support theoretical models described previously. This is
indeed an advantage of the sSOM over black-box models,
in that it provides graphical representations of data isles
and may provide support for theoretical assumptions, based
only on the training data.

The first cross-validation results on the RECOLA dataset
are shown in Table 2. In the columns are the estimated
targets, and in the rows are the proposed methods along
with standard models as SVR and RF for comparison. Meth-
ods are detailed as single-dimension when trained with
either arousal or valence, and two-dimensions when trained
with both outputs simultaneously. It can be seen that ELM
achieve the higher concordance rates. On the one hand,
nELM has a fast and low memory implementation. On the
other, kELM provided the lowest variances, denoting a more
stable model across the tested sessions. However, sSOM fol-
lows these results closely with the advantage of providing
an explicit model for visual analysis, as mentioned above.
In agreement with [67], arousal estimation was shown to
be more accurate, with higher ρc and lesser variance. It is
also interesting to note that nELM works very well with
the RECOLA dataset but not so in the classification dataset
(Section 5.1). A possible explanation is that the generaliza-
tion capacity of nELM improve with the amount of data
available.

Estimating both targets with the same model seems to
slightly improve sSOM and nELM performance in arousal.
However, the general performance is similar compared to

TABLE 2
Mean ρc and standard deviation from 3-fold cross-validation on the

RECOLA dataset. Each session features were normalized
independently. Proposed models were trained using a single-dimension

(one model for arousal and another for valence) and using the two
dimensions togheter.

Classifier Arousal Valence

SVR .378 (.030) .243 (.064)
RF .369 (.018) .282 (.028)

sSOM .362 (.032) .313 (.059)
Single-dimension output nELM .366 (.039) .322 (.054)

kELM .388 (.009) .320 (.049)

sSOM .364 (.033) .312 (.059)
Two-dimensions output nELM .379 (.039) .313 (.060)

kELM .388 (.010) .321 (.044)

the single-dimension approach and it did not yield signif-
icant differences. The results show that the combination of
arousal and valence with the current models does not seem
to provide better recognition capabilities than individual
target models. Measuring the concordance between arousal
and valence targets for all sessions, it yields a mean of
0.29. This suggests concordance between the targets and
may explain the lack of improvement, as the additional
information provided when estimating one target along
the other is not leveraging the results. However, the bi-
dimensional outputs makes possible the analysis presented
with sSOM about Fig. 2.

Although the proposed models are able to perform the
recognition in real-time, an additional factor that should be
considered with the recognition performance is the compu-
tational cost of training the models. Both sSOM and nELM
models are compressed in low quantity of parameters and
low training time. On the contrary, the training data is
needed to compute every estimation with kELM, as seen
in Section 4.2. The training time for kELM was significantly
higher than nELM and sSOM models, but these are much
lower than SVR. This difference may be important for future
applications in limited hardware, as wearable devices, or
when using bigger datasets.

As described in [67], the gold-standard rating is com-
posed by six human raters. Let us consider a rater as either
one of these humans or one of the proposed models. It
is interesting to evaluate the behaviour of the models in
comparison to the humans. The agreement between a pair of
raters can be measured with the mean ρc across the sessions.
The agreement of each rater with the other human raters is
shown in Table 3. In the rows are listed the six human raters,
the mean inter-rater agreement and the proposed models.
The columns are arousal and valence as independent tar-
gets. These results show that the proposed models have
a mean agreement superior to some raters (the rater 6 in
arousal and rater 5 in valence). In the case of arousal, the
ELM models even approximate the second least agreeing
rater (the number 5). Although valence estimation is more
challenging, consistent with the results discussed above, hu-
mans have a higher inter-rater agreement for valence. This
may be explained by the natural human ability to identify
valence states from face expressions [78]. Comparing the
mean inter-rater concordance from Table 3 and results from
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TABLE 3
Mean ρc between a rating (either from a human rater using audio-visual

cues or a model using physiology) and all the human raters in the
database.

Raters Arousal Valence

Rater 1 .305 .386
Rater 2 .296 .361
Rater 3 .349 .327
Rater 4 .231 .259
Rater 5 .223 .181
Rater 6 .113 .298
Mean inter-rater .253 .302

sSOM .203 .192
nELM .216 .214
kELM .215 .208

Table 2, it can be seen that the models have competitive
performance. Therefore, it can be said that the proposed
models could be playing the role of an external rater with
a consistent agreement with other raters and good rating
towards the gold standard label.

An example of the estimated ratings for a validation
session is shown in Fig. 4. The arousal and valence targets
correspond to the session tagged as dev-3 in RECOLA. These
are compared with the sSOM, nELM and kELM outputs.
The shaded area is the standard deviation of ratings given
by the human raters. It can be seen that models yield close
estimations and follows the main events in the target signal,
like the peaks around 45 s and 150 s in arousal. Also, the
estimations mainly remain in the shaded zone. For this
session, the percentage of the arousal estimations inside the
human rater deviation is 83%, 80% and 81% for nELM,
kELM and sSOM respectively, while for valence is 71%,
67% and 78%. These relations are similar for the whole
database, with 73%, 75% and 76% for arousal, 67%, 68%
and 71% for valence. It can be seen that the sSOM outputs
follow the reference more closely in general. However, Table
2 shows that ELM models achieve higher ρc, which may
be explained by its higher sensibility to small variations.
This can be seen, for example, around the 260 s point in
Fig. 4. Another aspect that have been discussed in previous
works is the asynchrony between emotional expression and
the emotional labels provided by the external raters [52]. It
was reported [35] that when using the HRV signal, a delay
on the training labels does not improve the performance
of the classifier. As HRV responses are slower than audio-
visual cues, it is possible that the rater delay may have been
partially compensated with the physiological delay.

As detailed in the previous section, the experiments
described here involve features that were normalized for
each session independently, as in [67]. However, a more
challenging case is the task of estimating dimensional affects
on a totally new subject in real-time, without any prior
sensing on this new subject. This case can be evaluated with
a small change in the feature normalization stage. Instead of
normalizing the features in a session basis, the normaliza-
tion parameters (features mean and deviation) are obtained
from the training sessions only. Results for single and two-
dimensions models are shown in Table 4. It can be observed
that ELM models can provide a better estimation and also
seems more robust than sSOM to the feature normalization

TABLE 4
Mean ρc and standard deviation from 3-fold cross-validation on the

RECOLA dataset. The normalization parameters (features mean and
deviation) are obtained from the average of training sessions.

Classifier Arousal Valence

SVR .155 (.019) .104 (.046)
RF .119 (.048) .126 (.018)

sSOM .165 (.051) .141 (.060)
Single-dimension output nELM .217 (.025) .230 (.034)

kELM .260 (.002) .223 (.047)

sSOM .181 (.038) .148 (.056)
Two-dimensions output nELM .262 (.008) .253 (.029)

kELM .263 (.007) .227 (.046)

TABLE 5
Mean ρc of the proposed models and other works on the RECOLA

development partition.

Classifier Reference Arousal Valence

Using ECG features

Vote classifier Ringeval et al. 2015 [67] .275 .183
LSTM Chao et al. 2015 [59] .222 .182
LSTM Chen et al. 2015 [58] .333 .314
DNN-LSTM He et al. 2015 [57] .297 .293
DNN Cardinal et al. 2015 [56] .262 .124
NN ensemble Kachele et al. 2015 [63] .344 .256
oaRVM Manandhar et al. 2016 [62] .293 .274
S-fusion SVR Weber et al. 2016 [55] .468 .221

Using HRV features

PCA + LR Povolny et al. 2016 [53] .391 .388
SVR Valstar et al. 2016 [35] .379 .293
SVR Sun et al. 2016 [54] .392 .264
S-fusion SVR Weber et al. 2016 [55] .424 .413
LSTM Brady et al. 2016 [61] .357 .364
End-to-end Keren et al. 2017 [64] .426 .419

sSOM .402 .354
nELM .399 .375
kELM .388 .338

challenge. Differences between ELM methods and baseline
classifiers are significant in all experiments (p < 0.05).
Moreover, kELM achieved significant improvement against
the other methods as well (p < 0.05). This suggest that
feature complexity of multiple subject experiments is better
handled with proposed methods.

5.3 Comparisons with state-of-the-art methods
Previous works on the RECOLA dataset reported their
results on the partition called development (detailed in [67]).
State-of-the-art models that used only the ECG recordings
for the affect recognition are listed in Table 5. We show these
results together with our results in the same partition for
comparison. Our results were achieved with the proposed
methods optimized by cross-validation, thus minimizing
the overfitting on development partition. As expected, our
results are near the cross-validation results from Table 2,
with the sSOM performing better for arousal and nELM for
valence.

The state-of-the-art methods were reported in two
groups. The first group of publications used general features
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Fig. 4. Comparing the outputs of the models with their targets. Gold-standard for arousal and valence is in bold black line. Model estimations are
represented with color lines. The shaded area correspond to the standard deviation of human raters.

TABLE 6
Mean ρc of the proposed models and other works on the RECOLA test

partition.

Classifier Reference Arousal Valence

Vote classifier Ringeval et al. 2015 [67] .192 .139
DNN Cardinal et al. 2015 [56] .161 .121
Linear SVR Valstar et al. 2016 [35] .334 .198
End-to-end Keren et al. 2017 [64] .360 .225

sSOM .404 .273
nELM .421 .321
kELM .367 .293

of the ECG signal. The second group uses only HR and HRV
derived features, with an overall better performance, except
for [55], which provides a better score for arousal using
ECG features. Many of the revised works ([57], [58], [59],
[61]) were based on the LSTM model, which was introduced
for this database in [52] and it is considered a state-of-
the-art model for dimensional affect estimation [7], [57]. In
these models, interesting variations have been proposed by
defining different loss functions, like the ε-insensitive loss in
[59] and the concordance correlation in [58], instead of using
square-error based functions. These networks use memory
inputs to learn from the evolution of the features at different
time scales, thus are suitable for estimating time series. In
our models, time context information was introduced using
the feature derivatives and frame stacking. This short time
context provided enough information to achieve competi-
tive results. Moreover, our methods may be more robust
when long time recordings are not available. Other works
use DNN models [56] and combinations of DNN and LSTM

[57]. The SVR with linear kernels is also popular for this
task, using L2 [35] and L1-regularized [54] loss functions.
One of the outstanding results for arousal is a subject-level
fusion (S-fusion) strategy using SVR, achieving a wide dif-
ference with other works [55]. However, authors state that
the model lack of generalization capabilities, not being able
to reach the baseline results of the test partition. This can
be explained by the final stage of the model training, which
was adjusted using the same developing partition (which
was used to measure the performance), thus overfitting
the model. On the contrary, works like [63] uses a cross-
validation stage to perform hyper-parameter optimization
and thus recognition rates for unseen test data are more
predictable. The most recent work, which is also better than
the others in valence prediction, is an end-to-end approach
[64]. In that work, convolutional and recurrent networks are
used to learn features and time dynamics directly from HRV
signal, thus avoiding hand-made features.

Related to the discussion on two-dimensions models
(Section 5.2), an output-associative RVM (oaRVM) was pro-
posed in [62]. This model is trained using a feed-back of
both arousal and valence estimations, as proposed in [79] for
audiovisual features. They show that their two-dimensions
approach achieved an improvement compared to other
single-dimension models. However, authors from [58] could
not find important differences in recognition performance
between single and two-dimensions approaches for the
reported modalities. In our work, the two-dimensions ap-
proach is of importance in two cases. First, using both target
variables in sSOM makes it possible to visualize relation-
ships with the multidimensional feature space. Secondly, we
show that there is a small improvement in the case of a new
session to be estimated in real-time, without normalization
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in a session basis. Moreover, there is practically no increase
in the computational cost of training the proposed models
for simultaneous arousal and valence estimation in contrast
with the heavier computational cost of oaRVM.

The available results on the test partition are shown in
Table 6. It can be seen that our methods improved the state-
of-the-art on this partition. Among them, nELM approach
achieved the best estimations. This could be explained by
their random hidden layer generation, providing optimal
solutions with good generalization. The sSOM method also
achieved competitive results. The patterns between features
and targets were effectively modeled with the sSOM struc-
ture and the unsupervised training. Summarizing the results
of Table 6, estimation of both targets using only HRV was
effectively improved with the proposed methods.

6 CONCLUSIONS AND FUTURE WORK

In this work two new methods for affect recognition have
been presented, using features extracted only from the HRV.
A novel supervised self-organization model (sSOM) was
proposed to improve the recognition accuracy but also
to provide a graphical representation of relations between
features and targets. Contrary to a black-box model, the
sSOM represents a graphical superposition between sensed
data and affects. Given the sSOM properties, numerical and
categorical variables can be represented, making it a very
versatile model for HCI applications. Two novel methods
based on extreme learning machines (nELM and kELM),
were also applied to these tasks. These models were eval-
uated in classification and dimensional affect estimation,
providing competitive performance compared with state-
of-the-art works. In classification, the best results were
achieved by kELM in both arousal and valence. In the di-
mensional estimation task, proposed models outperformed
state-of-the-art results in the RECOLA test partition. sSOM
obtained very good performance according to the quanti-
tative measures and also provided an alternative way to
represent multidimensional data. nELM achieved the best
performance with a very low computational cost.

We already shown general properties of the methods
and results for classification and regression tasks. Moreover,
proposed methods can be used for several applications.
sSOM can directly combine features and labels of different
nature (categorical or numerical) making it a very versatile
model. It could be trained for example to model target
affects as engagement or boringness in conjunction with
personal traits categories. The graphical representation pro-
vided by this model could be exploited in real-time for the
communication of affects and personal states, where one
can manage to see a relation between the input space and
the labels. In addition, ELM proved to be as versatile as
SVM with a simplistic framework, as the ELM algorithm for
both regression and classification is very similar. It can also
manage additional dimensions in the output just by adding
an output unit. Moreover, these models have shown that it is
possible to face affect recognition using only HRV. The pos-
sibility of using a physiological signal like this is promising
for out-of-the-lab applications. With better performance on
HRV signals and the advances of wearable technology, real-

world HCI applications could be seen with such a simple
equipment as a wrist-band or a distant web-cam.

In future works we will investigate ways to combine
multi-rater information. The point-to-point agreement be-
tween raters may be an important clue to determine au-
tomatically the confidence around an affect estimation and
improve training. Another topic for further research is to
improve the dimensional estimation of valence, for which
new methods for capturing the temporal dynamics should
be explored.
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