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Abstract. Automatic bird species classification and identification are
issues that have aroused interest in recent years. The main goals in-
volve more exhaustive environmental monitoring and natural resources
managing. One of the more relevant characteristics of calling birds is
the vocalisation because this allows to recognise species or identify new
ones, to know its natural history and macro-systematic relations, among
others. In this work, some spectral-based features and extreme learning
machines (ELM) are used to perform bird species classification. The ex-
periments were carried on using 25 species of the family Furnariidae that
inhabit the Paranaense Littoral region of Argentina (South America) and
were validated in a cross-validation scheme. The results show that ELM
classifier obtains high classification rates, more than 90% in accuracy,
and the proposed features overperform the baseline features.

Keywords: Birds classification · spectral information · auditory repre-
sentation · extreme learning machines.

1 Introduction

The presence of avian species is usually perceived through vocalisations, one the
most noticeable characteristics of calling birds [34]. The census of bird species
allows to estimate the biodiversity in a habitat due to they respond quickly to
changes, are relatively easy to detect and may reflect changes at lower trophic
levels (e.g. insects, plants) [9,28]. With the improvement of technological devices,
more and more birds data can be collected in almost any habitat. Nevertheless,
some problems arise as poor sample representation in remote regions, observer
bias [26], defective monitoring [7], and high costs of sampling on large spatial
and temporal scales, among others.

Bird vocalisations field has influenced the ethology [20], taxonomy [37] and
evolutionary biology [31]. In addition, ecosystems monitoring is benefits from vo-
calisation identification because it allows registering and processing the record-
ings, and improving the data collection in the field [41]. Gather data in disjoint
or large areas is essential for conducting reliable studies.
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2 E. M. Albornoz et al.

Fig. 1. Paranaense Littoral region (Argentina). Taken from [4].

Passeriformes produce complex songs and can adapt their content over time:
depending on the audience [10] or to match it with that of their neighbours [32].
Even, they can take possession of new songs or syllables during their lifetime [29].
Specifically, the Furnariidae family has several songs and some species show sim-
ilar structures in their songs, manifested in introductory syllables or in the trill
format. More complexity is added because the environmental conditions (hu-
midity, wind, temperature, etc.) may alter the recording process, modifying the
features that are present in the structure of songs and in the calls (e.g. frequency,
duration, amplitude, etc.) [19,47]. Consequently, researchers use recordings from
known databases, in order to avoid errors and distortions in analyses and results.
As the scientific community validates these registrations (attributes, labels, etc.),
they are more credible than ”home-made” records despite these can be also af-
fected by environmental conditions. Some works describe vocalisation changes
in certain Furnariidae species [5,35,46], however, it is novel to evaluates several
vocalisations of Furnariidae species from South America simultaneously [4]. In
this work, the analysed Furnariidae species inhabit the Paranaense Littoral re-
gion (see Figure 1). Many recent studies on bird vocalisations report that this
region has become in an interesting place for this task [5].

The classification scheme can be defined as a pipeline of three steps: pre-
processing, feature extraction and classification. The first one depends strongly
on the recording process and involves filtering, segmentation and enhancement
of audio signals. Regarding feature extraction, time- and frequency-based infor-
mation was employed [25, 34]. In addition, characteristics originally developed
for speech analysis were used for bird call recognition: mel frequency cepstral
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Furnariidae species classification 3

coefficients (MFCCs) [16] and standard functionals (mean, standard deviation,
kurtosis, etc.) computed over these [13, 36]. Various techniques have been ap-
plied to bird call classification: Gaussian mixture model (GMM) [38], support
vector machines (SVM) [4], random forest (RF) [8], among others. An interesting
strategy based on the pairwise similarity measurements, computed on bird-call
spectrograms, was evaluated in [25], where the authors used different classifiers
to recognise four species. In [13], thirty-five species were classified using a SVM
classifier and six functionals were obtained from each MFCC. A different ap-
proach was proposed in [42], where a classifier based on hidden Markov models
(HMMs) was used to recognise bird calls through their temporal dynamics. Pre-
vious works developing full-automatic methods for vocalisation recognition can
be examined in [17, 23, 40], and the current relevance of this topic is shown in
some recent works [16, 36]. However, to address the vocalisation recognition of
species belonging to the Furnariidae family is novel.

This study proposes to use Extreme Learning Machines classifier with spectral-
based parameterisations for Furnariidae species classification. The model needs
to be able to perform properly using data from three different databases. The
main contributions of this work are the compilation of an interesting set of songs
for 25 species of the Furnariidae family, to address the complex classification of
species taken from the same family, a novel use of spectral-based and auditory
inspired features for this task, and a novel approach using the ELM network.

The following section introduces the data, the features extraction process and
the classifier. Section 3 deals with the experimental setup, presents the results an
its discussions. Finally, conclusions are summarised and future work is proposed
in the last section.

2 Materials and methods

This section resumes the speech database, the baseline systems on the task and
our approach to feature extraction.

2.1 Bird call corpus and baseline system

To obtain a suitable number of vocalisations for training the classifiers and eval-
uating the performance, records from three well-known databases were selected
and processed to obtain 751 recordings of Furnariidae species. Some of these were
selected from the Xeno-canto3 database [24, 33, 34], others were taken from the
Birds of Argentina & Uruguay: A Field Guide Total Edition corpus [12, 27, 30],
and finally, several recordings were taken from The Internet Bird Collection4 [1].

This set of audio signals, obtained from different data sources, involves an
additional complexity that the model should be able to handle.

3 http://www.xeno-canto.org/
4 http://ibc.lynxeds.com/
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4 E. M. Albornoz et al.

Similar to [4], the state-of-art (for speech signals) feature sets are obtained
from the recordings using the openSMILE toolkit [14]. It calculates 6373 acous-
tic features using diverse functionals over low-level descriptor (LLD) contours,
and with these we computed the three feature set used as baseline sets. A full
description can be found in [43].

2.2 Mean of log-spectrum

The Mean of Log-Spectrum (MLS) coefficients is a set of features calculated
from spectral data for different frequency bands. They were defined to extract
relevant information from speech signals and were firstly used in the analysis
and classification of spoken emotions (in clean and noisy conditions [2, 3]). The
MLS coefficients are defined as the average of the signal spectrogram

S(k) =
1

N

N∑
n=1

log |v(n, k)|, (1)

where k is a frequency band,N is the number of frames in the signal and v(n, k) is
the discrete Fourier transform of the signal in the frame n. For the computation,
the spectrograms were obtained with Hamming windows of 25 ms.

2.3 Mean of the log-auditory spectrum

In the same way as previously, we propose to analyze the recordings by means of
a related set of features based on the auditory spectrogram. The representation of
the sound signal at the cochlear level and auditory cortical areas has been studied
as an alternative to classical analysis methods, given its intrinsic selective tuning
to relevant natural sound [44]. In [45], a model based on neurophysiological
investigations at various stages of the auditory system was proposed. This model
has two consecutive stages: an early auditory spectrogram with the activity of
auditory nerve fibres (Figure 2.3), and a model of the primary auditory cortex
used to process the spectrogram and find the spectro-temporal receptive fields.
The first stage uses a bank of 128 cochlear (bandpass) filters in the range [0 −
4000] Hz, with the central frequency of the filter at location x on the logarithmic
frequency axis (in octaves) is defined as fx = f02x(Hz), where f0 is a reference
frequency of 1 kHz. This frequency distribution proved to be satisfactory for
the discrimination of acoustic clues in speech and further reconstruction of the
signals [11]. Using the first stage output, a set of features is built using the mean
of the log auditory spectrogram (MLSa) [3], as

Sa(k) =
1

N

N∑
n=1

log |a(n, k)|, (2)

where k is a frequency band, N is the number of frames in the utterance and
a(n, k) is the k-th coefficient obtained by applying the auditory filter bank to
the signal in the frame n.
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Furnariidae species classification 5

Fig. 2. Scheme of the used auditory model.

2.4 Extreme learning machines

The ELM is a kind of artificial neural network with one hidden layer [22] and its
main peculiarity respecting to classical models is the training algorithm. It does
not need parameter tuning and the hidden neurons are randomly initialised.
Consequently, the training time is significantly reduced with respect to other
training methods that use complex optimisation techniques.

Formally, let be J hidden units with F inputs and P output units. The hidden
layer output is given by

hj = Φ(vT
j x + bj), (3)

with Φ as a non-linear activation function, vj the input weights and bj the
bias for the j-th hidden unit. The hidden-layer output, also known as projected
features, can be expressed as H = [h1, . . . ,hN ]T . Rewriting the equation in a
matrix form, with W = [w1, . . . ,wP ], wp ∈ RJ and p = 1, . . . , P as the output
layer weights, the ELM output is

Ỹ = HW. (4)

If the function Φ satisfy certain properties (infinitely differentiability and
random hidden weights) it can be shown that for any pair of inputs (X,Y)
exists a number J < N such ||Ỹ−Y|| < ε for any small ε [22]. This means that
the ELM can approximate the target Y as much as we want by adjusting only
the number of hidden units and the output weights. The optimisation problem
for W can be written as

minimise
W

||HW −Y||2, (5)

which is a least square optimisation problem. The smallest norm solution is given
by

Ŵ = H†Y, (6)

where H† is the Moore-Penrose pseudoinverse [6]. This solution for the optimi-
sation problem is greatly fast comparing with the classical classifiers as SVM
or backpropagation multi-layer perceptrons. More mathematical details of the
ELM algorithm and several comparison with other neural nets can be seen in
[21,22].
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6 E. M. Albornoz et al.

Table 1. Summary of best results taken from [4], (∗ MLP1, ∗∗ MLP2)

RF100 SVM MLP
Feature vector Accuracy

Baseline 80.10 84.95 86.89∗∗

MFCC+Fun 83.01 85.92 89.32∗

Full-Set 80.10 83.50 74.27∗

UAR
Baseline 67.00 74.07 79.21∗∗

MFCC+Fun 70.43 75.18 80.85∗∗

Full-Set 65.24 72.46 61.90∗

3 Results and discussions

In this section the experiments are presented and discussed. At first, a directly
comparable work is introduced. Then, the experimental scheme and the results
using ELM are showed.

In a previous work [4], this Furnariidae set (25 species) was classified using
206 records, all the experiments were performed in a cross-validation scheme.
Three features sets were evaluated:

– Baseline: a set of means and variances computed for the first 17 MFCCs,
their deltas and acceleration over the entire song (102 features),

– MFCC+Fun: a set of functionals computed only from the MFCCs (531 fea-
tures),

– Full-Set : a set of 6373 state-of-the-art features defined for speech processing
(INTERSPEECH 2013 ComParE Challenge [39]).

For the determination of performance, two figures of merit are used: the Ac-
curacy is calculated as the mean recognition rate and the Unweighted Average
Recall (UAR) is obtained as the average of the class-specific recalls achieved
by the system. The baseline for the bird song identification task was defined
based on previous works [13, 15]. In Table 1 the best results are showed, using
Random Forest (RF) using 100 trees, support vector machines (SVM) and the
two best MLP architectures: one hidden layer with a number of neurons set as
(Num. of inputs+Num. of outputs)/2 (MLP1) and one hidden layer with a
number of neurons set equal to the number of inputs (MLP2). It is important to
remark that the best UAR result (82.21) was reached using the linear forward
selection (LFS) [18] on the Full-Set and MLP1, however, it can not be exactly
reproduced here for comparison (see [4]).

In the present work, 25 Furnariidae species (751 records) are classified using
ELM. The three sets of features presented previously are evaluated using ELM,
and compared with MLS+ set (328 features) and MLS++ set (346 features). The
MLS+ includes 200 MLS and 128 MLSa coefficients, while the MLS++ added
18 speech-related features (13 MFCCs, pitch, energy, zero-crossing rate, short-
term energy entropy and short-term spectral entropy). For all the experiments,
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Furnariidae species classification 7

a 6-fold cross-validation scheme was performed and for each case, the data were
normalised using the percentile 5 and 95 from training partition. The average
results for the best configurations are presented in tables 2 and 3. Table 2 shows
that the spectral features (MLS and MLSa) improved the accuracy reached by
the previos parameterisations, although the UAR is similar as with baseline
set. As the MLS+ and MLS++ obtain similar results, it is possible to say that

Table 2. Summary of best results using ELM classifiers.

Feature vector Accuracy [%] UAR [%]
MLS+ 93.22 84.89
MLS++ 93.61 84.25
Baseline 91.48 84.97
MFCC+Fun 84.55 73.43
Full-Set 82.59 65.56

MFCC and the other prosodic values are not too much useful here. Obviously,
both spectral representations are very useful for this issue and it is necessary
to explore them more to find the optimal set of characteristics, making feature
selection (e.g. with LBS) or incorporating new ones.

As the set of records is notably unbalanced, we propose an experiment to eval-
uate the balance by repetition. Its utilisation is very extended [39] and it consists
in augmenting the minority classes repeating their records. Table 3 shows the
results using the balanced data, where the MLS+ reaches the same percentage
as in previous experiment. While it is not possible to conclude that this balance
is useful for the system, it is possible to say that it increases the computational
cost for the training.

Table 3. Summary of best results using ELM classifiers, balanced.

Feature vector Accuracy [%] UAR [%]
MLS+ 93.22 84.89
MLS++ 92.13 81.69
Baseline 85.60 78.83
MFCC+Fun 86.43 75.94
Full-Set 86.66 71.75

4 Conclusions

Monitoring bird species allows to surveillance the environmental due to it reflects
important ecosystem processes and human activities. This work addresses the
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8 E. M. Albornoz et al.

bird call classification problem using spectral-based features, and compares the
performance with previous proposals. Species from the Furnariidae family which
inhabit the Paranaense Littoral region were analysed, and although they are
well-known in the community, to focus the study on a big group from the same
family is very novel.

Results shows that spectral information seems to be really useful to reach a
high performance in this application, even considering diverse recordings sources
what hinders the task. The sets of features which obtain the best rates here, were
previously defined for speech-related tasks, consequently it would be interesting
to define more specific features.

This approach could be improved for developing autonomous tools that allow
ornithologists to know which species are present in particular areas in order to do
ecological monitoring and management. Specifically, it could to help the labelling
of Furnariidae recordings, while it could be used for remote and simultaneous
monitoring in different areas.

In future research, these spectral parameterisations will be studied further
with other classification schemes as deep neural networks that exploit also the
local variability along the records. In this sense, an interesting approach is to
use the spectral information as images to feed well-known nets as the AlexNet
(to perform transfer learning) or to train a new net using spectral information
from several bird families. Also, a more in-depth analysis of specific filter banks
is needed to process bird song records an to obtain more useful information.
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ciabué, C.G., Quiroga, M.A.: Song structure of the golden-billed saltator (saltator
aurantiirostris) in the middle parana river floodplain. Bioacoustics 24(2), 145–152
(2015)

28. Louette, M., Bijnens, L., Upoki Agenong’a, D., Fotso, R.: The utility of birds as
bioindicators: case studies in equatorial africa. Belgian Journal of Zoology 125(1),
157–165 (1995)

29. Marler, P.: Three models of song learning: Evidence from behavior. Journal of
Neurobiology 33(5), 501–516 (1997)

30. Narosky, T., Yzurieta, D.: Aves de Argentina y Uruguay–Birds of Argentina
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