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Abstract: When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation

represents a problem when dealing with audio signals, particularly in the field of speech applications, such as automatic

speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain

conditions, constructing a method that works well in a general context still poses a significant challenge. As an

effort in this direction, we propose a method based on convolutive nonnegative matrix factorization that mixes two

penalizers in order to impose certain characteristics over the time-frequency components of the restored signal and

the reverberant components. An algorithm for finding such a solution is described and tested. The results show a

significant improvement on the quality of the restored signals.
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1 INTRODUCTION

When captured in enclosed rooms, audio recordings will most certainly be affected by reverberant com-

ponents due to reflections of the sound waves in the walls, ceiling, floor or furniture. This can severely

degrade the characteristics of the recorded signal, generating difficult problems for processing such a signal,

particularly when required for certain speech applications. The goal of any dereverberation technique is to

remove or attenuate the reverberant components to obtain a cleaner signal. The dereverberation problem is

called “blind” when the available data consists only of the reverberant signal itself, and this is the problem

we shall address on this work.

Depending on the problem, our observation might consist of a single or multi-channel signal. That

is, we might have a signal recorded by one or more microphones. For the latter case, there are several

proposed methods that work quite well ([1]). For the case of single-channel, although some methods perform

reasonably well ([2], [3], [4]), there is still much room for improvement.

In this work we present a dereverberation method for single channel data based on the idea of penal-

izing different characteristics of the components of a convolutive nonnegative matrix factorization (NMF)

representation model for the reverberation phenomenon.

1.1 A REVERBERATION MODEL

Let s, x : R → R with support in[0,∞) be the functions associated to the clean and reverberant signals,

respectively. Then, the reverberation model can be written as

x(t) = (h ∗ s)(t), (1)

where h : R → R is the room impulse response (RIR) signal, and “∗” denotes convolution.

When dealing with sound signals (particularly speech signals), it is often convenient to work with the

associated spectrograms rather than the signals themselves. Thus, we make use of the short time Fourier
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transform (STFT) on the discretized version of (1) to obtain the corresponding complex time-frequency

components, resulting in the model

xk[t] =

Th−1
∑

τ=0

sk[t− τ ]hk[τ ], (2)

where t = 1 . . . T , is a discretized time variable, k = 1, . . . K, denotes the frequency subband and Th is a

parameter of the model associated to the maximum expected duration of the reverberation phenomenon.

Now, let us write hk[τ ] = |hk[τ ]|e
jφk[τ ]. To overcome the problems derived from the well known

sensitivity of the phase angle φk[τ ] with respect to variations of the reverberation conditions, we shall

proceed as in [2], treating φk[τ ] as a random variable with distribution U [−π, π). Denoting the complex

conjugate as ∗ and the Kronecker delta as δij , the latter assumption yields

E|xk[t]|
2 = E

∑

τ,τ ′

sk[t− τ ]s∗k[t− τ ′]hk[τ ]h
∗
k[τ

′]

=
∑

τ,τ ′

sk[t− τ ]s∗k[t− τ ′] |hk[τ ]| |hk[τ
′]|Eej(φk [τ ]−φk[τ

′])

=
∑

τ,τ ′

sk[t− τ ]s∗k[t− τ ′] |hk[τ ]| |hk[τ
′]| δττ ′

=
∑

τ

|sk[t− τ ]|2 |hk[τ ]|
2.

Finally, let us define Sk[t]
.
= |sk[t]|

2, Hk[t]
.
= |hk[t]|

2 and Xk[t]
.
= E|xk[t]|

2. Then, our model reads

Xk[t] =
∑

τ

Sk[t− τ ]Hk[τ ], (3)

and the square magnitude of the observed spectrogram components can be written as

Yk[t] = Xk[t] + ǫk[t],

where ǫk[t] denotes the representation error. As shown in [2], this model is equivalent to a convolutive NMF

with diagonal basis.

2 MIXED PENALIZATION

As a way of measuring the representation error, we will use the square of the Frobenius norm ||Y −X||2F ,

where Y and X are the matrices whose (k, t) components are Yk[t] and Xk[t], respectively.

Since we are dealing with a blind dereverberation problem, we have no information on the structure of

the matrix H (with elements Hk[t]). Hence, we must impose some conditions on the representation (3) in

order to ensure that S and H will provide a satisfactory representation for our dereverberation problem.

For clean speech signals, the spectrogram is expected to have some sparse structure, which is not pre-

served under reverberant conditions (see Figure 1). This sparsity can be regained by introducing a penal-

ization term over the matrix S. In a similar fashion, certain regularity conditions over the matrix H can be

imposed to improve its correspondence with a room impulse response (RIR) signal.

Following these ideas, we propose the following cost function:

f(H,S)
.
=

∑

t,k

(Yk[t]−Xk[t])
2 + λ1

∑

t,k

|Hk[t]|
p1 + λ2

∑

t,k

|Sk[t]|
p2 ,

where λ1, λ2 ≥ 0 are penalization parameters that quantify the weights of both penalizers relative to the

fidelity term, whereas the exponents p1, p2 ∈ (0, 2) are tunning parameters. Note that small values of these

parameters will promote sparsity, whereas values close to 2 will promote smoothness. Since there is a

clear scale indeterminacy in the representation (3), the additional constraint
∑Th

τ=1Hk[τ ] = 1 ∀k shall be

imposed.

Next, we present an algorithm for approximating the matrices H and S that minimize f .
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Figure 1: Spectrograms for a clean speech signal (left) and the corresponding reverberant speech signal (right).

3 UPDATING RULES

We shall build an iterative algorithm following the idea in [2], which is based on the auxiliary function

technique.

Let Ω ⊂ R and f : Ω → R
+
0 . Then, g : Ω × Ω → R

+
0 is called an auxiliary function for f if

∀w,w′ ∈ Ω, g(w,w′) ≥ f(w) and g(w,w) = f(w). With this definition, it can be shown ([5]) that the

sequence {f(wj)}j is non-increasing under the update rule

wj = argmin
w

g(w,wj−1). (4)

We will use this approach to alternatively update the matrices H and S. Let us begin by fixing H = H ′,
where H ′ is an arbitrary K × Th matrix. Then, it can be shown that an auxiliary function for f with respect
to S is given by

gs(S, S
′)

.
=

∑

k,t,τ

S′
k[τ ]H

′
k[t− τ ]

X ′
k[t]

(

Yk[t]−
Sk[τ ]

S′
k[τ ]

X ′
k[t]

)2

+ λ1

∑

k,t

|H ′
k[t]|

p1

+ l+ λ2

∑

k,t

(p2

2
S′
k[t]

p2−2Sk[t]
2 + |S′

k[t]|
p2 −

p2

2
|S′

k[t]|
p2

)

,

where X ′
k[t] =

∑

τ S
′
k[τ ]H

′
k[t − τ ]. In an analogous way, fixing S = S′, an auxiliary function for f with

respect to H is given by

gh(H,H ′)
.
=

∑

k,t,τ

S′
k[t− τ ]H ′

k[τ ]

X ′
k[t]

(

Yk[t]−
Hk[τ ]

H ′
k[τ ]

X ′
k[t]

)2

+ λ2

∑

k,t

|S′
k[t]|

p2

+ λ1

∑

k,t

(p1

2
H ′

k[t]
p1−2Hk[t]

2 + |H ′
k[t]|

p1 −
p1

2
|H ′

k[t]|
p1

)

.

Now, since gs is quadratic with respect to S and gh is quadratic with respect to H , we can use the first
order necessary conditions to find the minimizers complying with the update rule (4). This leads to the
following updating rules:

Sk[τ ] = S′
k[τ ]

∑

t H
′
k[t− τ ]Yk[t]

∑

t H
′
k[t− τ ]X ′

k[t] +
λ2p2

2
|S′

k[τ ]|
p2−1

, Hk[τ ] = H ′
k[τ ]

∑

t S
′
k[t− τ ]Yk[t]

∑

t S
′
k[t− τ ]X ′

k[t] +
λ1p1

2
|H ′

k[τ ]|
p1−1

.

Every updating step must be followed by a normalization of the rows of H to avoid the aforementioned

scale indeterminacy issue. In principle, the algorithm is run until ‖S−S′‖2F reachs an established threshold

value, but it is worth noting that other stopping criteria might also be suitable.

4 EXPERIMENTAL RESULTS

We begin by showing an example of the performance of our method. Starting from a clean speech

signal sampled at 8kHz, we have artificially constructed a reverberant version by discrete convolution with

a RIR signal from a simulated enclosed room with 400ms of reverberation time. The spectrogram was

then computed using STFT with 256 window length and overlapping of 128 samples. Figure 2 shows the

clean speech spectrogram, together with its reverberant version and a restoration using our method with

parameters p1 = 1.8 and p2 = 1.2, meaning we impose some sparsity to S and a mild smoothness to H .
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Figure 2: Spectrograms for a clean speech signal, its reverberant version, the RIR matrix and the obtained restoration.

To measure the performance of the method, we used the frequency weighted segmental SNR (fwsSNR)

for its relevance for speech applications such as automatic speech recognition ([6]). The fwsSNR values are

16.20 for the reverberant signal and 17.41 for the restored example, indicating a significant improvement.

Next, we compare our method with the one proposed by Kameoka et. al. ([2]), which essentially

consists of single penalization based on a Bayesian approach. To do so, both methods were run on artificially

constructed reverberant signals with six different RIRs (three different microphone/source positions and two

reverberation times) from a database of 20 clean speech signals. The parameters of the model were set as:

Th = 10, p1 = 1.8 and p2 = 1.2. For the sake of comparison, λ2 and the maximum number of iterations (set

as 20) were chosen as in [2] and λ1 was chosen as λ2 × 103. The results of the experiment are summarized

in Table 1, where improvements on the mean fwsSNR values (over the 20 signals) can be seen.

RIR1 RIR2 RIR3 RIR4 RIR5 RIR6

Reverberant signal 16.93 14.19 17.86 15.19 18.00 15.76

Kameoka’s restoration 17.38 14.58 18.38 15.66 18.49 16.25

Mixed pen. restoration 17.60 14.76 18.53 15.88 18.52 16.48

Table 1: Experimental results measures: mean fwsSNR values for speech dereverberation.

5 CONCLUSIONS

In this work we presented a model for signal dereverberation based on convolutive NMF with mixed

penalization. An iterative updating algorithm was introduced and its performance was tested and compared

with a state of the art method. The results show that our mixed penalization improves the quality of the

restorations.

Although these preliminary results are promising, there is still room for improvement. For instance, other

types of penalizing terms can be used, and different ways to optimize the model parameters can be sought.
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