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In recent years, an increasing interest in the development of discriminative methods based on sparse representations with discrete
dictionaries for signal classification has been observed. It is still unclear, however, what is the most appropriate way for introducing
discriminative information into the sparse representation problem. It is also unknown which is the best discrepancy measure
for classification purposes. In the context of feature selection problems, several complexity-based measures have been
proposed. The main objective of this work is to explore a method that uses such measures for constructing discriminative
subdictionaries for detecting apnea-hypopnea events using pulse oximetry signals. Besides traditional discrepancy measures,
we study a simple one called Difference of Conditional Activation Frequency (DCAF). We additionally explore the combined
effect of overcompleteness and redundancy of the dictionary as well as the sparsity level of the representation. Results show that
complexity-based measures are capable of adequately pointing out discriminative atoms. Particularly, DCAF yields competitive
averaged detection accuracy rates of 72.57% at low computational cost. Additionally, ROC curve analyses show averaged
diagnostic sensitivity and specificity of 81.88% and 87.32%, respectively. This shows that discriminative subdictionary
construction methods for sparse representations of pulse oximetry signals constitute a valuable tool for apnea-hypopnea screening.

1. Introduction

Although it is widely used and accepted, the notion of com-
plexity has very often avoided a rigorous formalization. It is
therefore not surprising that no universally accepted measure
exists yet for quantifying such a concept. In particular, within
information theory, the complexity of any element of a code,
or of any feature of a signal representation in the context of
signal processing, is known to be strongly related to the infor-
mation it carries or, more precisely, to the value of its
entropy. It is important to point out however that, in the
context of signal classification, the more informative features
(in terms of classification) are not necessarily the ones with
larger entropy. Hence, more “ad hoc” measures are needed.
In fact, any appropriate complexity measure corresponding
to a given feature should be instead, strongly related to the
amount of information about class membership provided

by such a feature. One could then think of using as measure
of complexity the conditional entropy of the class given the
feature. However, features providing the most discriminative
information regarding a class are almost always those with
lower conditional entropy values, and hence, the best features
for classification purposes will be the least complex ones.

Information theory was originally based on the engi-
neering of noisy communication channels, and it is closely
associated to a large number of disciplines such as signal pro-
cessing, artificial intelligence, complex systems, and pattern
recognition, to name only a few. We are particularly inter-
ested in the latter. Pattern recognition is a discipline which
is mainly oriented to the generation of algorithms or
methods that can decide an action based upon certain
recognized similarities (patterns) in the input data. Within
signal classification, which is perhaps one of the most impor-
tant subfields of pattern recognition, several discrepancy
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measures have been used in problems coming from a wide
variety of areas such asmachine learning [1], image and speech
processing [2], neural networks [3], and biomedical signal
processing [4, 5]. Among them, the most commonly used
is probably the Kullback-Leibler (KL) divergence [6, 7].
This divergence, also known as relative entropy, was used
as a discriminative measure for selecting, from a large col-
lection of orthonormal bases, the one attaining maximum
information [1]. A more recent approach was introduced
by Gupta et al. [8] who used this divergence as a discrepancy
measure in the traditional k-nearest neighbor (k-NN) algo-
rithm, yielding competitive classification performances in
the context of raw electroencephalographic signal classifica-
tion. Although it provides certain computational and theoret-
ical advantages, the lack of symmetry of the KL divergence has
motivated the development of several symmetric versions
such as the so-called J divergence [9] and the well-known
and widely used Jensen-Shannon divergence [10].

Sparse representation of signals constitutes a useful tech-
nique which has drawn wide interest in recent years due to its
success in many applications such as signal and image pro-
cessing [11]. This technique allows the analysis of the signals
by means of only a few well-defined basic waveforms. Due to
its advantages, such as robustness to noise and dimension
reduction, sparse representation has acquired a large popu-
larity in the area of biomedical signal processing. For exam-
ple, this technique has been successfully applied to several
problems including the estimation of the human respiratory
rate [12] and electrocardiographic signal processing, both
for signal enhancement and QRS complex detection, for
improving heart disease analysis and diagnosis [13]. It is
timely to point out however that, up to our knowledge, no
applications of discrepancy measures to sparse representa-
tion for signal classification are known yet.

All reconstructive methods, such as principal component
analysis (PCA), independent component analysis (ICA), and
the previously mentioned sparse representations [14], pro-
duce particular types of signal representations minimizing a
given cost functional which usually involves both fidelity
and regularization terms. These methods have been success-
fully applied in a wide variety of problems such as signal
denoising, missing data, and outliers. On the other hand, dis-
criminative methods such as linear discriminant analysis
(LDA) are oriented to find optimal decision boundaries to
be used for classification tasks. It is well known that for signal
classification, which is our main interest in this work, dis-
criminative methods generally outperform reconstructive
methods. It is mainly for this reason that several authors have
recently developed supervised approaches based on sparse
representation which are simultaneously reconstructive and
discriminative [15, 16].

The obstructive sleep apnea-hypopnea (OSAH) syn-
drome [17] is one of the most common sleep disorders and
more often than not it remains undiagnosed and therefore
not treated. This syndrome is caused by repeated events of
partial or total blockage of the upper airway during sleeping,
which correspond to events of hypopnea and apnea, respec-
tively. To evaluate the severity degree of the OSAH syn-
drome, medical physicians have created the so-called

apnea-hypopnea index (AHI), which is defined as the aver-
age number of apnea-hypopnea events per hour of sleep. In
terms of this index, OSAH is classified as normal, mild, mod-
erate, or severe depending on whether such an index falls in
the interval 0, 5 , 5, 15 , 15, 30 or 30,∞ , respectively.
The gold standard test for OSAH diagnosis is a study called
polysomnography (PSG). However, PSG is both costly and
lengthy and the accessibility to this type of study is limited.
Additionally, PSG studies require information coming from
a variety of physiological signals such as electroencephalog-
raphy (EEG), airflow and pulse oximetry (SaO2). It is known
however that cessations of breathing associated with apnea-
hypopnea events are always accompanied by a drop in the
oxygen saturation level in the SaO2 signal record, although
quite often such a drop is very small and almost impossible
to detect by a human observer.

The main objective of this work is precisely to develop a
technique based on sparse representations and the use of
appropriate discriminative information that be able to accu-
rately and efficiently detect apnea-hypopnea events by
using only the SaO2 signal. Several ways exists for combin-
ing discriminative information and sparse representations
within the context of signal classification. We shall follow
one consisting of using the discriminative information for
detecting those atoms having the most frequent activations
in order to provide them as input for a classifier. This
approach was initially introduced in [4] where two methods
using the absolute value of the activation differences of the
atoms as a measure of the discriminative information for
the detection of OSAH were presented. In this work, a rig-
orous formalization of such a measure is introduced and
compared with several other discrepancy measures for clas-
sifying apnea-hypopnea events. Also, the combined effect of
using different sizes of nonredundant dictionaries and dif-
ferent sparsity degrees is explored in detail. Results show
clearly that the proposed measure is capable of adequately
pointing out discriminative atoms in a full dictionary, yield-
ing competitive accuracy rates in the detection of individual
apnea-hypopnea events. Additionally, this new approach is
computationally very cheap. In fact, it has proved to be at
least twice faster than those associated to all other discrep-
ancy measures.

The rest of this article is organized as follows: in Section
2, the obstructive sleep apnea-hypopnea syndrome is
explained. Sparse representation of signals is introduced in
Section 3. The problem of finding discriminative sub-
dictionaries is described in Section 4 while several discrimi-
native information measures are presented in Section 5. Sec-
tion 6 contains a detailed description about the performed
experiments. Results and discussions are introduced in Sec-
tion 7 while conclusions are presented in Section 8.

2. Sleep Apnea-Hypopnea

Apnea-hypopnea events occur as a consequence of a
functional-anatomic disturbance of the upper airway pro-
ducing its partial or total blockage. At the end of an apnea-
hypopnea event, a pronounced desaturation of the blood
hemoglobin commonly occurs. These desaturations generate

2 Complexity

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
.E

. R
ol

on
, I

. E
. G

ar
ei

s,
 L

. D
i P

er
si

a,
 R

. S
pi

es
 &

 H
. L

. R
uf

in
er

; "
C

om
pl

ex
ity

-b
as

ed
 d

is
cr

ep
an

cy
 m

ea
su

re
s 

ap
pl

ie
d 

to
 d

et
ec

tio
n 

of
 a

pn
ea

-h
yp

op
ne

a 
ev

en
ts

"
C

om
pl

ex
ity

, V
ol

. 2
01

8,
 2

01
8.



characteristic patterns in the pulse oximetry record known as
intermittent hypoxemias. The hypoxemia-reoxygenation
cycles promote oxidative stress, angiogenesis, and tumor
growth and favor the sympathetic activation with increment
of blood pressure and systemic and vascular inflammation
with endothelial dysfunction which contributes to multior-
ganic chronic morbidity, metabolic abnormalities, and cogni-
tive impairment [18]. Additionally, strong correlations
between neoplastic diseases and the OSAH syndrome have
been described in [19]. Also, a recent study among male mice
suggests that OSAH’s intermittent hypoxia can be associated
to fertility reduction [20]. Currently, this pathology affects
more than 4% of the human population around the world
[21]. Additionally, it was found that aging, male gender, snor-
ing, and obesity are all risk factors for OSAH syndrome [22].

Although very limited in many countries, overnight poly-
somnography (PSG) is currently the gold standard tool for
diagnosing OSAH syndrome. As previously mentioned, a full
PSG consists of the simultaneous measurement of several
physiological signals such as EEG, electrocardiography
(ECG), respiratory effort, airflow, SaO2, and electrical activity
produced by skeletal muscles (EMG). Mainly due to its ease
of acquisition, we are particularly interested in the SaO2 sig-
nal. Figure 1 shows a typical temporal plot of just a few phys-
iological signals coming from a full PSG. This figure also
depicts a portion of an original raw airflow signal as well as
the corresponding portion of the SaO2 signal. The corre-
sponding labels of apnea-hypopnea events (dashed lines)
are also shown. Finally, at the bottom of this figure, the elec-
trical activity of the heart as well as the sleep stages are
shown. In a typical PSG study, after a normal period of sleep,
the recorded signals are provided to medical experts who
analyze the whole record and mark the apnea-hypopnea
events and sleep stages, needed for the posterior evaluation
the AHI index. Due to its complexity and cost, a few alterna-
tives to PSG have been adopted. One of the most popular
ones is the so-called home respiratory polygraphy (HRP)
[23] which requires no neurophysiological signals. Although

studies have shown that there exists a high correlation
between AHI values generated by HRP and PSG studies
[24], HRP still needs of several physiological signals, whose
acquisition strongly affects the normal sleeping of the person.
It is therefore highly desirable to develop a reliable OSAH
screening system which makes use of as few as possible phys-
iological signals. In this regard, pulse oximetry, being a cheap
and noninvasive technique, has become a suitable alternative
for screening purposes [25].

In this work, we shall develop a method for the detection
of apnea-hypopnea events that uses only the SaO2 signals.
Our approach leads to a binary classification problem whose
main purpose is the detection of the presence (or not) of
events of apnea and hypopnea. It is timely to point out that
although our method does take into consideration an appro-
priate fidelity term, we are by no means interested in achiev-
ing accurate signal representation.

3. Sparse Representations

As previously mentioned, one of the most popular recon-
structive methods is based on sparse representations of the
signals involved. Sparsity can be enforced by including
upper bounds for the number of nonzero coefficients in
the representation of the given signals in terms of atoms in
a dictionary.

Formally, the problem of sparse representations of sig-
nals can be separated into two subproblems, the so-called
sparse coding problem and the dictionary learning prob-
lem. We shall now proceed to describe in detail each
one of these subproblems. To be more precise, let x ∈ℝN

be a discrete signal and let Φ ∈ℝN×M (generally withM ≥N)
be adictionarywhose columnsϕj ∈ℝ

N are atoms thatwewant
to use for obtaining a representation of x of the form x =Φa.
Here, and in the sequel, we shall refer to the vector a =
a1 a2,… , aM

T ∈ℝM as a “representation” of x. Sparsity
consists essentially of obtaining a representation with as
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Figure 1: A portion of a few number of physiological signals coming from a full PSG. Dashed lines (brown) are apnea-hypopnea labels
introduced by the medical expert.
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few nonzero elements as possible. A way of obtaining such
a representation consists of solving the following problem:

P0 : min
a

  a 0

subject to x =Φa,
1

where ∥a∥0 denotes the l0 pseudonorm, defined as the num-
ber of nonzero elements of a.

Several questions regarding problem P0 immediately
arise. Among them are the following: (i) does there exist an
exact representation x =Φa?, (ii) if an exact representation
exists, is it unique?, (iii) in the case of nonuniqueness, how
do we find the “sparsest” representation? and (iv) how diffi-
cult is it, from the computational point of view, to solve prob-
lem P0 ?. Although it is not an objective of this article to get
into details about the answers to these questions, it turns out
that imposing exact representation is most often a too restric-
tive and therefore inappropriate constrain and, on the other
hand, solving P0 is generally an NP-hard problem yielding
this approach highly unsuitable for most applications. For
more details, we refer the reader to ([26], § 1.8).

In order to overcome some of the difficulties which entail
solving problem P0 , several relaxed versions of it have been
considered. One of them consists of allowing a small repre-
sentation error while imposing an upper bound on the l0
pseudonorm of the representation:

Pq
0 : min

a
  x −Φa 2

subject to  a 0 ≤ q,
2

where q is a prescribed integer parameter. This formulation
takes into account the existence of possible additive noise
terms; in other words, it assumes that x =Φa + e, where e ∈
ℝN is a small energy noise term. Thus, this approach is par-
ticularly suitable in most real applications (such as biomedi-
cal signal processing) where measured signals are always
contaminated by noise. Several greedy strategies have been
proposed for solving problem Pq

0 [27, 28]. Among them,
orthogonal matching pursuit (OMP) [28] is perhaps the most
commonly used strategy. This greedy algorithm guarantees
convergence to the projection of x into the span of the dictio-
nary atoms, in no more than q iterations. Figure 2 shows an
example of the values of a particular coefficient aj∗ associated

to the atom ϕ j∗ obtained by applying the OMP algorithm for
a large number (almost half a million) of segments of SaO2
signals and its corresponding activation histogram.

Although preconstructed dictionaries, such as the well-
known wavelet packets [29], typically lead to fast sparse
coding, they are almost always restricted to certain classes
of signals. It is mainly for this reason that new approaches
introducing data-driven dictionary learning techniques
emerged. A Dictionary Learning (DL) problem consists
of simultaneously finding a dictionaryΦ and representations
of n signals xi, 1 ≤ i ≤ n, (in terms of atoms of such a dictio-
nary) complying with a sparsity constraint for each one of
the n signals, while minimizing the total representation error.
The (DL) problem associated to the data: q,M,N ∈ℕ,M ≥N ,
and n signals in ℝN , x1,… , xn, can be formally written as

DL : min
Φ∈ℝN×M

ai∈ℝM , ai 0≤q, 1≤i≤n

〠
n

i=1
xi −Φai 2

3

The first data-based dictionary learning algorithms were
originally developed almost three decades ago [30–32]. Some
of them have their roots in probabilistic frameworks by con-
sidering the observed data as realizations of certain random
variables [30, 31]. In [31] for example, the authors developed
an algorithm for finding a redundant dictionary that maxi-
mizes the likelihood function of the probability distribution
of the data. In that work, an analytic expression for the like-
lihood function was derived by approximating the posterior
distribution by Gaussian functions. An iterative approach
for dictionary learning, known as the “method for optimal
directions” (MOD), was presented in [32]. The sparse coding
stage of this method makes use of the OMP algorithm
followed by a simple dictionary updating rule. A new iterative
algorithm was recently proposed by Aharon et al. in [14].
This new approach, called “K singular value decompositions”
(K-SVD), consists mainly of two stages: a sparse coding stage
and a dictionary learning stage. The OMP algorithm is used
for the sparse coding stage, which is followed by a dictionary
updating step where the atoms are updated one at a time and
the representation coefficients are allowed to change in order
to minimize the total representation error.
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Figure 2: The values of the activations of a particular atom for each signal (a) and the corresponding histogram of activations (b).
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4. Discriminative Subdictionary Construction

Although data-driven dictionary learning algorithms pro-
duce sparse representations of signals which are robust
against noise and missing data, such representations turn
out to be unsuitable if the final objective is signal classifica-
tion. This is mainly so because those algorithms do not take
into account any a priori or available information con-
cerning class membership. In order to overcome this diffi-
culty, some strategies which incorporate appropriate class
information have been proposed [4, 16, 33]. In [33], for
instance, the authors developed a discriminative dictionary
learning method by efficiently integrating a single predic-
tive linear classifier into the cost function of the K-SVD
algorithm. A method incorporating a discriminative term
into the cost function of the standard K-SVD algorithm
is presented in [16]. This method finds an optimal dictionary
which is simultaneously representative and discriminative
for face recognition tasks. In this work, we make use of a
simple approach for detecting discriminative atoms from a
previously learned dictionary and using them to build a
new subdictionary. This approach, which is originally pre-
sented in [4], consists of solving two problems, namely, (i)
the above mentioned full DL problem and (ii) a discrimina-
tive subdictionary DSD construction problem. We shall
now proceed to describe problem (iii). One way to obtain
discriminative subdictionaries consists of maximizing an
appropriate discriminative value functional G · . Given a
data matrix X ∈ℝN×n, a class label vector c ∈Cn (where
C is the set of all classes; in the binary case C = c1, c2 ),
a dictionary Φ ∈ℝN×M and p ∈ℕ (with p <M), the most

discriminative subdictionary Φd
∈ℝN×p, according to an

appropriate prescribed discriminative value functional
GX,c,Φ ℝN×p →ℝ+

0 , is defined as

DSD : Φd
= arg max

d≐ i1i2⋯ip

ij∈ 1,2,…,M

ij≠ik∀j≠k,

GΧ,c,Φ Φd

4

where for d≐ i1 i2 ⋯ ip , Φd denotes the N × p matrix
whose jth column is the ijth column of Φ. The function G,
which must be provided, quantifies the discriminative
power of each subdictionary Φd. Thus, large values of G
correspond to highly discriminative subdictionaries while
small values of G are associated to subdictionaries with
low discriminability.

Several questions concerning problem DSD clearly
emerge. Among them are the following: (i) how do we find
an appropriate discriminative value function G?, (ii) given
the functional G, does problem DSD have a solution?,
(iii) if it does, is it unique?, (iv) in the case of nonunique-
ness, how do we decide which subdictionary, among the
optimizers, is the best for our classification purposes? and
(v) how difficult is it, in terms of computational cost, to
solve problem DSD ?. Although this problem has not been
extensively studied, is it known that solving DSD is

computationally very challenging for p > 1, mainly due to the
combinatorial explosion problem. A way to overcome the
computational complexities entailed by problem DSD con-
sists of defininganappropriatediscriminativevalue functional
G for p = 1. In that way G is independently evaluated at each
one of the atoms (columns) of Φ and the discriminative sub-
dictionary Φd ∈ℝN×p∗ is constructed by stacking side-by-
side thefirstp∗ ranked columnsofΦwith largestGvalues.This
simplification is basedon the assumption that each atom in the
dictionary is used tomodel specific characteristics that are not
completelymodeled by the other atoms. Thus, the discrimina-
tive informationprovidedbyaparticular atomwill bedifferent
from the information contributed by other atoms.

5. Discriminative Value Functions for
Atom Selection

Several ways for appropriately constructing discriminative
value functions G exists. In this section, we present two dif-
ferent approaches to define such a function, namely, (i) using
traditional discrepancy measures and (ii) using a new dis-
criminative measure to which we shall refer as the “Difference
of Conditional Activation Frequency” (DCAF). We shall pre-
viously need to introduce an appropriate setting and termi-
nology regarding probability density functions (PDFs) in
the context of sparse representations for signal classification.

Here, and in the sequel, we shall consider the vectors
x1, x2,… , xn as realizations of a particular random vector
X. Any sparse representation of those vectors will result in
the PDFs of each coefficient aj (associated to the atom ϕ j)
showing a very concentrated peak at zero with heavy tails
(as depicted in Figure 2). In the context of binary signal clas-
sification, it is reasonable to think that if a given atom ϕj∗ is
highly discriminative, then the conditional PDFs π aj∗ ∣ c1
and π aj∗ ∣ c2 will be significantly different. Thus, if a dic-
tionary Φ is poorly discriminative, then one should expect
π aj ∣ c1 ≈ π aj ∣ c2 for all j.

Although the elements aj of the representation vector
a are in general real numbers, for practical reasons, it is
appropriate to discretize them. That can be done in the
usual way by partitioning the real line ℝ into intervals
Ik ≐ k − 1/2 Δ, k + 1/2 Δ , k ∈ℤ, of length Δ and the
associated discretized random variable K j ≐∑k∈ℤ k χIk

aj .
The corresponding probability mass function (PMF) is pK j

k = P aj ∈ Ik = Ik
π aj daj, k ∈ℤ. Figure 3 shows the

estimated PMF and the corresponding conditional PMFs
(given each one of the two classes), both for a nondiscri-
minative and a discriminative atom using SaO2 signals.

We shall now proceed to define how we compute the dis-
criminative value function G. Given the data matrix X ∈
ℝN×n, the corresponding class label vector c ∈Cn and a full
dictionary Φ ∈ℝN×M , the first step consists of obtaining the
sparse matrix A≐ a1 a2 ⋯ an ∈ℝM×n by applying the OMP
algorithm. The jth row of this sparse matrix is then used for
estimating the conditional PMFs pK j

·∣c1 and pK j
·∣c2 .

Finally, the value of G at the atom ϕ j is computed as the
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discrepancy(asquantifiedbyanappropriatediscrepancymea-
sure) between these two PMFs. In what follows, we introduce
the discrepancy measures that we shall use in this work.

5.1. Traditional Discrepancy Measures. A great diversity of
measures whose purpose is performing comparisons between
probability distributions exists [34]. In this work, the best
known and more commonly used ones are compared in
terms of their performance for selecting the most discrimina-
tive atoms in a dictionary. The KL, J, and JS divergence mea-
sures were utilized, along with the Fisher score (F).

The KL divergence [7] is probably the most widely used
information “distance” measure from a theoretical frame-
work, and it was successfully applied in numerous problems
for signal classification [1, 35, 36]. To compare the two con-
ditional PMFs associated with the activation of the jth atom,
the KL distance was used as follows:

KL pK j
·∣c1 , pK j

·∣c2 ≐ 〠
k∈ℤ

pK j
k ∣ c1 log

pK j
k ∣ c1

pK j
k ∣ c2

,

5

assuming that 0 log 0 ≐ 0.
Despite the computational and theoretical properties

provided by KL distance, what usually becomes a trouble in
many problems of signal classification is its lack of symmetry.
It can be easily seen that altering the order of the arguments
in (5) can change the output value. To solve this issue, a sym-
metric version of the KL distance can be used such as the J
divergence [9], which, even though was not initially created
as a symmetric version of the KL distance, is the sum of the

two possible KL distances between probability distributions.
In this article, the J divergence is defined as follows:

J pK j
·∣c1 , pK j

·∣c2 ≐KL pK j
·∣c1 , pK j

·∣c2

+ KL pK j
·∣c2 , pK j

·∣c1
6

Another symmetric smoothed version of the KL distance
is the JS divergence [10]. For the problem of comparing the
two conditional probabilities associated to each class it is
defined as

JS pK j
·∣c1 , pK j

·∣c2 ≐w1KL pK j
·∣c1 , qK j

·

+w2KL pK j
·∣c2 , qK j

· ,
7

where qK j
· =w1pK j

·∣c1 +w2pK j
·∣c2 and w1 and w2 are

the weights associated to each of the conditional PMFs, with
w1,w2 ≥ 0 and w1 +w2 = 1. An interesting feature of the JS
distance is the fact that different values of weights (w1 and
w2) can be assigned to the probability distributions according
to their importance. In this work, w1 = P c1 and w2 = P c2 ,
that is, the weights are associated with the a priori proba-
bilities of the classes. Note that computing the JS distance
as defined here is the same as computing the mutual
information between the class and the activations, that is,
JS pK j

·∣c1 , pK j
·∣c2 =MI K j,C .

Within signal classification problems, F is a measure
which has been extensively used. Unlike the other measures
presented here, that require estimations of the conditional
PMFs, F uses just two parameters of the distributions (the
means and standard deviations). This makes this measure

−200 −100 0 100 200
k

1

0.002

0.001

0

pKj (k)
pKj (k | c

1
)

pKj (k | c
2
)

(a)

pKj (k)
pKj (k | c

1
)

pKj (k | c
2
)

−200 −100 0 100 200
k

1

0.002

0.001

0

(b)

Figure 3: Estimated probability mass functions for a nondiscriminative atom ϕj (a) and a discriminative one (b).
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much less expensive computationally speaking, but implicitly
assumes certain characteristics of the distribution under
study (i.e., second-order characteristics). In the case of uni-
variate binary problem at hand, the F can be defined as

F pK j
·∣c1 , pK j

·∣c2 ≐
μ1 − μ2

2

σ21 + σ2
2

, 8

where μℓ and σ2ℓ are the mean and standard deviation of
pK j

·∣cℓ [37].

Although the abovementioned discrepancy measures
provide, in a certain sense, “measures” of distance between
two probability distribution functions, most of them (such
as the KL divergence and those symmetric variants) are not
strictly a metric. For instance, the KL divergence is a
nonsymmetric discrepancy measure where the triangular
inequality is not satisfied. Nevertheless, KL pK j

·∣c1 , pK j

·∣c2 is a nonnegative measure, that is, KL pK j
·∣c1 ,

pK j
·∣c2 ≥ 0 and KL pK j

·∣c1 , pK j
·∣c2 = 0 if and only

if pK j
·∣c1 = pK j

·∣c2 .

5.2. Difference of Conditional Activation Frequency. In a pre-
vious work, a method called Most Discriminative Column
Selection (MDCS) for the construction of a discriminative
subdictionary was originally presented [4]. The sparse repre-
sentations of the signals in terms of subdictionaries con-
structed using MDCS provided good performance in the
detection of apnea-hypopnea events. In the mentioned work,
the most discriminative atoms were identified by comparing
the difference of conditional activation frequency.

The candidates to be considered as “most discriminative”
according to [4] are those atoms with higher absolute differ-
ence between conditional activation probabilities given the
class. That is, an atom is considered as highly discriminative
if it is active, in proportion, more times for one of the classes.
The use of this approach as a measure of discriminative
power follows from the idea that one of the most expressive
parameters regarding the importance of a given atom is its
activation probability. Moreover, if certain atoms are active
mostly for a given class, then it is assumed they represent fea-
tures of importance in the description of that particular class.

Following this idea, DCAF is defined as

DCAF ηj1, η
j
2 ≐ η j1 − η j2 , 9

where

ηjℓ ≐
number of activations of the jth atom for cℓ

number of cℓsamples
10

The measure defined in (9) is symmetric; its value is
always ≥0 and is inexpensive in terms of computing (if the
classes are balanced, the DCAF can be replaced just by simply
counting, without the necessity of dividing with the number
of samples).

It can easily be seen that the definition of ηjℓ in (10) is
equal to the maximum likelihood estimation of the condi-
tional probability of activation, that is,

pK j
k ≠ 0 ∣ cℓ ≈ ηjℓ 11

Replacing this expression in (9), we can write

DCAF ηj1, η
j
2 ≈ pK j

k ≠ 0 ∣ c1 − pK j
k ≠ 0 ∣ c2

≈ 1 − pK j
k = 0 ∣ c1 − 1 − pK j

k = 0 ∣ c2

≈ pK j
k = 0 ∣ c2 − pK j

k = 0 ∣ c1 ,

12

finally expressing the DCAF in terms of the complementary
conditional probabilities that the atoms will not be activated.
With the exception of the F, all the measures presented in
Section 5.1 can be expressed as summations, where only
one of the terms is computed using the probabilities that
k = 0. However, due to the high sparsity of the representa-
tions the terms associated with k = 0 are particularly impor-
tant. This fact allows us to expect some correlation between
the results obtained with the different discrepancy measures
and the DCAF.

Figure 4 shows a representation of the conditional PMFs
associated to the activations of two different atoms (left side)
as well as an illustration of such functions where the peaks
centered at zero (k = 0) were discarded (middle). It is impor-
tant to note that, when excluding the zero-centered peak
from the graphic, a significant reduction in the magnitude
of the y-axis scale is produced which highlights the impor-
tance of the activation probability of sparse representations.
However, the discrepancy between the distributions is not
only due to the atoms activation probability, since slight dif-
ferences between the probability values for all k ≠ 0 exist
(zoom-in region). Additionally, the absolute values of these
differences are represented by the gray regions. It is also
important to point out that these area values shown in gray
(∑k≠0 ∣pKℓ

k ∣ c1 − pKℓ
k ∣ c2 ∣) are not necessarily equal to

those corresponding to the DCAF values. Nevertheless, for
symmetric PMFs with high kurtosis and heavy tails (such is
the case of the PMFs used in this work), the conditional
and a priori distributions are similar and therefore both area
values are close to each other.

6. Experimental Setup

This section presents the proposed system and its configura-
tion settings, aimed at detecting patients suspected of suffering
from moderate to severe OSAH syndrome. It also describes
the database used for training and testing the method along
with the measures selected for assessing its performance.

The main objective of our research is to explore the
effect of using discrepancy measures to rank the atoms
according to their discriminative power. Also, the experi-
ments are designed to determine the effect of using dictionar-
ies with different degrees of overcompleteness (redundant
dictionaries) for the detection of apnea-hypopnea events.
Additionally, the performance of the system for different
sizes of subdictionaries and sparsity degrees is analyzed.
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Figure 5 shows a simplified block diagram of the pre-
sented system. It can be observed that our system comprises
a training phase (above) and a testing phase (below). To clar-
ify the system’s description, we divided it into three different
stages, namely, stage I, stage II, and stage III. It can be seen
that stages I and II are included into training and testing
phases while stage III is only used during testing. Stage I is
composed by a preprocessing block whose inputs are the
raw SaO2 signals, and its outputs are filtered segments of
such signals, as described in Section 6.1. At the training
phase, stage II receives segmented signals and finds an
optimal discriminative subdictionary. During the testing
phase, stage II obtains a sparse matrix in terms of the previ-
ously found subdictionary. These processes are thoroughly
described in Section 6.2. Finally, the obtained sparse codes
are used as input of stage III. This stage detects apnea-
hypopnea events and estimates the AHI value, as described
in Section 6.3.

6.1. Database and Signal’s Preprocessing. The Sleep Heart
Health Study (SHHS) dataset [38, 39] was originally designed
to study correlations between sleep-disordered breathing and
cardiovascular diseases. This dataset includes a large number

of PSG studies, each of them containing several physiological
signals such as EEG, ECG, nasal airflow and SaO2. Medical
expert annotations of sleep stages, arousals, and apnea-
hypopnea events are also provided. In this work, only the S
aO2 signal (sampled at 1Hz) and its corresponding apnea-
hypopnea labels are considered for performing the experi-
ments. In this article, the first online version of such a
database (SHHS-2) is used. This version of the database con-
tains a total of 995 freely available PSG studies (https://
physionet.org/physiobank/).

The SaO2 signals are mainly degraded by patient move-
ments, baseline wander, disconnections, and the limited res-
olution of pulse oximeters, among other factors. When a
disconnection occurs, the recording during the time interval
where the sensor signal is blocked is lost. In order to over-
come this inconvenience, the values of blood oxygen satura-
tion during such an interval are linearly interpolated. To
denoise the signals, a wavelet processing technique [40] is
used. The denoising process is performed by zeroing the
approximation coefficients at level 8, as well as the coeffi-
cients of the first three detail levels of the discrete dyadic
wavelet transform with mother wavelet Daubechies 2. The
signals are then synthesized using the modified wavelet

pKe (k | c
1
)

pKe (k | c
2
)

pKe (k | c
1
) | k ≠ 0

pKe (k | c
2
) | k ≠ 0

|pKe (k | c
1
) − pKe (k | c

2
) || k ≠ 0

𝜂 j 𝜂 j DCAF
j

𝜂 j 𝜂 j DCAF
j

−200 −100 0 100 200 −200 −100 0 100 200

−200 −100 0

(a) (b) (c)

100 200 −200 −100 0 100 200

0.001

0.002

1

0.001

0.002

1

0.001

0.002

0.003

0.001

0.002

0.003

2 1

2 1

Figure 4: A representation of the conditional PMFs corresponding to the activations of two different atoms (a), the same functions excluding
the peaks centered at zero (k = 0) and the absolute value of their differences (b), and a graphical interpretation of the DCAF (c). The top row
corresponds to a nondiscriminative atom (ϕj) while the bottom row corresponds to a discriminative one (ϕi).
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coefficients by inverse discrete dyadic wavelet transform. The
application of this wavelet decomposition technique has the
effect of a band-pass filter where the baseline wander and
both the low-frequency noise and the high-frequency noise,
as well as the quantization noise are eliminated. Figure 6
shows a small fragment of the original raw SaO2 signal
(top) and its wavelet-filtered version (bottom). Labels of
apnea-hypopnea events (dashed lines) introduced by the
medical experts are also added. These labels were generated
by medical experts using the airflow information and thus
are not aligned to the desaturations, that is, there is a variable
delay between the start time of an event and the correspond-
ing desaturation.

The application of the sparse representation technique
requires an appropriate segmentation of the signals. Seg-
ments of length N = 128 (corresponding to 128 seconds of
the signal recording) with a 75% overlapping between two
consecutive segments are taken. It is appropriate to point
out that although several overlapping percentages were
tested, the best system performances were yielded by a 75%
overlapping. This redundancy prevents apnea-hypopnea
events from being undetected. In this segmentation process,
the time intervals where a disconnection occurs are dis-
carded. The segments of pulse oximetry signals are then
simultaneously arranged as column vectors xi ∈ℝN and
labeled with ones (c1) and minus ones (c2), where a one cor-
responds to apnea-hypopnea events, and a minus one to the
lack of it. Finally, a signal matrix X is built by stacking side-
by-side the column vectors xi, that is, the signal matrix is
defined as X ≐ x1 x2 ⋯ xn .

As mentioned above, the entire dataset used in this work
contains 995 complete studies, 41 of which were not taken
into account for performing the experiments since the size
of the signal vectors differs from the corresponding vector

of class labels. Among the remaining 954 studies, a subset
of 667 (70%) studies were randomly selected and fixed for
learning the dictionary and training the classifier. The
remaining 287 (30%) studies were left out for the final test.
The SaO2 signals were filtered using wavelet filters and seg-
mented as explained previously into column vectors of size
128. After performing the filtering and segmentation process,
a signal matrix Xtrain of size 128 × 455515 is assembled by
joining two previously constructed signal matrices, one for

(%
)

100

95

90

85

Pulseoximetry

(a)

(%
)

Time (seconds)

5

0

−5
13,600

Wavelet-filtered pulse oximetry

13,350 13,400 13,450 13,500 13,550

(b)

Figure 6: A small fragment of a pulse oximetry signal (a) and its
wavelet-filtered version (b). Dashed lines represent labels of
apnea-hypopnea events established by the medical expert.
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Figure 5: Block diagram of the proposed system during training (a) and testing (b).
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each class, Xtrain ≐ Xtrain
c1

Xtrain
c2

, which contain 183,163 and
272,352 segments, respectively. On the other hand, for each
study included into the testing dataset, a testing matrix Xtest

is built.

6.2. Sparse Coding and Subdictionary Construction. In our
experiments, the learning of the dictionaries is performed
by using the traditional K-SVD method [14]. Optimized
MATLAB codes for dictionary learning using K-SVD as well
as for sparse coding using the OMP algorithm are freely
available for academic and personal use at the Ron Rubin-
stein’s personal web page (http://www.cs.technion.ac.il/
~ronrubin/software.html). At the beginning, the atoms
assigned to conform the initial dictionary are randomly
selected from the input signal matrix for training without tak-
ing into account any information about the classes. If the sig-
nal’s space dimension is fixed, which should be the effect of
constructing dictionaries with different overcompleteness
degree?. To answer this question, three types of dictionaries
denoted by Φ1 of size 128 × 128, Φ2 of size 128 × 256, and Φ
4 of size 128 × 512, corresponding to redundancy factors of
1, 2, and 4, respectively, were built. First, the dictionary Φ1
was constructed by joining two subcomplete dictionaries of
sizes 128 × 64 denoted by Φ1c1 and Φ1c2 learned using a large
number of training segments (a total of 100,000 segments for
each of the classes) belonging to the classes c1 and c2, respec-
tively. Following the same idea, redundant dictionaries
denoted by Φ2 (256 atoms) and Φ4 (512 atoms) were appro-
priately built. At the dictionary learning stage, the number of
nonzero elements was selected and fixed as a percentage value
of 12 5 of the atoms conforming the dictionary. Also, a total of
30 iterations of the K-SVD algorithm were performed.

Once the dictionary has already been trained, the sparse
representation vectors a1, a2,… , an corresponding to the input
signals x1, x2,… , xn are obtained by applying the OMP algo-
rithm. In such a procedure, the nearest integer number to a
percentage value of 12 5 ofM is selected and fixed. The reason
for having chosen this percentage value is because it presented
the best trade-off between representativity and discriminability
of the segments. Thus, sparsity values of q = 16, q = 32 and
q = 64 are selected to represent the input signals for training
in terms of the full dictionariesΦ1,Φ2 andΦ4, respectively.

Histograms are typically used to approximate data distri-
butions. In this work, we make use of histograms of the
atom’s activations to approximate the PDFs. The discretiza-
tion process was performed by using a Δ value of 0.5. The
detection of the most discriminative atoms is obtained by
maximizing the discrepancy between the conditional PMFs
of the atom’s activations given the classes. This objective is
achieved using the proposed DCAF measure as well as those
denoted by KL, J, JS, and F. The application of different dis-
crepancy measures to the sparse vectors allows for the selec-
tion of different “discriminative atoms,” which implies the
construction of discriminative subdictionaries which are
essentially different. The construction of subdictionaries,
here denoted byΦ1d,Φ2d andΦ4d, is performed by selecting
atoms fromΦ1,Φ2, andΦ4, respectively. Once the most dis-
criminative atoms are detected, the subdictionary is built and

consequently the feature vectors are obtained by applying the
OMP algorithm. Finally, each feature vector is assigned to be
the input of the ELM classifier.

6.3. Event Detection and AHI Estimation. Multilayer per-
ceptron (MLP) neural networks trained for signal classifica-
tion have proved to be a tool which provides quite good
performances for OSAH syndrome detection [4]; however,
the process of training this class of neural network becomes
very costly mainly in terms of time. For this reason, in this
work, we propose the use of extreme learning machine
(ELM) [41] which is a type of single-hidden layer feedfor-
ward neural networks (SLFNs), instead of using MLP neu-
ral networks. Theoretically, this algorithm (ELM) results in
providing a good generalization performance at extremely
fast learning speed. The experimental results based on a
few artificial and real benchmark function approximation
and classification problems including large complex appli-
cations show that ELM can produce good generalization
performance in most cases and can learn thousands times
faster than conventional popular learning algorithms for
feedforward neural networks [42].

Basic ELM classifier’s MATLAB codes are available for
download on the Guang-Bin Huang’s web page (http://
www.ntu.edu.sg/home/egbhuang/elm_codes.html). To train
such a classifier, the main parameters to be fixed are the
number of neurons in the hidden layer as well as the activa-
tion function of the neurons. In our experiments, the number
of neurons in the hidden layer of the ELM corresponds to
four times the feature vector dimension. Also, the well-
known sigmoid activation function, which is the most com-
mon activation function in the nodes of the hidden and/or
output layer, is chosen.

In order to evaluate the performance of the proposed
classifier in the detection of individual apnea-hypopnea
events (a local approach), or more specifically, in the identi-
fication of persons suspected of suffering from moderate to
severe OSAH syndrome (a global approach), three perfor-
mance measures are used. For the identification of single
segments containing apnea-hypopnea events, the sensitivity
(SEAH) represents the total number of correctly classified seg-
ments of signals for which any apnea-hypopnea event
occurred. Following the same idea, for the detection of indi-
vidual segments of signals “not containing” any apnea-
hypopnea event, the specificity (SPAH) is defined as the total
number of correctly classified segments for which any apnea-
hypopnea is not present. The accuracy (ACAH) is finally
defined as follows:

ACAH ≐
1
n
〠
n

i=1
δ ci, ĉi , 13

where n represents the total number of segments, ci and ĉi
denote the corresponding class label of the ith segment
and the corresponding prediction of the classifier, respec-
tively, and δ x, y represents the delta function whose out-
put is true (one) if the condition x = y is satisfied and false
(zero) otherwise.
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The differences in performance obtained for the event
detection between each discrepancy measure were evaluated
in order to test whether or not they are statistically signifi-
cant. The test was performed assuming statistical indepen-
dence of the classification errors for the different studies
and approximating the error’s binomial distribution by
means of a normal distribution. This assumptions are rea-
sonable due to the large number of SaO2 signal segments
available for each study (about 1100 segments per study,
totaling 301,306 segments).

The estimated AHI index (AHIest) is defined as the aver-
age number of predicted events per hour of study. This new
index is used for OSAH syndrome detection. In this case,
the sensitivity (SEOSAH) is defined as the ratio of persons with
OSAH syndrome for whom the final test is positive, and the
specificity (SPOSAH) is defined as the ratio of health patients
for whom the final test is negative. Also, the area under the
ROC curve (AUC) derived from a receiver operating charac-
teristic (ROC) analysis [43] is used. A ROC analysis consists
of computing the values of the sensitivity and specificity
across all the possible detection threshold (DT) values. Then,
the ROC curve is built by performing a plot of 1− specificity
versus sensitivity values. This curve has been widely used by
medical physicians for evaluating diagnostic tests [44]. A
comparison between two different methods can be effectively
done by finding the “optimal” (in certain sense) cut-off point
of the curve and evaluating their corresponding perfor-
mances. Finally, the accuracy ACOSAH is defined as follows:

ACOSAH ≐
1
m
〠
m

i=1
δ AHI i

est > DT, AHI i > 15 , 14

where m corresponds to the total number of studies coming
from the testing dataset and “DT” is the detection threshold
value which adjusts overestimation of the events produced
in the segmentation process. The value of DT results in the
best cut-off point of the ROC curve. This point, which

maximizes simultaneously sensitivity and specificity, corre-
sponds to the minimum Euclidean distance (dmin) to the
point (0,1) of the ROC curve.

7. Results and Discussion

In this section, results of the performed experiments are pre-
sented and discussed. This section is mainly separated into
two subsections, namely, (i) the performance tuning section
and (ii) the optimal system performance section.

7.1. Performance Tuning. This section presents results of the
exploratory experiments performed to find optimal configu-
rations of the proposed system. As explained in Section 6.2,
three different full dictionaries called Φ1, Φ2, and Φ4 were
learned by applying the standard K-SVD algorithm. In this
process, it is expected that most dictionary atoms would cap-
ture high-frequency oscillations and normal respiration
cycles in SaO2 signals. It is important to point out however
that typical desaturations in signals associated to apnea-
hypopnea events should be encoded by some atoms. Sec-
ondly, the sparse matrices A1, A2, and A4 were obtained by
applying the OMP algorithm. As described in Section 6.2,
several measures were used to quantify the discriminative
degree of individual atoms of each one of the studied dictio-
naries. Finally, the dictionary atoms were ranked in decreas-
ing order of magnitude according to their discriminative
power. Figure 7 shows the waveforms of the first seven
ranked atoms of the dictionary Φ1 according to our measure
(first row) as well as the first seven ranked atoms of such a
dictionary according to all other discrepancy measures (rows
from two to five). It can be seen that the most discriminative
atom selected by DCAF (dashed waveform) provides infor-
mation about two well-defined desaturations in the signal.
It is also important to point out that this atom corresponds
to the most discriminative one when using J divergence or
eventually when using the JS divergence. Moreover, one can

Most discriminative atoms

DCAF

KL

J

JS

F

1st 2nd 3rd 4th 5th 6th 7th

Figure 7: Waveforms corresponding to the first seven ranked atoms according to each one of the evaluated measures.
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clearly note that no highly discriminative atoms were taken
when using Fisher score.

Discriminative subdictionaries called Φ1d, Φ2d, and Φ4d
were built by stacking side-by-side the first p ranked
atoms from Φ1, Φ2, and Φ4, respectively, according to their
discriminative degree. It is appropriate to mention that the
evaluation of several discrepancy measures leads to the
construction of different discriminative subdictionaries.
However, optimal values of p (subdictionary size) and q
(sparsity level) are parameters that need to be tuned. In
order to find optimal values of such hyperparameters, a grid
search was performed.

The performance of our system was first tested by per-
forming a Random Selection (RS) of the dictionary atoms.
The involved results were fixed and appropriately used as ref-
erence. The random selection of the atoms was performed
ten times. Additionally, for each one of the atoms’ random
selection, 60 iterations of the grid search were performed.
Thus, the accuracy rate’s variations introduced by the classi-
fier were minimized. Figure 8 shows three images corre-
sponding to averaged accuracy rates for each one of the

evaluated dictionaries. Averaged accuracy rates (reference
values) obtained by using the dictionary Φ1 for the detection
of apnea-hypopnea events are shown on the left of this figure.
It can be seen that sparse representations in terms of Φ1,
using the smallest subdictionary size and the highest sparsity
degree, result in better performance than the ones obtained
by using all other configurations of Φ1 and the overcomplete
dictionaries Φ2 and Φ4. In this way, two regions can be dis-
tinguished corresponding to a high-performance region and
a low-performance one. The first one, which is or our inter-
est, is yielded by simultaneously employing a small subdic-
tionary size (10%) and a high sparsity degree (5%).

Next, DCAF and four other discrepancy measures were
used for appropriately constructing discriminative subdic-
tionaries. Then, a grid search of hyperparameters was per-
formed by analyzing the performance that yields our
system when using each one of the subdictionaries. Figure 9
shows five images corresponding to DCAF (upper left) and
the other four discrepancy measures. These images represent
the differences between accuracy rates obtained by using dis-
criminative measures and the reference one (random
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Figure 8: Averaged accuracy rates obtained by varying the percentages of the subdictionary size and the sparsity level according to a random
ranking of the atoms.
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Figure 9: Five images representing differences between accuracy rates yielded by DCAF and all other discrepancy measures and random
selection for Φ1.
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selection) for Φ1. Also, each pixel of these images corre-
sponds to particular percentages of subdictionary size and
sparsity level. It can be observed that, independently of the
discriminative measure, small percentages of subdictionary
size yield good performances. It is appropriate to point out
however that the effect of the dimension (subdictionary size)
in the performance of the system is more important than the
one induced by using discriminative measures.

Analogously, Figures 10 and 11 show five images which
correspond to DCAF (upper left) and all other discrepancy
measures. The images depicted in Figures 10 and 11

represent the differences between accuracy rates obtained
by using these measures and the reference one for dictionar-
ies Φ2 and Φ4, respectively.

If we compare the results shown in Figures 9–11, then
it can be concluded that the proposed system presents the
best performance, in terms of accuracy rate in the detec-
tion of apnea-hypopnea events, when using the full dictio-
nary Φ1. Although similar results were obtained applying
the proposed DCAF measure and those traditional ones
(see Figure 9), it is important to point out that the use
of discrepancy measures resulted in a significantly high
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Figure 11: Five images representing differences between accuracy rates yielded by DCAF and all other discrepancy measures and random
selection for Φ4.
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Figure 10: Five images representing differences between accuracy rates yielded by DCAF and all other discrepancy measures and random
selection for Φ2.
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improvement with respect to a “random” selection of the
atoms. As discussed above, the dimension reduction in
the subdictionary size as well as high sparse levels yielded
high accuracy rates. This is the reason for which a small
subdictionary size (10%) and high sparse level (5%) were
chosen to perform the final test.

System performance changes were analyzed by perform-
ing a comparison between averaged accuracy rates obtained
by using discriminative subdictionaries and the ones obtained
by using full dictionaries. Table 1 shows averaged accuracy
percentages obtained by taken into account fixed discrimina-
tive subdictionary sizes (10%) while allowing the sparsity
level to change (rows from 3 to 7). The last row of this table
presents averaged accuracy percentages yielded by using full
dictionaries for different sparsity levels. It can be observed
that, in all of cases, discriminative subdictionaries outperform
full dictionaries in the detection of apnea-hypopnea events.

The impact of sparsity degree in the performance of our
system is illustrated in Table 2. These results were yielded
by averaging accuracy rates obtained for a sparsity level of
5% and considering all possible subdictionary sizes (from
10% to 90%). For example, the second row shows averaged
accuracy rates obtained by means of discriminative subdic-
tionaries whose atoms were taken from Φ1, Φ2, and Φ4 by
using DCAF measure.

7.2. Optimal System Performance. Optimal system configura-
tions were selected and fixed to perform the final test. In the
previous section, it was found that discriminative subdiction-
aries constructed by taken atoms from the dictionary Φ1
yield better performances than the ones constructed by
selecting atoms from the dictionaries Φ2 and Φ4. Addition-
ally, it was found that a discriminative subdictionary com-
posed by only 12 atoms (10%) and a sparsity level of one
(5%) yield in the best accuracy rate of our system.

In order to overcome the variance introduced by ELM
predictors, 60 repetitions of the testing process were
performed. Table 3 shows percentage values of minimum
(Min), maximum (Max), average (μ), and standard deviation
(σ) corresponding to obtained accuracy rates in the detection
of apnea-hypopnea events. Although, DCAF performs simi-
larly to the four other discrepancy measures, its performance
is achieved with a relatively low computational cost. Addi-
tionally, results show that performances obtained by using
discriminative measures for constructing subdictionaries
always outperform the ones yielded by making use of ran-
domly constructed subdictionaries.

Table 1: Averaged accuracy rates for subdictionary sizes of 10% regarding to each one of the evaluated full dictionaries.

Measure Φ1d 128 × 12 Φ2d 128 × 24 Φ4d 128 × 50
Max Avg. Max Avg. Max Avg.

DCAF 72.62 64.68 65.20 63.15 65.19 64.21

KL 73.20 64.91 65.44 63.53 65.42 63.66

J 72.82 64.88 64.50 62.82 65.39 63.68

JS 72.55 64.10 65.02 63.18 65.87 64.01

F 72.23 65.21 64.57 63.04 65.64 62.71

Full dictionary 66.39 59.77 68.13 59.57 69.28 69.21

Table 2: Averaged accuracy rates by considering a sparsity level of
5% regarding to all possible subdictionary sizes.

Measure Φ1 Φ2 Φ4
DCAF 66.41 66.51 67.95

KL 66.49 66.72 67.98

J 66.60 66.56 67.98

JS 66.41 66.57 68.15

F 66.53 66.54 67.58

Table 3: Averaged accuracy rates for a subdictionary percentage of
10 for the detection of apnea-hypopnea events.

Measure Min Max μ σ

DCAF 71.72 73.14 72.57 0.345

Kullback-Leibler 72.06 73.78 73.26 0.390

Jeffrey 71.77 73.31 72.66 0.319

Jensen-Shannon 71.79 73.11 72.55 0.295

Fisher 71.01 72.77 72.18 0.325

Random Selection 70.01 71.51 70.91 0.372

Table 4: A summary of the performed statistical significance tests.

RS DCAF KL J JS F

RS — ✓ ✓ ✓ ✓ ✗

DCAF — — ✗ ✗ ✗ ✗

KL — — — ✗ ✗ ✗

J — — — — ✗ ✗

JS — — — — — ✗

F — — — — — —

Table 5: Maximum cut-off points for testing accuracy for a
subdictionary percentage of 10 for the detection of apnea-
hypopnea events.

Measure dmin SE SP ACC AUC

DCAF 0.2211 81.88 87.32 84.60 0.9250

Kullback-Leibler 0.2242 81.46 87.39 84.43 0.9271

Jeffrey 0.2311 80.86 87.04 83.95 0.9283

Jensen-Shannon 0.2267 80.75 88.03 84.39 0.9244

Fisher 0.2280 80.66 87.91 84.29 0.9252
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We have also evaluated the statistical significance of the
results presented in Table 3 by computing the probability
that using each one of the evaluated measures, including
RS, yields in better classification performances than the
others. In order to perform this test, we assumed the statisti-
cal independence of the classification errors for each study.
Also, it was possible to approximate the error’s binomial
probability distribution by a normal distribution due to a
wide availability of signals (301,306). Table 4 summarizes
the results of the performed statistical significance tests by
considering a p value of 0.01. It can be seen that DCAF
and three other discrepancy measures (KL, J, and JS diver-
gences) are significantly different with respect to random
selection. Also, no significant difference was found
between F score and random selection. Additionally, it
was found that DCAF does not perform significantly bet-
ter than that of the KL, J, and JS divergences.

To determine the severity degree of OSAH syndrome, a
ROC curve analysis was successfully performed by consider-
ing a detection AHI of 15. This index was selected in order to
identify patients suspected of suffering from moderate to
severe OSAH syndrome. Table 5 shows the minimum
operating (cut-off) point of the ROC curves and maxi-
mum percentages of sensitivity, specificity, and accuracy
as well as maximum values of area under the ROC curve
for AHI diagnostic threshold values of 15 (Figure 12(a)).
It can be seen that DCAF resulted in a maximum area
under the ROC curve of 0.9250 and sensitivity and

specificity percentages of 81.88 and 87.32, respectively.
These are the maximum performance measures at which
the minimum cut-off point of the ROC curve is attained.
If we compare the performances attained between all of
the evaluated measures, then the maximum SE and AUC
value is yielded by J divergence. Also, JS divergence out-
performed all the others in terms of ACC and DCAF
resulted in the minimum cut-off point of the ROC curve.

We additionally performed a ROC curve analysis of the
averaged performances of DCAF and all the other discrep-
ancy measures, including (RS) (Figure 12(b)). Additionally,
Table 6 shows the minimum operating (cut-off) point of
the averaged ROC curves as well as the maximum percent-
ages of sensitivity, specificity, and accuracy, including the
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Figure 12: ROC curves corresponding to the performance measures described in Tables 5 and 6.

Table 6: Averaged cut-off points for testing accuracy for a
subdictionary percentage of 10 for the detection of apnea-
hypopnea events.

Measure dmin SE SP ACC AUC

DCAF 0.2211 81.88 87.32 84.60 0.9250

Kullback-Leibler 0.2242 81.46 87.39 84.43 0.9271

Jeffrey 0.2311 80.86 87.04 83.95 0.9283

Jensen-Shannon 0.2267 80.75 88.03 84.39 0.9244

Fisher 0.2280 80.66 87.91 84.29 0.9252

Random Selection 0.2396 80.85 85.60 83.23 0.9222
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maximum values of AUC for the same OSAH syndrome
diagnostic threshold. The results show that DCAF outper-
forms all the other discrepancy measures in terms of mini-
mum optimal operating cut-off point of the ROC curve as
well as in terms of sensitivity and accuracy rate. Also, KL
divergence resulted in the best averaged area under the curve
ROC and the maximum averaged specificity was yielded by
JS divergence. A significant performance improvement was
observed when using DCAF or any of the other discrepancy
measures compared to random selection.

Several applications exist where it is desirable to maxi-
mize the sensitivity. For instance, if the primary purpose of
the test is “screening,” that is, detection of early disease in a
large numbers of apparently healthy persons, then a high sen-
sitivity is generally desired. With this in mind, if a sensitivity
of 98% is chosen in the ROC curves in Figure 12, for all used
measures, the method achieves a specificity close to 45%. This
fact shows that the analysis of pulse oximetry signals by
means of the proposed method could be potentially applied
as an efficient diagnostic screening tool in clinical practice.

In a previous work [4], it was shown that the MDCS
method using DCAF to select discriminative atoms in a given
dictionary provides good accuracy rates in the detection of
apnea-hypopnea events. In that work, a comparative analysis
of the performances yielded by MDCS and other methods
[45–47] has shown that MDCS outperforms all the others.
It was also observed that the computational cost of MDCS
is slightly higher than those required by the other three
methods. On the other hand, in this work, we show that
MDCS using DCAF for selecting discriminative atoms per-
forms similarly than MDCS using several other traditional
discrepancy measures. It is important to highlight that DCAF
is very easy to compute and yields competitive performance
rates in the detection of apnea-hypopnea events at a low
computational cost.

8. Conclusions

Sparse representations of signals constitute a powerful
technique which yields high accuracy rates in the detection
of apnea-hypopnea events. In this work, the difference of
conditional activation frequency (DCAF) measure was suc-
cessfully used for accurately pointing out discriminative
atoms in a full dictionary. Additionally, we compared the
performance of the DCAF with four widely used discrep-
ancy measures. It was found that the DCAF and three
other discrepancy measures (KL, J, and JS divergences)
outperform the random selection of atoms, unlike F score.
Additionally, DCAF is cheaper to compute. Discriminative
subdictionaries were successfully constructed by taking the
best ranked atoms of full dictionaries according to their
discriminative power. Results show that sparse representa-
tions of signals in terms of discriminative subdictionaries
result in better performances than the ones obtained in terms
of full dictionaries in the detection of apnea-hypopnea events
by using only pulse oximetry signals. In this context, it was
found that more sparse solutions almost always yielded in
better performances. Additionally, it was observed that larger
dictionary overcompleteness worsens the performance of the

system. Future research lines include more analysis of the
DCAF measure, the study of its properties, and an extension
of such a measure to multiclass problems.
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