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Abstract. In the last years, the effort devoted by the scientific commu-
nity to develop better emotion recognition systems has been increased,
mainly impulsed by the potential applications. The Boltzmann restricted
machines (RBM) and the deep machines of Boltzmann (DBM) are mod-
els that, in recent years, have received much attention due to their good
performance for different issues. However, it is usually difficult to mea-
sure their predictive capacity and, specifically, the individual importance
of hidden units. In this work, some measures are computed in the hidden
units in order to rank their discriminative ability among multiple classes.
Then, this information is used to prune those units that seem less rele-
vant. The results show a significant decrease in the number of units used
in the classification at the same time that the error rate is improved.

Keywords: RBM · DBM · pruning · entropy · divergence · feature se-
lection · emotions.

1 Introduction

While humans can differentiate most of the natural emotions expressed in almost
all environmental conditions, machine learning systems still present difficulties in
this task. In recent years, a series of systems for automatic emotion recognition
have been developed with varying degrees of success [21]. In the case of artificial
neural networks, there are several criteria used to evaluate a network’s quality
e.g. training time, scalability, and generalisation ability, among others. One com-
mon approach to determine an appropriate network size for a specific task is by
using heuristics and/or trial-and-error, usually looking for good performance and
generalisation ability on a validation set. Another approach considers ways of
’growing’ an artificial neural network until satisfactory performance is achieved
[7,22]. A different technique uses ‘pruning’ methods [4,24,14]. In general, these
methods begin by training an artificial neural network, which is large enough
to ensure a satisfactory performance. Afterwards, neurons are removed from the
trained net (for example, the ones with the smallest weights) and then the net-
work is often fine-tuned or retrained. This procedure could also be repeated until
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some convergence criterion is achieved, otherwise the smallest network that per-
formed adequately is assumed to have the most suitable topology for the given
data set. This type of pruning was called post–training pruning (PTP) [4].

Networks size is especially relevant and recent works show that larger or
deeper nets can solve the tasks using a more appropriate space [15,8,13]. In
consequence, new complications associated with complex and computationally
demanding training algorithms must be addressed [23,12,3]. In this context, op-
timise a feed–forward artificial neural network has proven to be a difficult task.
The best results obtained on supervised learning tasks involve an unsupervised
learning component, usually in an unsupervised greedy pre–training phase [6,11].

In this work, the standard DBM-RBM configuration is considered, where a
RBM is training (unsupervised) at the first step and then, a posterior classifier
is feeding with its outputs. However, instead of using the last layer of the RBM
to feed the classifier, the more discriminative hidden units are used based on
a post-training ranking. In order to measure the discriminative capability two
criterion were used and the multi-class emotion classification task was addressed.
A binary approach was presented in [18].

In the next section, the material and methods are introduced. Section 3 deals
with experiments and results and finally, the discussions are presented.

2 Materials and methods

As it was mentioned, the multi-class emotion classification task is addressed
using two emotional speech corpora and well-known parameterisations.

2.1 Speech corpora and feature extraction

Both databases have been extendly used and they are labeled using seven emo-
tions with a distribution showed in Table 1. From the INTERFACE project
which involves four languages: English, French, Slovenian and Spanish, the last
one was used here. This corpus was created by the Center for Language and
Speech Technologies and Applications (TALP) of the Polytechnic University of
Catalonia (UPC) with the purpose of investigating emotional discourse. Two pro-
fessional actors, a man and a woman, elicited 5113 spoken sentences. The other
corpus was developed at the Communication Science Institute, in the Berlin
Technical University [2]. The corpus has 535 utterances, and the same sentences
were recorded in German by 10 actors: 5 females and 5 males. In a first step, 10
utterances for each emotion type (from 1 to 7 sec.) were elicited and then, a per-
ception test with 20 individuals was carried out to ensure the emotional quality
and naturalness of the utterances and the most confusing were eliminated.

Although there is no a definitive consensus about the best characteristics for
emotional speech recognition [5], the research community considers some suit-
able attributes to define baselines[20,25]. In this work, a well-known set computed
over the whole sentences was used: the means of the {first 12 MFCCs, F0, en-
ergy} and the zero-crossing rate; in addition, the means of their first derivatives.
Consequently, each audio file is represented by a 30–dimensional vector.
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Table 1: Emotional corpora distribution.
neutral anger disgust fear joy surprise sadness

boredom(∗)

INTERFACE 734 724 731 735 731 728 730
EmoDB 79 127 46 69 71 81(∗) 62

2.2 Classifiers: restricted Boltzmann machines

The RBM is an artificial neural network with two layers (Fig. 1): the input (vis-
ible) layer and the hidden (output) layer [8,6]. There is no connections between
the units in the same layer [10], and the RBM represents the joint distribution
between the input vector and hidden layers (random variables).

Fig. 1: Restricted Boltzmann machine

As it is a generative stochastic network, it can learn the probability distri-
bution over the data using an energy function E defined as:

E(v, h) = −a>v − b>h− v>Wh (1)

where v and h are the input and the hidden state vectors respectively, W is a
symmetric matrix of the connection weights, and {a, b} are bias vectors for the
layers. The joint probability (p(v, h)) assigns a probability to each configuration
(v, h) using:

p(v, h) =
e−E(v,h)

Z
(2)

where Z =
∑

v,h e
−E(v,h) is a normalisation constant. Then, the probability

assigned by the network to the visible vector v is:

p(v) =
1

Z

∑
h

e−E(v,h) (3)
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As there is no connections in the same layer, the visible variables are condi-
tionally independent, given the hidden variables, and vice versa. Then, the con-
ditional probabilities are: p(vj = 1|h) = σ(ai +

∑
j hjwi,j) and p(hj = 1|v) =

σ(bj +
∑

i viwi,j), where σ(x) = 1
1+e−x .

In order to find the parameters {W , a, b}, the contrastive divergence algo-
rithm is applied [9].

The standard configuration of a deep RBM is a pipeline that includes a
RBM (it may have multiple stacked RBMs) and, connected to its output a final
classifier. The last can be a standard classifier as K-nearest neighbors (KNN), de-
cision trees or multilayer perceptrons (MLP), among others [1,5]. After training
the RBM, the outputs from the hidden neurons feed the final classifier.

3 Pruning with discriminative measures

Although the standard way is widely accepted, there are not explicit proofs that
the last layer provides the more discriminative information to the final classifier,
and much less in a deep stacked RBM. Then, it is interesting to evaluate the

Fig. 2: Proposed DBM.

discriminative capacity of every units, to rank them and to use the best to feed
the final classifier (see Figure 2).

After RBM training phase, it is feeding again with the training samples and
the activations are collected in every unit for each class. Then, it is possible to
think about activation probabilities of the classes in each unit. Consequently,
the more different these activations are, the more discriminative that the unit
could be. In this work, information gain and Pearson correlation are proposed to
measure this in order to rank the units. The general steps used in the multi–class
approach are described in Algorithm 1.
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Neural network pruning using discriminative information 5

Algorithm 1 Discriminative evaluation

Require: An unsupervised trained RBM
1: for all class do
2: calculate the propagated value in the hidden layer for each training vector
3: end for

Require: The outputs of the RBM (the propagated vectors)
4: for all neuron i do
5: estimate separately the histograms of the output data for each class.
6: calculate i’s discriminative value Di according to the selected measure.
7: end for
8: Rank the neurons according to their discriminative value in descending order.

Require: Ranked neurons
9: for i← 1 to total number of neurons do
10: use the first i neurons to classify the data using Knn.
11: end for

3.1 Information gain

The information gain is used to measure about the ‘information gained’ in the
classification task, in presence or absence of a neuron, by the decrease of global
entropy. Entropy is considered as a measure of the unpredictability of the system,
then, if the randomness of the given variable is known, the amount of information
provided by an event can be estimated. For a random variableX with probability
mass function p, it is computed as H(X) = −

∑
x p(x) log2 p(x).

Then, a more probable event is less informative and it is possible to define the
information for a particular event as I(x) = − log2 p(x), and its expected value
over all possible values of x leads to the Shannon’s entropy. From Shannon’s
entropy we can define the conditional entropy of a random variable X given the
random variable Y by:

H(X|Y ) =
∑
x,y

p(x, y) log2 p(x|y) (4)

where p(x, y) is the joint probability that X = x and Y = y. Using that, the
information gain of a class for a unit is defined as:

IG (Class,Attribute) = H (Class)−H (Class|Attribute) (5)

In this context, the hidden unit is an attribute.

3.2 Pearson correlation

In this work, the Pearson correlation coefficient (PCC) [16] is computed as the
normalized covariance: 1 means direct correlation, −1 means inverse correlation
and 0 denoting the absence of any relationship. The idea is that the correlation of
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6 M. Sánchez-Gutiérrez, E. M. Albornoz

the samples within a class is expected to be greater than the correlation between
classes [26], in this way, the ranking of neurons uses the correlation values. This
coefficient can be expressed as:

r = rxy =
cov (x, y)

σxσy
=

∑
xiyi − nx̄ȳ√

(
∑
x2i − nx̄2)

√
(
∑
y2i − nȳ2)

(6)

where σ is the standard deviation, n is the sample size and x̄, ȳ are the means.
When x and y come from the same class, this coefficient is interpreted as the
intra–class correlation while, when they come from different classes, as the inter–
class correlation. It means, for each neuron, the correlation is obtained using the
neuron’s output values for the samples of the classes. Then the ranking is carried
out as described in Algorithm 1.

4 Experiments and Results

The baseline was defined as a standard DBM using a 10–fold cross-validation
(CV)[17], and a confidence interval (CI) with 0.05 level of significance was com-
puted. Then, the pruning performance was evaluated on the final classifier with
10–fold CV. For each pruning, a new final classifier is trained an tested. The ex-
periments were performed using an RBM with 30 visible and 1920 hidden units
for the Interface corpus, for the EmoDB database 30 visible and 960 hidden
neurons were used. The number of hidden units were set based on the number
of audio samples [19]. The baseline is represented with a solid-line and the confi-
dence interval (CI) with a dashed-line in the Fig. 3. The pruning was done with
the best 200 units and then, adding 200 successively for Interface, and using 100
and an increment of 100 for EmoDB. When the performance of the pruned net-
works crosses the baseline CI, it is a good point to stop the searching. However,
it is possible to see the better performances reached by the pruned networks.

5 Discussion

Results show that the two proposed measures are useful to achieve an acceptable
error rate with fewer neurons. As can be seen, the pruned networks use less
units than the full RBM and reach better classification rates. This may keep the
advantages in classification using a big net and to improve the results using a
standard DBM.

The results indicate that once a suitable number of initial neurons has been
chosen, pruned networks with less than 50% of the neurons produce better-
than-baseline error results. For example in the Fig. 3 (a), around 40% of the
total neurons are needed to achieve the same performance than the baseline
while in (b), only 10% is needed. In both figures, it can be seen that the error
decreases until that adding more neurons does not give more information and
make the net more complex.
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Fig. 3: Pruning results using INTERFACE(a) and EmoDB(b) corpora. Test were
performed using different RBM configurations.
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8 M. Sánchez-Gutiérrez, E. M. Albornoz

In the post-training pruning method for restricted Boltzmann machines pre-
sented in this work, the hidden units were ranked and then pruned using infor-
mation gain and Pearson correlation.

In this work, we used the pruning scheme in multi-class classification and
it obtain a good performance and it is very promising to be applied in other
tasks. Finally, this can be considered as a method for feature extraction (from
the hidden units of a RBM).

In future work, more task will be evaluated and more techniques to measure
the discriminative ability of neurons will be explored.
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