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Abstract

Extreme Learning Machines (ELMs) have become a popular tool for the classification of electroencephalogra-8

phy (EEG) signals for Brain Computer Interfaces. This is so mainly due to their very high training speed and

generalization capabilities. Another important advantage is that they have only one hyperparameter that must be10

calibrated: the number of hidden nodes. While most traditional approaches dictate that this parameter should be

chosen smaller than the number of available training examples, in this article we argue that, in the case of problems12

in which the data contain unrepresentative features, such as in EEG classification problems, it is beneficial to choose

a much larger number of hidden nodes. We characterize this phenomenon, explain why this happens and exhibit14

several concrete examples to illustrate how ELMs behave. Furthermore, as searching for the optimal number of

hidden nodes could be time consuming in enlarged ELMs, we propose a new training scheme, including a novel16

pruning method. This scheme provides an efficient way of finding the optimal number of nodes, making ELMs more

suitable for dealing with real time EEG classification problems. Experimental results using synthetic data and real18

EEG data show a major improvement in the training time with respect to most traditional and state of the art

ELM approaches, without jeopardising classification performance and resulting in more compact networks.20

Keywords: Brain Pattern Recognition, Brain Computer Interfaces, Pruning, Unrepresentative Features,

Electroencephalography22

2010 MSC: 68T05

1. Introduction24

Brain-Computer Interfaces (BCIs) have become attractive as they provide alternative ways of communication for

people who have lost the capability to interact with their environment (Wolpaw et al., 2002). By means of a BCI, the26

neural activity of a person is decoded and transformed into commands, which are then used for controlling a device

(Nicolas-Alonso & Gomez-Gil, 2012; Holz et al., 2015). In BCI applications, neural activity is classically measured28

by electroencephalography (EEG), since it is a non-invasive technique, measurement devices can be portable and

the EEG signals have high time resolution (Wolpaw et al., 2002; Nicolas-Alonso & Gomez-Gil, 2012). However,30

those signals present a low spatial resolution, high redundancy and the information is usually encoded only in a

small subset of the features. Once the EEG signal is obtained, machine learning techniques are typically used to32

classify them for their posterior use as inputs for control commands. This classification process presents several

challenges, as it needs to yield good performance, its training time must be short and it must be applicable even34

when only a few training samples are available. In this context, Extreme Learning Machines (ELMs) had become a

popular tool for EEG signal classification in BCIs applications (Liang et al., 2006; Duan et al., 2016; Zhang et al.,36

2018; Kong et al., 2018; Tan et al., 2016; Jin et al., 2020).

The use of random weights in neural networks was first proposed in (Schmidt et al., 1992). The idea was then38

reintroduced under the concept of Extreme Learning Machines by (Huang et al., 2004, 2006, 2011), and it has been
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extensively used since then, not only for BCI applications, but also in the whole Neuroscience field (Murugavel40

& Ramakrishnan, 2016; Song & Zhang, 2013; Yuan et al., 2011; Zhao et al., 2018; Shi & Lu, 2013). Moreover,

ELMs have been recently incorporated into Deep Learning frameworks for EEG classification, resulting in deep42

architectures with short training times (Ding et al., 2015, 2017). The main reasons for their wide use are that

the training process is very fast and the networks yield good generalization capabilities. Another quite appealing44

aspect of ELMs is that, unlike most machine learning techniques, they have only one hyperparameter that must

be tuned up: the number of hidden nodes. In (Huang & Babri, 1998) it has been proved that given a training46

dataset consisting of N samples, the model can learn them exactly, with probability 1 (w.r.t. the random parameter

initialization), using N hidden nodes. Nevertheless, perfect classification over a training set often entails a loss of48

generalization capabilities. In fact, for the case of N training samples, according to (Huang & Babri, 1998), N is an

upper bound for the number of nodes in the hidden layer. However, for the particular case of problems in which50

the data are contaminated by unrepresentative features, like EEG signals, choosing the number of hidden nodes

M ≤ N turns out to be suboptimal, since M � N will almost surly results in better classification performances.52

In Sections 2 and 3, we use synthetic data to show this phenomenon and describe the reason for its occurrence.

Enlarged architecture (M � N) are most often unfeasible in real time applications with traditional ELM training54

schemes. This is so because training time rapidly increases with the number of nodes, and hence hyperparameter

search can become time consuming, thus antagonizing one of the most important ELMs advantages. To cope with56

the problem of finding the optimal number of hidden nodes, different pruning methods have been developed (Rong

et al., 2008; Miche et al., 2010; Luo et al., 2013; Tavares et al., 2014; Alencar et al., 2016). In (Rong et al., 2008)58

the Information Gain and Chi-Square are computed and used to determine the relation between the hidden nodes

and the target labels. In (Miche et al., 2010) the authors propose a method named Optimally Pruned ELM (OP-60

ELM). This algorithm ranks the nodes using multiresponse sparse regression (MRSR) (Similä & Tikka, 2005), and

then prunes the hidden layer using the leave-one-out (LOO) validation error. In (Luo et al., 2013) the authors62

propose to find a sparse representation of the output weights, effectively pruning the hidden layer. However, this

approach uses Bayesian inference instead of the generalized inverse to obtain the output weights, and therefore it64

can hardly be considered an ELM. In (Tavares et al., 2014) the authors propose to pre-prune linearly dependent

nodes, disregarding any other information such as discriminative power. More recently, a pruning method based on66

genetic algorithms (GA) was introduced in (Alencar et al., 2016). Here, a fitness function simultaneously minimizes

the LOO validation error and the number of hidden nodes. However, as this method has to train a different ELM68

for each individual in every generation, it ends up being computationally expensive.

All previously described pruning methods need to retrain the ELMs for searching their internal hyperparameters70

and/or have to retrain the whole network after the optimal number of hidden nodes is reached. Furthermore, the

methods focus their attention on improving classification performance, with complete disregard for the computa-72

tional burden of tuning the hyperparameters, which can be very heavy in enlarged ELMs. In order to cope with this

drawback, in this article we introduce a novel post-training pruning method. Our proposal changes the traditional74

way of searching for the number of hidden nodes in enlarged ELMs, eliminating the need for the computational
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expensive retraining and without adding extra hyperparameters. The method is described in Section 4. In Section76

5, we compare our scheme with the traditional ELM approach with two different EEG databases, and show its

potential in real-life problems. Finally, a detailed comparison between our proposed algorithm and the OP-ELM is78

also presented.

2. Extreme Learning Machines80

For simplicity, we shall consider an ELM within the context of a binary classification problem. We point out,

however, that all results presented in this work remain valid for multi-class problems.82

Given an arbitrary vector x ∈ RD, an ELM classification output is given by

z = βT g(Wx+ b), (1)

where W ∈ RM×D is the matrix associated to the hidden layer, g : R→ R is an activation function, b ∈ RM is the

bias vector, and β ∈ RM is the weight vector connecting the hidden layer to the output. Here and in the sequel,84

the action of g on a vector or on a matrix is meant to be its components-wise evaluation.

The training process of an ELM consists of two main steps. First, the entries of W and b are randomly generated86

as independent realizations of an absolutely continuous random variable (usually with uniform distribution in

[−1, 1]). The second step consists of finding an appropriate vector β. This can be done as described below.88

Let us consider a dataset consisting of N training samples xn ∈ RD, n = 1, . . . , N , stacked as the columns of a

matrix X ∈ RD×N . Let y ∈ {−1, 1}N be the desired output vector, where yn, gives account for the class of xn, ∀n.90

Let us define

H
.
= [g(WX + b 1(1,N))]

T
, (2)

where 1(1,N) is an N-dimensional row vector with all its elements equal to 1. Then, training the ELM weight vector

β amounts to “solving” the linear system

Hβ = y. (3)

Note that H ∈ RN×M , and therefore if M < N , (i.e. if the number of nodes is less than the number of training

examples) the linear system (3) is under-determined. In this case, an appropriate way to deal with equation (3),

is to resort to least squares solutions. We then define the vector β̂ as the best approximate solution (i.e, the

minimal-norm least-squares solution) of (3) (Heinz et al., 1996). That is

β̂
.
= H†y, (4)

where H† is the Moore-Penrose generalized inverse of H.

When M < N , the ELM’s generalization capability is associated with the fact that least squares solutions assign92

larger weights to the columns of H which are most relevant for classification purposes. However, when M = N ,
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Figure 1: Synthetic data distribution, differentiated by class. 500 data points for each class are plotted

system (3) has a unique solution (with probability one), as shown in (Huang & Babri, 1998). Hence, in this case,94

the solution β̂ is forced to take all columns of H into account, even those which are irrelevant for classification.

This constitutes a classic case of overfitting.96

Although it is theoretically true that M ≥ N implies that the matrix H has N independent column vectors

(with probability one), this does not necessarily imply that the feature space be well represented. To illustrate98

this, let us consider the following example. Suppose that there are two columns of H, say h and h′ ∈ RN , such

that h1 = h′1 + ε (for a small ε ∈ R) and hn = h′n,∀n ≥ 2 (here hi, h
′
i denotes the ith components of the vectors100

h and h′, respectively). Although these two vectors are strictly different and linearly independent, for all practical

purposes they clearly encode the same feature information. Formally, while M = N ensures that H be invertible, it102

can still present very small singular values (and therefore a high condition number), which is a reflection of a poor

representation of the feature space. As shown in (Horn & Johnson, 1990), as the smaller non-zero singular values104

increase, in a context of normalized data, the feature space becomes better represented.

3. Changing the network size106

In light of the above discussion, we argue that the proposed upper bound M ≤ N is suboptimal in the case of

problems where the data have unrepresentative features. Thus, in this kind of problems, such as classification of108

EEG signals, M should be chosen and calibrated differently. We perform an experiment using artificially generated

data in order to characterize the type of problems where choosing M � N can be highly beneficial.110

Let us consider a binary classification problem in which the data points corresponding to the two classes are

distributed as depicted in Figure 1. It is clear that the displayed coordinates x1, x2 are enough for classification.112

In an ideal situation, any additional coordinate added to the data points taking random values independently of

the class, should not be taken into account by any classifier. In a real problem, the data points might be highly114

contaminated with this kind of unrepresentative “junk features” (JF) which are, a-priori, indistinguishable from

the representative ones. Hence a question that immediately arises is: should the same kind of ELM architecture be116
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Figure 2: Mean test accuracy for 300 realizations (30 random initializations of parameters W and b and 10 cross validations of the

data) in synthetic data adding Junk Features (JF) generated from a uniform distribution in the interval [0,1]. 100 data points are used

for training. Shading illustrates ± 1 standard deviation.

used for this kind of problems?

Let us take a look at Figure 2, where for several choices of the number of neurons M , the average test accuracy118

of an ELM is plotted. The purple solid line corresponds to the test accuracy obtained using the data as displayed

in Figure 1, while the other two dashed lines correspond to those obtained using the data points contaminated with120

different numbers of junk features. Those features were generated as random realizations of a uniform distribution

in the interval (0, 1). One can immediately see that M < N is an optimal choice for the two-coordinates case.122

However, when the data contain unrepresentative features, the choice of M � N could be more convenient. As

the number of unrepresentative features increases, this convenience becomes more notorious. Different distributions124

of the junk features have different impacts in the described phenomenon. This can be clearly observed in Figures

SI-1, SI-2 and SI-3 of the Supplementary Information Section, where analogous results are shown for different126

distributions of the unrepresentative features.

One might wonder, if this is a scenario one might often expect in practical problems. As pointed out before,128

when working with EEG signals, the extracted features will, in most cases, not be representative of the problem

at hand, resulting in many junk features. We show that this happens to be the case for an experiment using the130

datasets introduced in (DaSalla et al., 2009) and (Ledesma-Ramirez et al., 2010), which contain EEG signals. Both

datasets are explained in detail in Section 4.1).132

The experiments were performed using 70% of the data for training and 30% for testing, with 50 random

initializations of the parameters W and b and 20 cross validations. Figure 3 illustrates the train and test accuracy134

of the ELM as a function of the parameter M for the dataset introduced in (DaSalla et al., 2009). As it can be seen,

at first the accuracy grows with M , until reaching a local maximum, after which it starts to decay up to the global136

minimum, reached at M = N . However, the test accuracy starts to increase again as M further increases. Similar

results are shown in Figure SI-4 of the Supplementary Information Section, obtained for the dataset introduced138

in (Ledesma-Ramirez et al., 2010). These results are consistent with the analyzed synthetic data and also with
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Figure 3: Mean accuracy for 1000 realizations (50 randoms initializations and 20 cross validations) obtained for training and testing

data, as a function of the hidden layer size, M . 70 training examples for DaSalla dataset were used. Shading illustrates ± 1 standard

deviation of the results.

the findings in (Belkin et al., 2019), where a similar behaviour is reported in the context of traditional multi-layer140

perceptrons (MLP). Although this phenomenon is well described and known for MLP, to our knowledge, it has

never been previously studied in the context of ELMs.142

The overfitting observed in Figures 2 and 3 when M ≈ N can be explained by the fact that when training under

this condition, we are forcing the network to take into account all the nodes, even those that are irrelevant for144

classification proposes. To corroborate that this is in fact the reason, we have performed an experiment consisting

of adding a disconnected “fake” neuron to the ELM (before training using the DaSalla dataset). That is, a column146

of random elements having no correlation with the classes was stacked to the right of the matrix H. Figure 4 depicts

the absolute value of the weight that the model assigns to this disconnected neuron as a function of the number148

of neurons M . As seen, this weight remains small until M approaches N , which supports our previous hypothesis.

It is timely to observe, however, that the weight assigned to the fake neuron starts to decay again after this point.150

This means that for M > N , the ELM becomes capable of neglecting the value of the disconnected neuron, since

it is irrelevant for classification purposes.152

4. Relevance-based pruning

As we have shown, in the cases of unrepresentative features, an ELM can benefit from choosing M � N . Yet this154

has the downside of increasing the network size. In order to find a compromise between ELM size and classification

performance, one could use a traditional validation method and retrain the network increasing the number of156

neurons M until the change in performance is small enough to be neglected. Nevertheless, the computational

burden associated with solving (4) increases with M , and the sensitivity of the method with respect to the random158

values might require a few initializations, making this idea unfeasible in practice. Hence, in order to make ELMs

of practical use for real data in real applications, like EEG signals classification in BCI devices, we propose a novel160
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Figure 4: Mean absolute value for 1000 realizations (50 random initializations and 20 cross validations) of the weight β assigned to a

“fake” neuron of the hidden layer. Shading illustrates ± 1 standard deviation of the results.

pruning method which allows for an efficient search of the parameter M , by appropriately reducing the network

size after just a single computation of (4) for M � N .162

As observed in the description of Figure 4, the weight of a neuron is proportional to the relevance of the

corresponding node. Hence, it is reasonable to discard the neurons whose associated weights β are small enough.164

Given that the process of discarding a neuron and testing the performance of the resulting ELM is computationally

inexpensive, the proposed pruning method begins using a large initial number M∗ of hidden nodes, and then discard166

one (or a few) at a time, just until before the performance exhibits a significant drop. We shall refer to the resulting

method as Relevance-Based Pruning (RBP). The steps for performing RBP are shown in Algorithm 1. In Section168

4.1 we present different experiments in order to validate the pruning criterion and in Section 5, comparisons between

this pruning method, the standard M < N setting, the traditional validation froward scheme and the OP-ELM, in170

terms of classification performance and computational costs, are also shown.

4.1. Pruning criterion validation experiments172

4.1.1. Experimental setting

Two EEG datasets were used for the experiments. As previously described, EEG data typically presents high174

levels of noise, and the relevant classification information is mostly encoded in a particularly small subset of features.

The first dataset is the imagined speech dataset, introduced in (DaSalla et al., 2009). It contains EEG signals176

recorded from three different subjects using 64 electrodes with a sampling frequency of 256 Hz. Here, we used

the spatially filtered EEG signals related to imagination of mouth movement involved in the pronunciation of two178

vowels (/a/ and /u/) and a resting state, in pairwise comparisons (C1 = /a/ vs. rest; C2 = /u/ vs. rest; C3 =

/a/ vs. /u/). 100 trials were presented for every comparison, with 512 features each. The second dataset is a180

P300-based BCI dataset introduced in (Ledesma-Ramirez et al., 2010), consisting of 3780 EEG trials of one second

(630 trials with P300 activity), acquired from 25 subjects using 10 channels at 256 Hz. Each trial has 2560 features182

(256 samples x 10 channels) and each trial label corresponds to the presence or absence of P300 activity.
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Algorithm 1 : Relevance-Based Pruning (RBP)

Set M∗ >> N and δ > 0.

Initialize the elements of W ∈ RM∗×D and b ∈ RM∗ randomly as realization of a distribution U [−1, 1], M∗ being

the maximum number of hidden nodes and D the data dimension.

H = [g(WXtrain + b 1(1,N))]
T .

β̂ = H†ytrain.

H = [g(WXval + b 1(1,N))]
T .

Permute β̂ so that |β̂m| ≥ |β̂m+1|, ∀m = 1, . . . ,M∗.

Perform the same permutation on the columns of H.

Let H ′ = H, β̂′ = β̂

while mean(Hβ̂ − yval) < mean(H ′β̂′ − yval) + δ do

Let H ′ = H, β̂′ = β̂

Remove the last element from β̂.

Remove the last column from H.

end while

Algorithm 2 : Standard ELM forward scheme

Set M = 1 and δ > 0.

Set accval = 0 and acc′val = 0.

while M < M∗ and accval > acc′val + δ do

Initialize the elements of W ∈ RM∗×D and b ∈ RM randomly as realization of a distribution U [−1, 1].

H = [g(WXtrain + b 1(1,N))]
T .

β̂ = H†ytrain

acc′val = accval

Compute accval using Xval and yval.

M ←M + 1.

end while
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4.1.2. Classification performance analysis184

In order to compare RBP against the standard “forward” ELM approach, we propose the following experimental

setting: consider the datasets Xtrain ∈ RD×N and Xval ∈ RD×N ′ and a maximum ELM size M∗. For the traditional186

method, the steps followed are shown in Algorithm 2. It is worth mentioning that in these experiments, we aim

to validate the pruning criterion rather than to find the optimal parameter M of the network. Therefore, the data188

were only split in train and test sets. Also, the Algorithms 2 and 1 ignore the stop parameter δ.

Using 50 random initializations for W and b, for every value of M ∈ {1, . . . ,M∗ = 1000}, we run the proposed190

experiment for a randomly chosen subject of the DaSalla dataset, over 20 cross validations with a 70/30 train/test

scheme. The resulting average validation accuracy for both the standard forward method (Algorithm 2) and the192

RBP method are depicted in Figure 5 (top). The results obtained using a random pruning scheme (RND) are used

to compare and validate the proposed pruning criterion.194

An analogous test was made using a (randomly chosen) subject of the P300 database. Results are shown in

Figure 5 (bottom). Since in this case the dataset is much larger, instead of taking unitary increments on the values196

of M , a logarithmic grid was used. Also, as the dataset is unbalanced, the area under the ROC curve (AUC)

was used to evaluate the classification performance. The results correspond to 5 cross validations over 20 random198

initializations, with a choice of M∗ = 40000.

As seen in Figure 5, RBP performs at least as good as the forward scheme. This means that choosing a large200

value of M∗ followed by a reduction of the network size by means of RBP (until just before a significant decay in

validation performance is observed) will yield a result as good as using the forward scheme, and that can be done in202

a very short time, as the pruning procedure is computationally inexpensive. Thus, we can choose M∗ large enough

(e.g. as determined by the computational cost we are willing to pay), and then run RBP to reduce the network size204

and quickly find the optimal parameter M without losing classification performance, so ending up with a compact

network, which is specially important in real time applications. Finally, the random pruning method validates our206

hypothesis that the less relevant nodes can be pruned with little or no impact in the classification performance.

5. Analysis of RBP global performance on real data208

In order to validate our proposal for finding the optimal number of hidden nodes M in real applications, we

made comparisons with four different schemes: STD, FWD, RBP, OP-ELM, which are described below :210

STD: (traditional approach) best result obtained using M < N .

FWD: start with k = 0 and Mk = 1. Increase Mk over a logarithmic grid until the validation performance levels212

up or the maximum value M∗ is reached (see Algorithm 2).

RBP: start with k = 0 and Mk = M∗ and prune Mk over a logarithmic grid until just before the first time214

classification performance shows a significant (prescribed) reduction. The stopping criterion, grid and the

value of M∗ are set equal to those in FWD.216

OP-ELM: the publicly available implementation of OP-ELM was used with M = M∗ and M = N .
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Figure 5: Average classification performance obtained with the traditional forward scheme (FWD), Random Pruning (RND) and

Relevance-Based Pruning (RBP) methods, for one subject of the DaSalla dataset (top) and one subject of the P300 database (bottom).

70 and 2646 training examples were used for DaSalla and P300 experiment respectably. Shading accounts for ± one standard deviation.
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Method Accuracy (%) Time [ms] M

STD 62.2± 7.3 076± 48 024± 018

FWD 66.9± 5.5 195± 21 228± 076

OP-ELM M∗ = 90 63.5± 14.8 33.9± 9 27± 014

OP-ELM M∗ = 1000 63.1± 14.3 23471± 54 77± 010

RBP 68.0± 3.8 043± 03 209± 151

Table 1: Overall performance results yielded by each tested method for the DaSalla database.

Method AUC Time [s] M [×103]

STD 0.718± 0.072 003± 001 00.5± 00.2

FWD 0.816± 0.096 572± 118 28.2± 10.6

RBP 0.816± 0.087 194± 001 14.5± 06.5

Table 2: Overall performance results yielded by each tested method for the P300-based BCI dataset. Figure 6 also illustrates the

performance of the five first subjects

For our first experiment the full DaSalla dataset (three subjects in three comparisons) was used. For all218

methods, 5 random initializations over 20 cross validations were run. While for STD, FWD and RBP the data

were split in 70%, 20% and 10% for training, validation and testing, respectively, for OP-ELM, 90% training and220

10% testing were used, as the validation split is automatically made within the implementation. As the dataset

is balanced, accuracy was used to measure classification performances. For FWD and RBP, the parameters were222

set to M∗ = 1000 and δ = 0.02. Table 1 shows the obtained results, from which three main conclusions can be

derived. First, both methods allowing an ELM with a large number of hidden nodes result in better performances,224

in terms of accuracy. Secondly, between those two approaches, RBP is observed to require much less computing

time with a comparable network size. Finally, OP-ELM is not able to handle this type of problems, as the required226

time is several orders of magnitude higher and it does not yield better classification performance. As the OP-ELM

method is not designed nor suggested for the case M > N , nor for the case of data with high redundancy, like EEG228

data, in the sequel, OP-ELM was neglected in all the analyses. A subject by subject analysis is presented in the

Supplementary Information Section in Figures SI-5 and SI-6.230

The same experiment was performed, but now using the P300-based BCI dataset. The data was also split into

70%, 20% and 10% for training, validation and testing. For each one of the 25 subjects, five cross validations232

over 20 random initializations were performed. The parameters were set to M∗ = 40000 and δ = 0.001. As

previously mentioned, the P300-based BCI dataset is unbalanced, so the AUC was used for measuring classification234

performance. Overall results are shown in Table 2, and those obtained for the first five subjects are illustrated in

Figure 6, along with overall performance.236

As it can be seen, the AUC values obtained by FWD and RBP, i.e. the methods allowing for M > N , perform

considerably better than those obtained with STD. While FWD and RBP do not account for practical differences in238
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Figure 6: Results obtained with standard (STD), forward (FWD) and Relevance-Based Pruning (RBP) schemes on the P300-based

BCI dataset.

AUC, RBP requires much less computing time than the former. Additionally, RBP yields a much smaller network

size resulting in a more compact ELM.240

From a practical point of view, if the number of hidden nodes is a restriction, then RBP is the best choice

because it will yield better classification performance with the same number of neurons. On the other hand, if242

only classification is relevant, then RBP is more appropriate since it will yield the same performance in much less

training time than FWD with a more compact network.244

An experiment was also conducted for measuring the impact of the election of M∗ in the training time, as

the time performance could strongly depend on its choice. Comparison results for the FWR, RBP and OP-ELM246

methods are presented in Figures SI-7 and SI-8 of the Supplementary Information Section for the DaSalla and the

P300 datasets, respectively. These results clearly show that the proposed RBP method is faster than both the248

traditional FWD and the OP-ELM algorithm, regardless of the M∗ initialization. It is also timely to point out that

time gain becomes larger for larger values of M∗. Therefore, the advantage of using the RBP method is greater in250

the cases of datasets containing a high number of N training examples.

6. Conclusions and future work252

In this work we have shown that when dealing with classification problems in the context of data with unrepre-

sentative features, such as EEG signals, ELMs benefit from choosing M � N . A detailed analysis on why standard254

approaches are suboptimal for this type of data was provided.
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Results using real EEG data show that choosing a large number of hidden neurons is beneficial and that our256

proposed Relevance-Based Pruning method provides a time-efficient way to search for the optimal number of hidden

nodes without jeopardizing classification performance. Furthermore, its implementation is very simple and it can258

result in great benefits in real application.

In regard to the limitations or constraints of the proposed RBP method we must mention that its use will certainly260

not lead to any advantage with respect to the other methods, when the data contain just a few unrepresentative

features or are completely free of them. This could pose a problem in cases where we have absolutely no information262

about the existence of junk features in the data.

In the future, we shall tackle the problem of choosing an appropriate maximum ELM size (M∗) depending on the264

problem. Also, we intend to incorporate this method in the context of regularized ELMs and explore its potential

as a feature selection tool.266
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