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Abstract

The success of machine learning algorithms strongly depends on the feature ex-

traction and data representation stages. Classification and estimation of small

repetitive signals masked by relatively large noise usually requires recording

and processing several different realizations of the signal of interest. This is one

of the main signal processing problems to solve when estimating or classifying

P300 evoked potentials in brain-computer interfaces. To cope with this issue

we propose a novel autoencoder variation, called Coherent Averaging Estima-

tion Autoencoder with a new multiobjective cost function. We illustrate its use

and analyze its performance in the problem of event related potentials process-

ing. Experimental results showing the advantages of the proposed approach are

finally presented.

Keywords: Coherent Averaging, Artificial Neural Networks, Event Related

Potentials, Brain Computer Interfaces, Autoencoders

1. Introduction

Coherent averaging (CA) is a widely used technique to recover a repetitive

response masked by uncorrelated noise. It dates back to the early 50’s [1] and it
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has become a classic processing strategy in several fields. It consists on averaging

several responses to a repetitive stimuli, synchronizing their phases according

to the stimulus time.

One of the main assumptions of CA is that the signal of interest x : [0, T ]→
R

s (where s is the number of sensors) can be modeled as x(t) = r(t) + a(t),

where r(t) is the response to the stimuli and a(t) is the additive noise. If r(t) is

time invariant and a(t) is uncorrelated with the response, stationary and with

zero mean, CA improves the signal-to-noise ratio (SNR) of x(t). The variance of

an estimation of r(t) obtained using CA will be reduced by a factor
√
K, where

K is the number of samples used for averaging [2]. However, adding realizations

is time consuming since the process under study must be repeated to record

each realization. In general it is highly desirable to obtain estimations in the

least possible time, and when K is large, the cost can become prohibitive.

The CA technique has been successfully used in many applications. For in-

stance, it was used for noise reduction in mechanical signals for failure detection

[3], in radar applications to improve the SNR [4], etc.

In the context of biomedical signals, particularly for electrocardiographic

signals, CA has been used for detection of ventricular late potentials, fetal

electrocardiogram estimation, prediction of ventricular arrhythmias, monitor-

ing during surgery, and other direct applications [5], as well as for estimation of

template waveforms [6].

Since its beginning CA has been applied for estimating the morphology of

evoked potentials (EP) [7]. This is a task CA is well suited for, since EPs are

fairly repetitive, they can be elicited, so there is a way to know precisely when

they will happen, and they are masked by noise which is uncorrelated with the

stimuli with a usually very low SNR.

A brain computer interface (BCI) is a device that provides a direct link be-

tween the brain of its user and a computer [8]. A BCI can be based on different

physiological phenomena, like the somatosensory event related potential (ERP)

called P300. When a P300-based BCI uses electroencephalographic (EEG) sig-

nals, CA is commonly used to improve the SNR. The translation algorithms,
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which convert the brain signals into commands, occupy a central role in the BCI

and make use of machine learning algorithms.

An artificial neural network (ANN) is a machine learning algorithm consist-

ing of simple interconnected parts called neurons. ANNs where more than one

layer of neurons are stacked, date back to the 60’s and were popularized with the

backpropagation algorithm (BP) [9]. A particular type of ANN to consider is

the so-called autoencoder (AE), which tries to replicate the input in the output

with at least one constraining hidden layer to prevent the network from learning

the identity function. The basic AEs can be modified by introducing variations

either in the network architecture and/or in the training strategy. The simplest

form of AE is that of a feedforward ANN with one hidden layer with less units

than the input (this is the simplest constraint) trained using BP.

Even though feedforward ANNs with at least one hidden layer have long

been known to be universal approximators [10] they were outperformed and

lost popularity to other machine learning techniques. Hardware advances, the

availability of large amounts of data and deep learning techniques [11], have al-

lowed the resurgence of ANNs, giving them back a protagonical role in the last

10 years. Moreover, deep ANNs captured the attention of the whole scientific

community after improving well known benchmarks reached by traditional tech-

niques and wining several international application competitions. An historical

survey on ANNs and particularly on deep learning can be found in [11].

The recent resurgence of ANNs has been reflected in the BCI community in

some ideas that were adapted to solve EEG pattern recognition problems. In

[12] convolutional neural networks (CNN) make use of the spatial and temporal

correlations in EEG signals to learn spatial and temporal filters for optimizing

recognition rates. In [13] deep belief networks were used as the weak classifiers

of an AdaBoost ensemble to improve the recognition rate of motor imagery data.

To cope with missing data in EEG signals (which can be the result of extreme

artifacts when a whole segment of signal is discarded), an AE variant called

denoising autoencoder (DAE) was used by Li et al. in [14]. In this work the

authors use simulated data to show that the spectral power can be satisfactorily
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estimated from incomplete data, and real motor imagery data, to show that the

results obtained with the AEs are comparable with those obtained using support

vector machines (SVMs).

Based on the classic CA and AE methods, in this article we propose a new al-

gorithm to improve the classification and estimation of small repetitive signals

masked by large noise. The cost function of this new ANN, which through-

out this work we shall refer to as Coherent Averaging Estimation Autoencoder

(CAEA), includes a reconstruction, a discrimination and a sparsity terms, mak-

ing its training a complex multiobjective optimization problem. A BCI problem

is proposed as application of this new method. Here the CAEA is used to clas-

sify and process both real and artificially generated data. A search for suitable

hyperparameters is also performed, and guidelines for their tuning are provided.

In Section 2 an introduction to BCIs is given and, within this context,

the importance of the processing of small signals masked by large noise is ex-

plained. Some basic background is introduced regarding the building blocks of

the CAEAs in Section 3. In Section 4 the proposed architecture is presented

and its relevant features are explained. The data and criteria with which the

CAEA was tested are presented in Sections 5 and 6 respectively. In Section 7 the

strategy followed to adjust the ANN hyperparameters is depicted. The usage

of the CAEA is exemplified and the corresponding results presented in Section

8. Finally some closing remarks and conclusions are presented in Section 9.

2. Brain Computer Interfaces

A BCI can be roughly defined as a system that translates brain signals

into new kinds of outputs. Roughly speaking a BCI can be divided into four

blocks [15]. The first block (I) is the brain signal acquisition system. The

second block (II) consists of the feature extraction system, whose purpose is to

enhance the discriminative information while discarding the useless information

contained in the brain signals. The third block (III) is the translation system

which classifies the features provided by the previous block into the prediction
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of the user’s intent. The second and third blocks are often combined since

several classification algorithms include their own feature extraction methods.

The fourth block (IV) is the system which executes the predicted command

or intention. A block diagram of a general BCI is shown in Figure 1a. This

article focuses mainly on the second block, which is essential to improve the

classification and the overall performance of the system.

Although the use of EEG signals has several advantages over other brain-

generated signals (such as electrocorticographic signals) it presents several draw-

backs such as their low SNR, they can be contaminated by artifacts coming

from eye movements or from electromyographic activity, and they have low spa-

tial resolution [16]. These drawbacks hinder the implementation of an efficient

electroencephalography based BCI and promote the development of suitable

methods to extract useful information from the data.

The performance of a BCI is highly dependent on the feature extraction

technique and on the classification method used to predict the user’s intention.

Different approaches have been followed for optimizing these processes. Com-

prehensive reviews up to 2007 on classification and feature extraction methods

proposed for BCIs based on electroencephalography can be found in [17] and

[18], while a more recent review can be found in [19]. Much further work has

been done in the area. Worth mentioning are the articles on sensor selection

methods and spatial filtering [20, 21, 22, 23] and the feature extraction and

dimensionality reduction methods [24, 25, 26]. Lately Bayesian methods have

also been successfully applied to EEG signal processing [27, 28], particularly in

the context of BCIs [29, 30, 31, 32].

2.1. P300-Speller and Coherent Averaging

When an infrequent or particularly significant auditory, visual or somatosen-

sory stimulus is mixed with frequent or routine stimuli, an ERP is typically

evoked over the parietal cortex. This phenomenon can be used to implement a

BCI called P300 speller, in which the user is prompted to select symbols from a

matrix in a computer screen. The P300 speller, was introduced for the first time
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Signal
Acquisition

TranslationFeature
Extraction

Application

EEG Command

Feedback

(I) (II) (III)

(IV)

1a 1b

Figure 1: (a) General BCI block diagram. (b) P300-Speller.

by Farwell and Donchin [33]. Here the subjects are presented with a 6× 6 char-

acter matrix as illustrated in Figure 1b. Several variations of the P300 speller

have been introduced, such as the single character, the checkerboard, the region

based and the mismatch presentation paradigms [34, 35].

To determine the chosen symbol, ERP based BCIs must be able to determine

if a signal collected after an stimuli (named a post-stimulus signal) contains an

ERP or not. Although a perfect post-stimulus signal classification rate would

result in a perfect symbol prediction rate, no classification method is close to

achieving this goal. To improve prediction rate several blocks of flashes can be

presented and all the post-stimulus signals corresponding to the same flashed

row/column coherently averaged [36]. Although this process attenuates uncor-

related noise and facilitates classification, it is usually highly time consuming.

If a good accuracy rate could be achieved for single trial ERPs classification (i.e.

with just one block of flashes), the information transfer rate of the BCI could

be significantly increased. One way of achieving this goal is by approximating

the output of an hypothetical coherent averaging method by means of an ANN

with just one post-stimulus signal as input. More details on this idea are given

in Section 4.

6

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

I.
 E

. G
ar

ei
s,

 L
. D

. V
ig

no
lo

, R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

C
oh

er
en

t a
ve

ra
gi

ng
 e

st
im

at
io

n 
au

to
en

co
de

rs
 a

pp
lie

d 
to

 e
vo

ke
d 

po
te

nt
ia

ls
 p

ro
ce

ss
in

g"
N

eu
ro

co
m

pu
tin

g,
 V

ol
. 2

40
, p

p.
 4

7 
- 

58
, M

ar
, 2

01
7.



3. Relevant Algorithms

3.1. Basic Units

The basic artificial neurons used in this article implement the well known

weighted averages with an activation function (AF) σ given by:

y = σ

( n
∑

i=1

wixi + b

)

(1)

where w = (w1, ..., wn)
T ∈ R

n is the weights vector, b ∈ R is the bias and

x = (x1, ..., xn)
T is the input. The identity and sigmoid units were used as AFs.

3.2. Softmax Units

The softmax function (SF) is a generalization of the logistic function from

one to several dimensions [37]. As the logistic function, the SF can be associated

to probabilities and can be implemented using an ANN design. A softmax

artificial neural network (SNN) tipically asociates each class to an output unit.

Each output can be interpreted as the relative probability that the input pattern

corresponds to a given class. The output of the ℓth softmax unit in a SNN with

M outputs is the function hℓ : R
n × R

M×n → R defined by:

hℓ(x; Γ)
.
=

eΓℓ,:x

∑M

j=1 e
Γj,:x

, (2)

where Γ ∈ R
M×n is a matrix whose components are the softmax weights and

Γj,: is its j
th row.

Let X
.
= (x1, ..., xN ) and y

.
= (y1, ...yN )T where xi = (xi

1, ..., x
i
n)

T and yi

are the ith sample and its corresponding label, respectively. Let also Ij(yi) = 1

if yi = j and 0 otherwise. The cost associated with this network is then the

function JS : Rn×N × R
N × R

M×n → R defined as:

JS(X, y; Γ)
.
= − 1

N

N
∑

i=1

M
∑

j=1

Ij(y
i) log

(

hj(x
i; Γ)

)

, (3)

where N is the number of samples and M is the number of output units of the

SNN or the number of categories in the problem.
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3.3. Basic Autoencoder

As mentioned before, basic AEs are ANNs that try to replicate the input in

the output, with at least one constraining hidden layer to prevent the network

from learning the identity function. Let Θ ∈ R
(n+1)×m and Φ ∈ R

(m+1)×n be

defined as Θ = [WT
Θ , bΘ]

T and Φ = [WT
Φ , bΦ]

T where WΘ ∈ R
n×m, bΘ ∈ R

m,

WΦ ∈ R
n×m and bΦ ∈ R

n are the weight matrices and bias vectors for the

encoder and the decoder, respectively. Let f(·; Θ) : Rn → R
m be the encoder

function mapping the inputs to the code space, g(·; Φ) : Rm → R
n the decoder

function mapping the code back to the input space, and L : Rn×Rn → R the loss

function. With this notation, and using the quadratic error as loss function (i.e.

L(x, y) = ‖x− y‖2), the cost function JA : Rn×N ×R
(n+1)×m ×R

(m+1)×n → R

is defined as:

JA(X; Θ,Φ)
.
=

1

N

N
∑

i=1

∥

∥g
(

f(xi; Θ); Φ
)

− xi
∥

∥

2
(4)

where X and N are as before.

3.4. Sparse Autoencoder

The simplest way of constraining the hidden representation of an autoen-

coder is by reducing the number of features of the code (i.e. by making m < n).

Another (non-exclusive) constraint consists of enforcing sparsity over the code.

Although there are several ways of promoting sparsity, a widely used approach

consists of using the Kullback-Leibler divergence (KLD) to define the following

sparsity promoting penalization term:

PS(X,Θ; ρ)
.
=

m
∑

j=1

KL(ρ‖ρ̂j) =
m
∑

j=1

(

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j

)

(5)

where ρ is the desired average activation and ρ̂j = ρ̂j(X; Θ) = 1
N

∑N

i=1 fj(x
i; Θ)

is the average activation of the jth hidden unit over the training set. To ensure

that (5) is well defined, it is convenient to exclude 0 and 1 as possible values of

fj , ∀j = 1, ...,m.
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3.5. Denoising Autoencoder

DAEs are trained to reconstruct the clean signals xi ∈ R
n from their cor-

responding artificially corrupted versions x̃i ∈ R
n [38]. In particular, choosing

the quadratic square error as loss function, yields the following cost function:

JDAE(X, X̃; Θ,Φ)
.
=

1

N

N
∑

i=1

∥

∥g
(

f(x̃i; Θ); Φ
)

− xi
∥

∥

2
, (6)

where X, Θ and Φ are as previously defined and X̃
.
= (x̃1, ..., x̃N ).

DAEs are suitable to find robust features for clean patterns. However in

cases where the original signals are already significantly corrupted by noise,

further corruption does not necessarily improve the representation.

4. Coherent Averaging Estimation Autoencoder

A simple model of ERPs assumes that every stimulus generates the same

waveform with the same latency, masked with uncorrelated noise which is also

uncorrelated with the stimulus. The CA method consists of averaging several

realizations of the same process, synchronizing them in relation to the stimuli,

what attenuates the amplitude of the noise, so enhancing in-phase repetitive

patterns. Although it is common to use CA in order to improve SNR of ERPs,

the acquisition of each sample is significantly time consuming which, in the

context of BCI, reduces the attainable bit rate. Usually, for BCI applications,

between five and fifteen samples are averaged. However, in this work we intend

to use only one trial to perform the classification. For this, we propose a method

to estimate coherently averaged signals using only one signal.

We define a CAEA as an ANN with one hidden layer in which the number of

outputs and inputs coincide. In this work we propose to train CAEAs as feature

detectors. Unlike the AEs, in which the input is set as the desired output, a

coherent average of inputs of the same class is presented. Following this idea,

the network cost term due to reconstruction is defined as:

JR(f(X; Θ); Φ)
.
=

1

N

N
∑

i=1

∥

∥

∥

∥

∥

g
(

f(xi; Θ); Φ
)

−
xi +

∑

jǫRK
i
xj

K + 1

∥

∥

∥

∥

∥

2

, (7)
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where RK
i denotes a random subset of K indices corresponding to K different

patterns (columns of X) of the same class as xi, excluding xi itself. This cost

function is similar to the one corresponding to the DAEs (6), except that instead

of corrupting the input, we estimate a denoised output and propose it as target.

In CAEAs, we use as encoding function f(x; Θ) = σ(WT
Θx + bΘ) (here,

the AF σ applied to a vector is meant to be its componentwise action), where

WΘ ∈ R
n×m is the matrix of weights connecting the input and the hidden

layer and bΘ is the bias vector (as defined in Section 3.3). The components of

σ(WT
Θx + bΘ) are called hidden features. Analogously, the decoder function,

defined as g(f ; Φ) = φ(WT
Φ f(x; Θ)+ bΦ), where φ is another AF, transforms the

feature representation back to the input space. Here, one should pay special

attention to the fact that the range of the AF φ must contain all possible values

of the input x. After training, the decoding layer may be discarded.

In order to ensure that the CAEAs maintain discriminative information,

their latent representations are taken as inputs for softmax outputs. The ℓth

softmax unit output (see (2)) is fed with the CAEAs hidden layers activations,

that is:

hℓ(f(x; Θ); Γ) =
eΓℓ,:f(x;Θ)

∑M

j=1 e
Γj,: f(x;Θ)

, (8)

where, as before, Γ is the softmax weight matrix. The cost term associated to

the discrimination power is then defined as:

JD(f(X; Θ), y; Γ)
.
= − 1

N

N
∑

i=1

M
∑

j=1

Ij(yi) log
(

hj(f(x
i; Θ); Γ)

)

, (9)

where M , Θ, Γ, y and Ij(·) are all as previously defined.

During training the softmax error signal is backpropagated through its con-

nections to the encoding weights, steering them towards a discriminative repre-

sentation. As for the decoding layer, the softmax layer may be discarded after

the CAEA is trained.

The basic structure of a CAEA is presented in Figure 2a. The inputs are

taken from the data and transformed through f(·; Θ) to get the feature repre-

sentation. The feature representation is then transformed through g(·; Φ) which
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Data Average

xj lj

f(·; Θ) g(·; Φ)

h(·; Γ)

{xj , xi : i ∈ RK
j }

Input
Layer

Hidden
Layer

Output Layer

C1

Cs

C1

Cs

C1

Cs

2a

Input
Layer

Hidden
Layer

Softmax

Data

f(·; Θ)

h(·; Γ)

2b

Input
Layer

Hidden
Layer

Output Layer

Data

f(·; Θ) g(·; Φ)

2c

Figure 2: (a) CAEA during training. Target samples are represented with solid blue lines

and no target samples with red dashed lines. (b) CAEA during operation used for feature

extraction for classification. (c) CAEA during operation used for estimation.

attempts to get a denoised version of the presented input. The desired denoised

version is estimated through CA. The feature representation is also used to feed

the softmax layer h(·; Γ), which tries to predict the corresponding label. Samples

of target and non-target input and output signals as well as their correspond-

ing desired outputs obtained through CA are depicted in the aforementioned

Figure. Figures 2b and 2c depict CAEA during operation, for classification and

estimation, respectively.

A regularization penalty is applied to all the weights in the network and

a sparsity penalty is applied to the hidden representation layer. With all the

11
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restrictions the final network cost function ends up being:

J(X, y; Θ,Φ,Γ)
.
=JR(f(X; Θ); Φ) + γJD(f(X; Θ), y; Γ) + βPS(f(X; Θ); ρ)

+ λΘ‖Θ‖2 + λΦ‖Φ‖2 + λΓ‖Γ‖2,

(10)

where γ, β, λΘ, λΦ and λΓ are all positive hyperparameters adjusting the relative

weight of each term and PS is the sparsity promoting penalizer defined in (5).

The training process of the CAEAs, which is the typical for AEs, is depicted

in Algorithm 1, below. In general, the stopping condition is met if, for a given

number of subsequent iterations, the cost computed using the validation data

does not improve.

Depending on the number of hidden units and the size of the input patterns

the number of parameters in the network could end up being quite high. In

fact, there are in principle m(M + 2n + 1) + n free parameters in the model,

corresponding to the components of encoding, decoding and softmax weight

matrices and vectors, namely WΘ, bΘ, WΦ, bΦ and Γ. Hence, any reasonable

assumption leading to a reduction in the number of free parameters is highly

desirable since, on one hand this would in turn, reduce the computational cost

of the optimization processes for finding the optimal parameter values, and on

the other hand it would diminish the chance of overfitting. One way of reducing

the number of free parameters is by enforcing symmetry in the encoding and

decoding matrices, i.e. by imposing WΘ = WT
Φ . This assumption is reason-

able because, since both the original patterns and their averages have similar

waveforms and belong to the same space (i.e. Rn), the decoder action could be

thought of as the inverse of the encoder action.

5. Databases

To adjust the parameters and test the performance of the proposed network

we used two data sets, which are described below.
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Algorithm 1 CAEA training

Initialize Θ0,Φ0,Γ0

stop ← False

i← 0

while stop = False do

Pick N samples from the training set and construct inputs minibatch Xi

Pick the corresponding N labels yi

Coherently average Xi to construct desired outputs minibatch Y i

Compute the cost J i (10) and its gradient ∇(Θ,Φ,Γ)J
i

Compute optimization steps ∆i
Θ, ∆

i
Φ and ∆i

Γ through J i and ∇(Θ,Φ,Γ)J
i.

Θi+1 ← Θi +∆i
Θ

Φi+1 ← Φi +∆i
Φ

Γi+1 ← Γi +∆i
Γ

i = i+ 1.

if stopping criterion is met then

stop ← True

return Θi, Φi and Γi

5.1. Competition Database

With the objective of popularizing BCIs and improving the signal processing

and classification pipelines between 2001 and 2008 the Berlin Brain-Computer

Interface project team organized four competitions centered around classifica-

tion for EEG based BCIs. For the third edition, a data set with EEG signals

recorded with the BCI2000 system [39] using the P300 speller paradigm was

released [40]. This data set consists of EEG data sampled at 240 Hz, recorded

from 64 channels, of which only ten channels were used (Fz, C3, Cz, C4, P3,

Pz, P4, PO7, PO8 and Oz). Each one of two individuals (A and B) spelled a

total of 85 training characters and 100 test characters, with 15 blocks of flash-

ing per character. This procedure yields a total of 15300 training post stimulus

signals and 18000 testing post stimulus signals per individual, with a target to
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non-target ratio of 1:5. Further details about the data acquisition setup as well

as the data set itself are available at the competitions’ webpage1.

5.2. Synthetic Database

To adjust the hyperparameters of the network, we initially used an artificial

data set. This was decided in order to avoid complexities such as imbalanced

data sets, artifacts, limitations in the number of training samples, extremely

noisy and/or mislabeled samples, etc. on the first approach to the problem.

This way we were able to reduce the search space for the network configuration

and hyperparameter setting for the real data.

To generate this artificial data we fed the linear prediction algorithm with

the competitions’ data and estimated the parameters of several linear autore-

gressive (AR) systems to model the background EEG for each channel [41]. The

optimal orders of the systems were individually set using the Akaike informa-

tion criterion. The AR models were fed with white noise and the outputs were

used as the simulated background EEG. This process was performed only for

ten channels (Fz, C3, Cz, C4, P3, Pz, P4, PO7, PO8 and Oz) and for individual

A. Since the white noise signals fed to each channel filter are independent, the

background noise signals corresponding to each channel are spatially uncorre-

lated, as opposed to the signals in the real registers where this correlation is

present. Figure 3 depicts the frequency responses of the model filters together

with the estimated power spectral density of the original signals (the shown

order corresponds to the order of each filter and the y-axis has log. scale).

Each synthetic ERP sample was generated by averaging five hundred ran-

domly chosen post-stimulus target signals. Note that the ERP samples have a

longer duration than the response and begin before their corresponding stimu-

lus. In order to avoid introducing border artifacts each sample was windowed

with an appropriately chosen gaussian window. Every second, a stimulus with a

0.5 probability of being target, was simulated. This resulted in a balanced data

1www.bbci.de/competition accessed June 1, 2016
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Figure 3: Estimated spectral power of original signals and frequency response of the linear

filters found using LPC.

set, as opposed to the real data set where the target to non-target ratio is 0.2.

Finally, for each one of the target samples a randomly chosen ERP synthetic

sample was added to the simulated background EEG.

Care was taken to maintain the average SNR of the artificial dataset close

to that of the original dataset. The SNR was estimated independently for each

channel and the average of the ten channels was -19 dB. Since each synthetic

sample was randomly generated, this artificial dataset is clearly more realis-

tic and harder to classify than any dataset with a similar SNR, obtained by

adding always the same ERP template. The training signals in the simulated

dataset were generated using template signals from the training samples in the

competitions data, while the testing signals were generated using those from

the corresponding testing samples. Figure 4 shows four synthetic ERP samples

obtained from the training set for the Pz channel.

5.3. Pre-processing

Both the real and the synthetic data sets were pre-processed in the same

way. The pre-processing step started by filtering the data with an order 20

finite impulse response (FIR) filter with band-pass cut-off frequencies at 0.5

and 12 Hz (band-pass filtering is commonly used in EEG based P300 signal
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Figure 4: Synthetic ERP samples used to create the training set (Pz channel only).

processing). After filtering the data, single trials (both target and no target)

were segmented. Each segment begins with each stimulus and ends 750 ms later.

Since the data was sampled at 240 Hz and the highest frequencies present in

the P300 ERPs are significantly lower, there is much room for downsampling.

In fact for the hyperparameter search and the classification sections we decided

to downsample the artificial data to 24 Hz, reducing the number of features.

Each post-stimulus segment was then comprised by either 1800 or 180 samples,

depending on whether they were downsampled or not. Finally the segments from

every channel were concatenated into a single feature vector for each sample.

6. Evaluation of classification performance

To measure the goodness of the feature representations given by the CAEA

we tested the classification performance for three different classifiers, namely

the SNN, linear SVMs and the n-Nearest-Neighbors classifier (KNNC). The

SNN was a natural choice given the structure of the CAEA while the SVM

and KNNC were chosen based on popularity, simplicity and the fact that both

have few hyperparameters. The choice of the linear SVM allows us to examine

whether the fact of having softmax outputs in the CAEA gives the SNN any

particular advantage against other classifier with a separation surface of the

same complexity (linear). The choice of the KNNC let us observe if there are

differences between the usage of linear and non-linear classifiers before and after
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the feature extraction by the CAEAs.

The SNNs were trained using the limited memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) algorithm implementation included in the optimization pack-

age minFunc [42]. All the optimizer parameters were left to default with the

maximun number off iterations set to 400.

We used the SVM classifier implementation provided with LIBLINEAR [43]

with a MatLab interface. The kernel used was linear as all the configurations

available in the mentioned toolbox. All the parameters were left to default and

a bias term was added.

The KNNC implementation used is the one provided with PRTools [44]. The

euclidean distance was used to define the neighbors. The number of neighbors

was set to nine after evaluating the results obtained setting it to three, five,

seven and nine. In spite of the simplicity of the algorithms behind KNNC, it

can define highly complex separation hypersurfaces.

The performances of the proposed P300 binary classifiers was measured

using, the Specificity (Spe), Sensitivity (Sen), Precision (Prec) and Accuracy

(Acc), defined as:

Spe =
TN

FP + TN
, Sen =

TP

FN + TP
, Prec =

TP

FP + TP
, Acc =

TP + TN

NT
.

(11)

where TP , TN , FP and FN are the number of true positives, true negatives,

false positives and false negatives respectively and NT = FP+TP+FN +TN is

the total number of samples. Since in the case of the P300-Speller the available

data is imbalanced the balanced accuracy (BalAcc), was also computed. This

metric is designed to be insensitive to unbalanced data and can facilitate the

analysis of the results. It is defined as:

BalAcc =
Spe + Sens

2
. (12)

7. Network configuration and hyperparameters setting

It has been shown that the performance of some ANN architectures can vary

significantly with the choice of the hyperparameters [45]. As most ANNs, a
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CAEA has many hyperparameters and therefore, finding their “optimal” values

is often a complex and daunting task. Although some articles address this issue

giving practical recommendations and design guidelines [46, 47], each architec-

ture and each dataset has different “optimal” hyperparameters, and appropriate

procedures for their estimation are always needed. In this work we propose an

ad-hoc five-step approach for setting all hyperparameters. We briefly describe

those five steps below. First the main architecture design choices are made, i.e.

we choose the AFs and the value of the sparsity target ρ and we decide whether

the weights of the encoder and the decoder are tied (WΘ = WT
Φ ) or not. Sec-

ondly, an objective analysis supported by preliminary experiments leads us to

the choice of the number of averages K. Thirdly, we propose the weights ad-

justing the relative importance of the discrimination and sparsity terms of the

cost function (10), i.e. γ and β. Fourthly the regularization hyperparameters

of the penalization terms in the cost function, i.e. λΘ, λΓ and λΦ, are chosen

via the L-curve procedure [48]. Finally a grid search is performed to find the

“optimal” values for the remaining discrete hyperparameters, namely the num-

ber of hidden units m, the minibatch size N and L the maximum number of

iterations for each run of the optimizer. We now proceed to describe in detail

the implementation of each one of the five steps described above and the results

obtained.

Many AFs have been proposed for the units of a feed-forward ANN [47]. One

of the most known and widely used is the sigmoid, which is a smooth function

with bounded derivative in R. This AF provides numerical stability for the

training process since its derivative is always between zero and one. For ANN

with many layers this type of AF can lead to practical vanishing gradients, and

therefore other alternatives such as the ReLU are generally used. Since the

vanishing gradients are not a big problem for ANNs with few layers, sigmoid

units were used for the experiments described in this article.

The value of the sparsity target ρ was set to 0.1, following guidelines pro-

vided in [46]. As mentioned in Section 4, tying the weights of the encoder and

the decoder significantly reduces the degrees of freedom of the CAEA, and it
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can speed up the training process, at the expense of reducing the expressive

capabilities of the model. In this work we adjusted the hyperparameters for the

general (untied) network and then we appropriately modified them for the tied

case.

The hyperparameter γ associated with the discrimination term of the cost

function, was adjusted so that the first and second terms in the RHS of (10)

have similar magnitudes. Also the value of the hyperparameter β was set so that

the sparsity term (third term in the RHS of (10)) is approximately one order

of magnitude smaller than the reconstruction and discrimination terms. This

choice is justified by the fact that reconstruction and discrimination are preferred

upon sparsity. To estimate the magnitude of each term the cost function was

evaluated using the training data.

The number of averages taken for the output can have a big effect on the

learned representations. A first approach could be to set the number K of trials

to be averaged to a large value to get an output as clean as possible. However,

as K increases, the similarity between the input and the coherently averaged

desired output diminishes, which leads to a decrease in the CAEA performance

since no relation between the output and the input can be established during

learning. Experimental data has shown a markedly decrease in performance

for values of K larger than 3, reason for which throughout this work we took

K = 2.

After defining the architecture of the network a fine tuning of the regular-

ization parameters in the cost function can be performed. For this, a three-step

process by means of the L-curve method was implemented. First the values of

β and γ were fixed as previously described. Then, Θ was randomly initialized

to Θ0. In step 1, in accordance with the L-curve theory [48], λΓ was fixed to a

value λ0
Γ, taken approximately equal to that corresponding to the point of maxi-

mal curvature of the curve representing ||Γ||2 as a function of JD(f(X; Θ0), y; Γ)

parameterized by λΓ (see Figure 5, step 1). Then we computed:

Γ0
.
= argmin

Γ∈R2×m

(

γJD(f(X; Θ0), y; Γ) + λ0
Γ||Γ||2

)

. (13)
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In step 2 a similar procedure was used for estimating λΦ with λ0
Φ, a value

associated to the point of maximal curvature of the JR(f(X; Θ0); Φ) - ‖Φ‖2

curve parameterized by λΦ (see Figure 5, step 2). Then we computed:

Φ
.
= argmin

Φ∈R(n+1)×m

(

JR(f(X; Θ0); Φ) + λ0
Φ||Φ||2

)

. (14)

In step 3 the optimal value λ0
Θ of λΘ was estimated by the L-curve method as the

value corresponding to the point of maximal curvature in the curve representing

‖Θ‖2 as a function of JR(f(X; Θ); Φ) + γJD(f(X; Θ), y; Γ0) + βPS(f(X; Θ); ρ),

where Γ0 and Φ are as in (13) and (14), respectively, computed in steps 1 and

2 above (see Figure 5, step 3). For these three steps the training process was

appropriately modified as we describe next. First, instead of splitting the data

into minibatches, all the training data was used and the training process was

stopped at the first iteration leading to a negligible cost improvement. The

cost function was modified as well, since in each step only one of the parameter

matrices (i.e. Γ, Φ or Θ) was adjusted. Note that none of the hyperparameters

m, N or l was set at this point. Although the values of N and l are not used

with this modified training process, it is clearly unavoidable to set the value of

m. We performed the three step L-curve process for several values of m (some

larger, some equal and some smaller than the size of the input patterns) and

found that the optimal values of the penalization hyperparameters (i.e. λΓ, λΦ

and λΘ) are essentially independent of m. The L-curve method is extensively

used in the inverse problem community but, to the best of our knowledge, no

other work extended its use to the context ANNs hyperparameters search.

Finally, a grid search was performed to set the remaining three hyperparam-

eters (i.e. m, N and l). The search for the optimal value of m was performed

between 18 and 360 hidden units (corresponding to one tenth and twice the

number of input features, respectively). The search for N was performed for

minibatches between 10 to 5000 samples as well as using all the training data.

The search for l was performed between the values of 2 and 1000. In these ex-

periments the CAEAs were trained using the conjugate gradient method (CG)

provided with the minFunc toolbox [42]. The training data was split into train-

20

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

I.
 E

. G
ar

ei
s,

 L
. D

. V
ig

no
lo

, R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

C
oh

er
en

t a
ve

ra
gi

ng
 e

st
im

at
io

n 
au

to
en

co
de

rs
 a

pp
lie

d 
to

 e
vo

ke
d 

po
te

nt
ia

ls
 p

ro
ce

ss
in

g"
N

eu
ro

co
m

pu
tin

g,
 V

ol
. 2

40
, p

p.
 4

7 
- 

58
, M

ar
, 2

01
7.



Step 1

0

1

2

×102

0.5 0.6 0.7

10−1

Step 2

0

4

8

×103

7 9 11

10−2

Step 3

0

2

4

×104

22 26 30

6 × 10−4

||
Γ
||
2

||
Φ
||
2

||
Θ
||
2

JD JR JR + γJD + βPS

Figure 5: L-curves used to obtain the regularization hyperparameters.

ing and validation subsets, containing 90% and 10% of the data, respectively.

These training and validation subsets were subsequently used for all models.

In order to reduce uncertainty, all the models with the same value of m where

trained with the same initial weights. To assess the performance of the different

CAEAs, we used the hidden feature representations that each one produced.

Using the transformed versions of the training and validation data, a SNN was

trained and evaluated for each CAEA. The goodness of each CAEA was then

measured in terms of the classification performance of its corresponding SNN.

The parameters for the “best” (in terms of the performance over the val-

idation data) models are presented in Table 1. Regarding these results, it is

important to point out that, although (as it can be seen in Table 1) the clas-

sification performance using batches containing all the training data was the

best, the improvement with respect to the performances using minibatches was

never greater than 2 %. Hence, in some cases were the number of training sam-

ples is large, available computing resources and efficiency issues may yield more

appropriate the use of minibatches.

It should be noted that the differences between the obtained parameters

using real and simulated data for all the experiments were small. This suggests

that CAEA’s hyperparameters are robust and stable under different data sets.

Moreover the strategy of performing a first search using simulated data was

valuable. In fact only the hyperparameters obtained with the simulated data

were used for the informed results.
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Table 1: List of architecture definitions and hyperparameters chosen for the CAEA.

Simulated Data
Real Data

Subj. A Subj. B

AF for hidden units Sigmoid Sigmoid Sigmoid

Tied weights? False False False

ρ 0.1 0.1 0.1

γ 20 20 20

β 100 100 100

K (# of averages at output) 2 2 2

λΘ 6× 10−4 10−2 4× 10−5

λΦ 10−2 2× 10−2 10−1

λΓ 10−1 4× 10−2 2× 10−1

m (# hidden units) 90 45 90

N (Minibatch size) All Data 800 All Data

l (limit of optimizer iterations) 2 250 50

8. Experiments and Results

8.1. P300 classification

Since CAEA are primarily designed to serve as feature representation blocks

for posterior classification, we tested their capabilities in this regard. Following

the procedure presented in Section 7 the CAEA were trained using the setting

given in the second column of Table 1. Note that for the real data set the same

experiments were conducted using the optimal hyperparameters found as well

(columns 3 and 4, Table 1), however the results obtained were similar in both

cases. Then, the CAEAs latent variables were used to train and test SNNs,

SVMs and KNNCs.

To generate results for comparison purposes two set-ups were used: one using

the raw data and another one using the data coherently averaged twice (each
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sample was averaged with a sample belonging to the same class). These signals

were also used to train and test SNNs, SVMs and KNNCs. It is reasonable to

compare the results obtained using the raw data with those obtained by the

CAEA, while the averaged data provides a “ceiling” for the performance since

it has a better SNR than the signals fed to the CAEA.

Both data sets are originally separated into the corresponding training and

test sets, so hold-out validation was used. All the results presented correspond

to the performances over those test sets, which were not used for adjusting hy-

perparameters nor for model selection. Each training data set was randomly

split into two subsets: one (consisting of 90% of the data) to be used for proper

training and the other (consisting of the remaining 10% of the data) for valida-

tion. The process of splitting the data and training was repeated 100 times for

each configuration. The best models for each set-up were then chosen, based

upon the performances obtained for the validation sets, and they were subse-

quently evaluated using the test sets. All available training and testing samples

were used in the experiments, i.e. the simulated data set consisted of 10000

training samples and 10000 testing samples and the real data set consisted of

15300 training samples and 18000 testing samples for both subjects (A and B). It

should be noted however that, while the simulated data set is balanced, the real

data set is not. For the experiments described in this section the downsampled

data was used, so the dimension of the input patterns n is 180.

The results over the test set for the best models using the simulated dataset

are summarized in Table 2. As it can be seen, the performance obtained using

KNNCs is poorer for all configurations. However, it is important to remark

that when using the CAEAs latent variables with KNNCs, the performance is

improved even in comparison to a KNNCs trained using averages of two trials.

Moreover, the latent representations computed through the CAEAs allowed us

to improve the classification accuracy, specificity and precision obtained with

the SNN and the SVM using single trials. Furthermore, specificity and precision

are improved by CAEA+SNN (using single trial) in comparison with the results

obtained for SNNs using two trials. These results suggest that the proposed ap-
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Table 2: CAEA results for P300/no P300 classification using simulated data. 1T, 2T indicate

single-trial and two-trials average respectively using the simulated data.

Method Spe% Sen% Prec% Acc%

SNN (2T) 72 97 77 84

CAEA + SNN (1T) 85 81 85 83

SNN (1T) 65 91 72 78

SVM (2T) 91 89 91 90

CAEA + SVM (1T) 84 84 84 84

SVM (1T) 82 81 82 82

KNNC (2T) 79 77 78 78

CAEA + KNNC (1T) 67 95 74 81

KNNC (1T) 67 65 66 66

proach is able to enhance the relevant information, yielding better classification

results.

Although most of the articles featuring classification methods for data recorded

using the P300-Speller report the error rate on character classification, we be-

lieve that directly measuring the performance of the binary (target/no-target)

classification system is easier to analyze in the context of the proposed system

(given that our objective is to process and classify ERPs). The results over the

testing set for the best models using the real data set are summarized in Table

3. Here we present the results obtained for both subjects as well as the averages

using the CAEA softmax outputs and two state of the art methods. The first

of the comparison methods is described in [26], where the authors focus on a

feature extraction method using Local Discriminant Bases (LDB) using wavelet

packet features, to subsequently classify the samples using a linear discriminant

analysis classifier. This technique obtains the best results among several other

approaches tested by the authors. We replicated the method and tested it using

the same data we used for CAEA.
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Table 3: Results for P300/no P300 classification using the real data.

Method
Spe% Sen% Prec% BalAcc%

A B avg. A B avg. A B avg. A B avg.

LDB 65 65 65.0 63 75 69.0 26 30 28.0 64 70 67.0

CNN 69 77 73.0 61 64 62.5 29 35 32.0 65 70 67.5

CAEA 68 73 70.5 62 70 66.0 28 34 31.0 65 71 68.0

The second strategy used for comparison is presented in [12] and, as men-

tioned in the introduction, consists on a CNN that performs the feature extrac-

tion and classification in a single end-to-end system. Although several different

networks are proposed in [12], only one (called CNN-2a in the original article)

makes use of limited predefined number of the 64 original sensors provided in the

database. Since the same approach was taken for this work, we chose precisely

that network for comparison. The numbers of TP, TN, FP and FN are informed

in [12] and we used those results to compute the other performance estimators.

As it can be seen in Table 3 the three methods yield similar performances in

terms of the final balanced accuracies, while higher variations can be observed

in the specificities and sensitivities.
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Figure 6: Spatio-temporal representations of the weights of nine hidden units of a trained

CAEA.
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Figure 6 shows the weights of nine neurons of the encoding layer of a CAEA

trained with the real data from subject A. The weights were rearranged from

vectors to matrices in order to accommodate different channels in different rows,

and different time samples in different columns. The values of the weights are

given by the colormap, where green represents zero and blue and red represent

extreme negative and positive values, respectively. As expected, the neurons

seem to detect characteristic spatio-temporal patterns related with the different

classes. For example, some neurons emphasize the temporal area near the P300,

while others do the opposite. Some horizontal stripes also indicate the relative

importance of the information provided by different channels.

For the models proposed here using the real data set the average training

time was around 30 seconds on an Intel Core i7-2600 Quad-Core Processor 3.4

GHz. This training time depends on the parameters of the network and on the

initialization of weights. The model was implemented in MatLab without any

special hardware optimization. The CAEA was also trained and tested with

the hyperparameters given in Table 1 but tying the weights of the encoder and

the decoder. With this configuration the classification performance was slightly

worse but the training time was reduced.

To evaluate the dependence of the CAEA on the number of training samples

we trained the model with reduced subsets of the simulated database. The total

number of samples ranged from 20000 (all samples available) to 2700 samples.

The performance was degraded by less than 10 %, suggesting that the model

would perform relatively well in small sample-size scenarios. This is most likely

due to to the regularizations and constraints applied [30].

8.2. Event related potentials estimation

To get a first glance about the network reconstruction capabilities we trained

and evaluated the outputs of the CAEA, using the synthetic data set. Since the

waveforms are difficult to be visually evaluated if only 18 temporal samples per

channel are used, we performed the process using non subsampled data with

180 temporal samples per channel, yielding a total of 1800 features in the input
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Figure 7: Outputs with their corresponding inputs and desired outputs for a trained CAEA

for channel Pz.

and output layers. The CAEA used to obtain the outputs shown in Figure 7

had the same hyperparameters used in Section 8.1 (see Table 1), except for the

number of hidden units, which was set to half of the dimension of the input

patterns.

Figure 7 shows the features corresponding to channel Pz for the outputs

obtained with the CAEA, their corresponding inputs and their desired outputs

for a target and a non-target sample. In the case of this CAEA the desired

output was computed by averaging three post-stimulus signals. Due to the

presence of the P300 wave, target samples commonly have larger amplitudes

than their non-target counterparts. Figure 7 shows how this difference, which

could be useful for classification purposes, is enhanced by the CAEA.

In Figure 7 we can also observe that the network ignores fast input changes,

behaving in this sense like a low pass filter. To further examine this phenomenon,

we fed the trained CAEA with Gaussian white noise of an amplitude similar to

that of the original signals and computed the power spectral density (PSD) of

the outputs. For each channel the averages taken over the PSD of 500 different

outputs are depicted in Figure 8. Even though the transformations produced

by the CAEA are not linear, and therefore these spectral estimates do not

necessarily capture their whole frequency response, they do provide evidence of

the ANN behaving as low pass filters. The energy of the PSD of the outputs

below 10 Hz is negligible for all channels (the cut-off frequencies are about 9 ± 1

Hz), which is reasonable since the desired outputs of the network were coherent

averages of signals filtered with a cutoff frequency of 12 Hz, and the averaging
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Figure 8: Single sided Power Spectral Density estimation of the CAEA outputs for each

channel when fed with white noise.

process attenuates higher frequencies.

9. Discussion and Conclusions

Inspired on classical AEs, a novel network architecture was proposed for

feature extraction of signals where small patterns are hidden behind large un-

correlated noise. The network was tested using artificially generated data and

real EEG data. The obtained results are promising since classification perfor-

mance was improved using the hidden features extracted with the CAEAs for

different types of classifiers.

The CAEA was tested using a binary classification problem of our interest,

however it can be used for multiclass problems as well. It should be noted

that off-the-shelf methods were used to train the networks and the results could

probably be improved using appropriate ad-hoc optimizers.

Regarding the computational cost of the algorithm, many operations are

required during training since the gradients of the full network have to be com-

puted. The CPU time required for training can vary significantly depending
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on the number of hidden units and the optimization method used to adjust the

weights. If the hyperparameters have to be adjusted, several networks may need

to be trained, thus increasing the computational cost of the process. However,

application of the resulting encoding function in real time is computationally

inexpensive. In fact, it only entails a matrix product and the evaluation of a

simple vector function.

The idea of improving the SNR of the output, as opposed to the idea behind

DAE of corrupting the input, could be applied in other ways. An ANN analogous

to the CAEA could be used in any problem where there is a technique to find

a better version of the original pattern that can not be employed in operation

time.

Although the number of hyperparameters endow the algorithm with much

flexibility, it can yield the network difficult to train, thus preventing inexperi-

enced users from obtaining good results. For that reason a systematic systematic

method was used to adjust the network architecture and set the hyperparam-

eters and some guidelines to adjust them to new data were provided. In this

regard, to facilitate the use of the CAEA, a reasonably good predefined value

should be set for each hyperparameter to ensure good results without the need

of time or expertise to adjust them.

As future work we propose to use the CAEA as blocks for progressive (layer-

by-layer) feature extraction, similar to the algorithm used to train stacked au-

toencoders. However its use could not be as direct, since CA over the latent

representations would not necessarily improve the SNR due to the non-linear

nature of the encoding transformation. Tests on real data would also be carried

out, to estimate the performance of the architecture in the character recognition

task.
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