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Abstract

Motivation: A representation method is an algorithm that calcu-
lates numerical feature vectors for samples in a dataset. Such vectors,
also known as embeddings, define a relatively low-dimensional space able
to efficiently encode high-dimensional data. Very recently, many types
of learned data representations based on machine learning have appeared
and are being applied to several tasks in bioinformatics. In particular,
protein representation learning methods integrate different types of pro-
tein information (sequence, domains, etc.), in supervised or unsupervised
learning approaches, and provide embeddings of protein sequences that
can be used for downstream tasks. One task that is of special interest is
the automatic function prediction of the huge number of novel proteins
that are being discovered nowadays and are still totally uncharacterized.
However, despite its importance, up to date there is not a fair benchmark
study of the predictive performance of existing proposals on the same
large set of proteins and for very concrete and common bioinformatics
tasks. Therefore, this lack of benchmark studies prevent the community
from using adequate predictive methods for accelerating the functional
characterization of proteins.

Results: In this study, we performed a detailed comparison of protein
sequence representation learning methods, explaining each approach and
comparing them with an experimental benchmark on several bioinformat-
ics tasks: (i) determining protein sequence similarity in the embedding
space; (ii) inferring protein domains; and (iii) predicting ontology-based
protein functions. We examine the advantages and disadvantages of each
representation approach over the benchmark results. We hope the results
and the discussion of this study can help the community to select the most
adequate machine learning-based technique for protein representation ac-
cording to the bioinformatics task at hand.

Availability: Full source code and data are available at:
https://github.com/sinc-lab/Comparison-of-Protein-learning
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1 Introduction

Automatic functional annotation of proteins can be considered critical
nowadays due to the rhythm of experimental data production [9]. For ex-
ample, as of December 2021, there are around 220,000,000 protein entries
in the UniProtKB; however, only 565,928 (less than 1%) of them have
been reviewed and manually annotated by expert curators. This is a huge
breach between sequencing and annotation capabilities.

This gap exists because of the high speed of experimental data ob-
tention and, on the opposite, the very low and time-consuming manual
curation of results. To aid experimental and curation-based annotation,
automated in silico approaches can be used. Thus, many computational
approaches have been proposed very recently [11], [39, [45] [54] to pre-
dict protein activities, properties, interactions, structure and functions
[3 22], 23] [41].

Automatic function prediction (AFP) is the algorithmic assignment
of functional annotations —usually Gene Ontology (GO) terms— to pro-
teins of unknown function from those whose function has already been
determined experimentally [32]. Gene Ontology (GO) [g] is a hierarchical
network of interconnected concepts that has become the standard vo-
cabulary for describing protein function. The GO has more than 40,000
biological concepts over three sub-ontologies: Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC). The most compre-
hensive benchmark for AFP is the Critical Assessment of Functional An-
notation (CAFA) challenge [56], in which participants predict GO-terms
for target proteins. In the first two editions of the said challenge (CAFA1
(2010-2011) and CAFA2 (2013-2014)), there was a significant improve-
ment between the participating methods, but in CAFA3 (2016-2017) this
trend was interrupted, except for GOLabeler [54], which outperformed its
competitors by using information (features) extracted from the sequence
instead of the protein sequence alone. This was a critical improvement
since, in many cases and especially in novel or recently sequenced species,
the only available information is the sequence. That is why sequence-based
methods for protein annotation prediction are highly used. Therefore, in
spite of the recent breakthrough of alpha-fold’s structure-based prediction
of protein annotation [? ], the amino acid sequence remains relevant and
is, yet, the most widely-used data source for function prediction, followed
by sequence-derived features such as domains and more recently, learned
representations named embeddings [32]. This was a critical improvement
since, in most cases, the only reliable information that can be found about
a given protein is its sequence, implying the importance of sequence-based
AFP. Nowadays, homology-based AFP tools such as BLAST are compet-
itive, but they do not work well for proteins with less than 60% sequence
identity to proteins with annotations. Together, these facts show that the
problem of AFP is far from solved, it is still a big challenge and remains
an open problem.
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Table 1: Protein representation methods reviewed in this study.

Method Year ML algorithm Dimension Repo
CPCProt ﬁwﬁ 2020 MI 512 https://github.com/amyxlu/CPCProt
deepGOCNN EN 2020 CNN 8,192 https://github.com/bio-ontology-research-group/deepgoplus
ESM-1b [46] 2020 Transformer-BERT 1,280 https://github.com /facebookresearch /esm
QT ﬁww 2018 Doow<®o @% https://github.com/fhalab/embeddings_reproduction
PLUS-RNN ﬁwﬂw 2021 Bi-RNN 1,024 https://github.com/mswzeus/PLUS
ProtTrans/ProtBert [I6] 2021 Transformer-BERT 1,024 https://github.com/agemagician/Prot Trans
HUH,OH/\@O WWM MOH@ <<OH.QM<®0 M..OO https://github.com/ehsanasgari/Deep-Proteomics
rawMSA [38] 2019 CNN-LSTM 50 https://bitbucket.org/clami66/rawmsa
RBM [49] 2019 RBM 100 https://github.com/jertubiana/ProteinMotifRBM
SeqVec Tww 2019 LSTM-ELMO 1,024 https://github.com/Rostlab/SeqVec
TAPE [43] 2019 Transformer 2,048 https://github.com/songlab-cal/tape
Gﬁmﬂm@ : MOH@ HLMH,Z UT@OO https://github.com/churchlab/UniRep

'Z2202 ‘v 'ON ‘€2 "0 ‘soewnojulolg uisbuijpug

,SYSe1S217eWLIoJUI01] 104 SUOTRIUasaIdal pauses| uloid pAaou Buirenfess supiold ul Buluses| ejsuel] ,, efewbals o ®esepd 'V ‘Aoued 3
(1enpajun-ouss) sousBi|feiu| feuoireINdwoD pue SWeISAS ‘sfeudis Joy aimisu| yoressay (1)ous



E. Fenoy, A. Edera& G. Stegmayer; "Transfer learning in proteins: evaluating novel protein learned representations for bioinformatics tasks"

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
Briefings in Bioinformatics, Vol. 23, No. 4, 2022.

In the last 6 years, several protein representation sequence-based mod-
els based on deep learning (DL) appeared, which given the raw sequence of
a protein calculate a feature vector that is a unique representation of the
protein, named embedding [36]. Then, a predictive model can efficiently
learn the features of samples and perform the downstream prediction task
by using these representations as input. This way, embedding models
perform a process named transfer-learning of knowledge from one task
to another [52]. Protein embedding has become a new and highly active
area of research [12], being now actively and increasingly used by the
community for the AFP task. For instance, DeepGOPlus predicts protein
functions by first building protein sequence embeddings from raw protein
sequences using multiple convolutional neural networks (CNN) [26]. Sim-
ilarly, DEEPred predicts GO terms from several features automatically
calculated from the protein sequence [45]. Meanwhile, goPredSim [30]
makes annotation transfer based on similarity of protein-sequence embed-
dings obtained from DL models. Up to date, there are a lot of protein
embedding methods available, which have all appeared after the CAFA3
and can be used for function prediction. However, there is no comparative
study to systematically evaluate the performance of the myriad of avail-
able protein embedding methods with an experimental benchmark, and
in the context of several and concrete bioinformatic tasks. For example,
for the AFP problem, which is still unsolved [56], the correct selection
of a protein representation method could boost the prediction methods
available nowadays.

In this study, we provide a comprehensive review of the most recent
protein embeddings available, with a benchmark analysis regarding the
potential of these methods for the computational tasks of (i) determining
protein sequence similarity in the embedding space; (ii) inferring protein
domains; and (iii) predicting ontology-based protein functions.

2 Protein representation methods

In recent years, a myriad of protein embedding methods has appeared [32].
A comprehensive summary of protein embedding methods that were devel-
oped in the last 6 years in literature is presented in Table 1. The columns
of Table 1 indicate each method name, year of publication, the ML al-
gorithm it implements, the embedding dimension, whether the method
allows a per-residue representation or not, and the corresponding pub-
lic repository. The embedding methods listed in the table were included
according to their availability, as open access tools or ready to use pre-
constructed feature vectors. A glossary of the terms used in the following
descriptions of the methods can be found in Supplementary Material.
CPCProt [3I]: this model uses supervised learning and it is based on
maximizing the mutual information (MI) among proteins [48]. It proposes
to use the information content of a certain number of protein sequence
peptides (named patches) as a pre-training objective to capture motifs,
structural elements, regions of unusual amino acid composition or parts
of catalytic sites. Each patch is then passed through a multi-layer, convo-
lutional neural network (CNN) encoder to obtain a latent representation.
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Next, an autoregressive model produces a hidden state as well as a context
latent representation based on the hidden state produced by the previous
patch. In this way, the autoregressive model aggregates patch informa-
tion, captured by the latent space of the autoencoder. The training task
consists in finding an encoder able to map sequence fragments into mean-
ingful representations, and an autoregressive model able to successfully
summarize those representations of consecutive fragments, to construct
a contextual embedding of a complete sequence. The CPCProt encoder
consists of an embedding layer of 32 hidden dimensions, followed by 64
filters of length 4, 64 filters of length 6, and 512 filters of length 3. ReLU
activation is added to the output of each layer, and normalization is added
channel-wise. This model was pre-trained using protein domain sequences
from the Pfam database [15], that is 32,207,059 amino acid sequences.

deepGOCNN |[27]: this model is based on supervised learning and
CNN [29]. It was the first deep learning model proposed for predicting
protein functions from amino acid sequences of up to 2,000 residues. The
resulting sequence is represented as a 21-t0-2,000 one-hot matrix which
is independently processed by 16 1-D convolutional layers with increas-
ing filter lengths. Each layer has 512 equal-length filters able to detect
specific sequence motifs of a particular size. The output of each filter
is passed through a MaxPoolinglD layer, transforming every filter into
a single score representing the presence of a relevant motif in the input
sequence. By stacking these scores, a feature vector of 8,192 components
is built. DeepGOCNN was trained in a supervised way using protein
sequences as inputs, and their corresponding GO terms annotations as
target output, provided by CAFA [56] for more than 66,000 protein se-
quences from UniProtKB. The model has multiple 1D convolutional layers
with different filter lengths where the smallest filter starts from length 8
and the following filters are increased by 8 units. The CNN layers do not
use dropout because there is a MaxPooling layer with maximum pool size,
thus every filter returns only a single value. This forces the CNN filters to
learn a set of similar patterns (motifs) and if the filter finds the pattern in
the sequence it returns a high value, which is pooled with the MaxPooling
layer. For this comparative study, we used the feature vectors built by
deepGOCNN as embeddings for our protein sequences.

ESM [46]: this model uses unsupervised learning and it is based
on Transformers [50], which have emerged as a powerful general-purpose
model architecture for representation learning and generative modeling,
outperforming recurrent and convolutional architectures in natural lan-
guage settings. ESM uses a deep Transformer BERT [I4] that processes
sequences of amino acids as input. BERT was originally designed for Nat-
ural Language Processing (NLP) based on unsupervised learning where
context within a text is used to predict missing words. Its main hypothe-
sis is that a word’s semantics can be derived from the contexts in which it
appears. ESM makes an analogy between words and sequences of amino
acids. The model was trained using the masked language modeling ob-
jective, where each input sequence is corrupted by replacing a fraction of
the amino acids with a special mask token, to predict the missing tokens
from the corrupted sequence. ESM was trained on 220 million sequences
in the UniProtKB database. In this comparison we have used ESM-1b
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because it was the best performing instance of the method according to
its authors.

GP [53]: this model is supervised and based on doc2vec 28], which
is in turn based on word2vec [35]. The latter approach learns embed-
dings or words with the skip-gram architecture, where the model uses the
current word to predict its surrounding context words, and the continu-
ous bag-of-words architecture, where the current word is predicted from
its surrounding context words. The doc2vec model extends word2vec by
learning embeddings for entire sentences, paragraphs, or documents. In
the context of proteins, GP trains a doc2vec model to predict a central k-
mer within a given protein based on local and global information. As local
information, the flanking k-mers are used, whereas the embedding of the
protein sequence is used as global information. GP was trained on 524,529
protein sequences obtained from UniProt, whose lengths range from 50 to
999 amino acids. After training, the embedding model was used to infer
encodings for supervised Gaussian process (GP) regression models [44].
The embedding model is trained on randomized UniProt sequences (by
shuffling the order of amino acids for each sequence, or by resampling
sequences of the original lengths according to the overall observed amino
acid frequency), instead of the original UniProt sequences, choosing its
hyperparameters by using 20-fold cross-validation on the training sets. It
was found by the authors that randomizing the UniProt sequences before
unsupervised training had a regularizing effect, preventing the embedding
model from overfitting to the set of proteins used for training. The ra-
tionale behind this is that the unsupervised embedding model is able to
learn the frequency with which different amino acids occur in the same
proteins. The noise and kernel GP hyperparameters were optimized by
maximizing the marginal likelihood.

PLUS-RNN [37]: this model is based on supervised learning and its
training involves 2 tasks: masked language modeling [14] that consists in
predicting residues randomly masked in the input protein sequence, and
same-family prediction [5] that involves predicting whether pairs of pro-
tein sequences belong to the same protein family. Given a pair of protein
sequences as input, PLUS-RNN embeds each residue into a 21-dimensional
vector, which is independently processed by a bidirectional recurrent neu-
ral network biRNN [I7], of 3 layers. In each layer, there are 2 RNNs having
long short-term memory (LSTM) [21] as activation units. LSTMs are a
type of recurrent neural network capable of learning order dependence
in sequence prediction problems. Recurrent networks have an internal
state that can represent context information, and can keep information
about past inputs for an amount of time that depends on its weights
and on the input data. Thus, an input sequence can be transformed
into an output sequence while taking into account contextual information
[? ]. One of the recurrent networks sequentially processes the sequence
left-to-right to represent each residue as a new 1,024-dimensional vector
given its context; the other RNN does the same, but right-to-left. The
residue representations obtained by both networks are concatenated into
a single representation, which encodes information from both sequence
sides. PLUS-RNN was optimized with a dataset containing 14,670,860
protein sequences from 3,150 families publicly available in Pfam [15]. For
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this review, we averaged the vector representations per residue built by
PLUS-RNN in the third layer of both recurrent networks.

ProtTrans [16]: this model was trained using several Transformer
models [50], thus it is based on unsupervised learning. The authors trained
two auto-regressive models (Transformer-XL and XLNet) and four auto-
encoder models (BERT, Albert, Electra, T5) on data from UniRef50 and
the BFD database [47] containing more than 2,000 million proteins and
up to 393 billion amino acids. BERT (mentioned before) was the first
model in NLP which tried to reconstruct corrupted tokens, and is consid-
ered the de-facto standard for transfer learning in NLP. Albert reduced
BERT’s complexity by hard parameter sharing between its attention lay-
ers. Electra tries to improve the sampling-efficiency of the pre-training
task by training two networks, a generator and a discriminator. T5 con-
sists of an encoder that projects a source language to an embedding space
and a decoder that generates a translation to a target language based on
the encoder’s embedding. For ProtTrans, single amino acids were con-
sidered as input ”words”; each protein sequence in a line represented the
equivalent of ”sentences”; an empty line was inserted between each protein
sequence to indicate the ”end of a document”. The information learned by
the protein learning models were the vector representations from the last
hidden state of the Transformer. There are several ProtTrans instances
available (ProtBert, ProtAlbert, ProtT5, ProtXLNet and ProtElectra).
In this study, we used the instance ProtT5 trained with the BFD dataset
and fine tuned on UniRef50 because it was the best performing method
according to the authors [16].

ProtVec [3]: this model provides bio-vectors (BioVec) for biological
sequences in general, protein-vectors (ProtVec) for proteins (amino-acid
sequences) and gene-vectors (GeneVec) for gene sequences. Protein vec-
tors were built with supervised neural networks that represent a protein
sequence with n-gram modeling, where lists of shifted non-overlapping
words are generated with window size 3. In the training process of word
embedding in NLP, a large corpus of sentences should be fed into the
training algorithm to ensure sufficient contexts are observed. Similarly,
a large corpus is needed to train distributed representation of biological
sequences. The next step is to break the sequences into subsequences
(i.e. biological words), using n-grams directly in feature extraction. The
embedding was trained through a Skip-gram neural network [35], which
attempts to maximize the probability of observed word sequences (con-
texts). Such a constraint allows similar words to assume a similar repre-
sentation in this space. Authors used Word2Vec [36] for word embedding
since it was considered, at that time, as the best state-of-the-art method
for training word vector representation. The procedure was applied on
546,790 manually annotated and reviewed sequences of the Swiss-Prot
database, thus the training corpus had 546,790 x 3 = 1,640,370 sequences
of 3-grams (a 3-gram was considered as a “biological” word consisting of
3 amino acids).

rawMSA [38]: this model builds an embedding that can be used
to convert each residue character from a Multiple Sequence Alignment
(MSA) into a floating-point vector of variable size. This is adaptively
learned by a supervised deep neural network based on context. Unlike
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classical ML methods for the prediction of protein features, rawMSA does
not compress the MSA into a profile but uses the raw aligned sequences as
input and extracts useful features with a deep network. The input to the
deep network is a flat FASTA alignment, where each letter is mapped to
an integer ranging from 1 to 25 (standard residues and special cases). The
first layer of rawMSA is a shallow two-layer neural network named an em-
bedding layer. Then a 2D convolutional layer is stacked on top, followed
by a max-pooling layer. Convolution is performed along each column in
the MSA disallowing the information to spread across columns. The con-
volutional and pooling layers are followed by a stack of two bidirectional
LSTM layers, where each module contains 350 hidden units. The final
three layers are fully connected. All the convolutional layers have ReLU
activations and the outputs are zero-padded to match the two first di-
mensions of the inputs. rawMSA was trained on 29,653 protein chains
extracted from a 70% redundancy-reduced version of the Protein Data
Bank (PDB) [51] in April 2017 with a minimum resolution of 3.0 A and
R-factor 1.0.

RBM [49]: here the authors, in contrast to any other method designed
for this task, propose the usage of Restricted Boltzmann Machines (RBM)
[20] for extracting the structural and functional features common to a pro-
tein family. RBM is a joint probabilistic model for sequences and repre-
sentations. It is formally defined on a bipartite, two-layer graph. Protein
sequences are displayed on the Visible layer, and representations on the
Hidden layer. Each visible unit takes one out of 21 values (20 amino acids
+ 1 alignment gap). This model can capture structure-related, functional
and phylogenetic features related to sub-families sharing evolutionary de-
terminants. Training RBM required intensive Markov Chain sampling.
This approach was tested with MSAs of 20 different protein families from
Pfam. The training was performed by maximizing, through stochastic gra-
dient with mini-batches of data, the difference between the log-probability
of the sequences in the MSA and a regularization cost.

SeqVec [19]: this supervised model uses the bi-directional language
model ELMo (Embeddings from Language Models) [42], which was origi-
nally designed for natural language tasks. It can be trained on unlabeled
text-corpora to predict the most probable next word in a sentence. By
learning a probability distribution for sentences, the model autonomously
develops a notion for syntax and semantics of a language. The trained
vector representations of a given word depend on its context, which has
the advantage that two identical words can have different embeddings,
depending on the words surrounding them. In SeqVec the ELMo concept
was applied to model protein sequences by treating them as sentences
and each amino acid as words. First, an input sequence is padded with
special tokens indicating the start and the end of the sentence/protein
sequence. Then character convolutions map each word/amino acid onto a
fixed-length latent space without considering information from neighbor-
ing words. The output of the CharCNN-layer is used by a biLSTM that in-
troduces context-specific information by processing the input sequentially.
Finally, the 2nd LSTM-layer tries to predict the next word given all pre-
vious words in a sentence. The forward and backward pass are optimized
independently in order to avoid information leakage. During inference, the
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hidden states of the forward and backward pass of each LSTM-layer are
concatenated to a 1024-dimensional embedding vector summarizing infor-
mation from the left and the right context. It was trained on UniRef50
(33 million sequences) using an architecture composed by a convolutional
layer, followed by two bidirectional LSTM layers. ELMo was designed
to reduce the risk of overfitting by sharing weights between the forward
and the backward LSTMs and by using dropout. For our analyses, the
vector representations per residue obtained by the two LSTM layers were
concatenated and then averaged to obtain a single vector per protein.

TAPE [43]: in this case authors used Pfam [15] as the unsupervised
pre-training corpus for TAPE. Training and testing sets were built using a
random 95/5% split, respectively. Perplexity metrics were calculated for
the held out families test set to measure out-of-distribution generalization
to proteins less evolutionarily related to the training set. TAPE provides a
12-layer Transformer [50] with a hidden size of 512 units and 8 attention
heads, having a 2,048 output size. The Transformer was trained with
masked-token prediction, which models each data point by replacing the
value of tokens at multiple positions with alternate tokens.

UniRep [I]: this supervised model uses a training sequence dataset
consisting of 24,000,000 UniRef50 amino-acid sequence entries, which are
filtered by a 50% similarity threshold from the UniProtKB. Authors trained
a 1,900-hidden unit Multiplicative LSTM (mLSTM) with amino-acid char-
acter embeddings. These RNNs learn by going through a sequence of
characters in order, trying to predict the next one based on the model’s in-
ternal hidden state. During training, the model gradually revises the way
it constructs its hidden state to maximize the accuracy of its predictions,
resulting in a progressively better statistical summary, or representation,
of the sequence. The model internal states were looked up in detail, find-
ing that the amino-acid embeddings learned contained physicochemically
meaningful clusters. It was also found that a single neuron positively cor-
related with alpha helix annotations, and negatively correlated with beta
sheet annotations. The mLSTM architecture has two internal states that
encode information about the sequence it is processing, the hidden state
and the cell state. The output of the model is built with the concatenation
of the final hidden state, final cell state, and average hidden state of the
LSTM model, where the concatenation of the different states provides a
protein representation vector with different levels of semantic information.

In summary, it can be stated that most models that approached pro-
tein representation as a supervised learning problem (such as CPCProt,
DeepGOCNN and rawMSA) used similar CNN architectures, with small
variants in the output layers (ReLU or MaxPooling). Very differently,
PLUS-RNN, SeqVec and UniRep used recurrent neural networks and
LSTMs; while GP and ProtVec proposed to use doc2vec and word2vec
for extracting features from protein sequences. Nevertheless, it is worth
noting that the architecture of SeqVec also includes a CNN, whose aim
is to read the input protein sequences. In contrast, RBM uses a classic
neural network with a very restricted architecture that was designed to
reduce the computation cost of making predictions. Most of these su-
pervised models were trained with UniProt and Pfam data. Regarding
unsupervised models, it is very interesting to note that all of them were
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based on Transformers but with different architectures, and each of them
trained in a different dataset. The best TAPE model had only 12 hidden
layers and was trained on Pfam; while ESM and ProtTrans are those with
more hidden layers (; 30) and both based on a pre-trained BERT.

3 Data, measures and experimental setup

3.1 Data

Proteins. We used a subset of the standard CAFA3 challenge dataset
[56]. For this study, we selected the model species and highly annotated
Homo sapiens proteins with lengths equal to or less than 700 amino acids,
due to the restrictions imposed from some of the methods compared, re-
sulting in a dataset of 9,479 molecules. In addition, to have comparative
results from less annotated and non-model species, we used a subset of
the protein sequences of Rattus morvegicus and Mycobacterium tubercu-
losis H37Rv from the CAFA3 dataset with a maximum length of 700
residues, obtaining 4,374 and 1,503 protein sequences, respectively.

Protein function annotations. Each protein had at least one GO
term in any of the three sub-ontologies BP, MF and CC. The tags assigned
to the given protein were propagated to the root of the corresponding sub-
ontology using goatools [25] with the is-a and part-of relations. The Gene
Ontology used was from the 2016-06-01 version, as it is contemporary to
the CAFA3 dataset. In this way, proteins were enriched with annotations
at several levels of the ontology tree, avoiding cases where a molecule is
annotated only with a very specific term, isolating it from similar, but
less studied, cases.

Domains. The corresponding information about protein domains for
the 9,479 Homo sapiens proteins used in this study was obtained from the
Pfam database [I5] with the ProDy python package [55], making a total
of 3,872 domains. For Rattus norvegicus and Mycobacterium tuberculosis
H37Rv the number of domains is 2,474 and 1,199, respectively. It should
be noted that the Pfam domains of each protein were compared with
those annotated in UniProtKB, showing a 98% of agreement, thus the
Pfam domains were used. Each protein can be composed of one or more
domains, each playing a role in the protein global function. Some of these
domains are tightly related to a given function, for example the catalytic
domain of the kinase proteins; while others have a support role, such as
DNA binding domains.

3.2 Performance measures

To evaluate how well protein embeddings cluster according to their an-
notated Pfam domains, we used a clustering index. To this aim, we con-
sidered Pfam domains as clusters of proteins and measured the degree of
membership to clusters by using protein distances based on embeddings.
Although a number of such indices have been proposed, the silhouette
coefficient has shown superior performance for diverse problems. The sil-
houette coefficient is

10
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which is the average silhouette score over M proteins. This score is com-

posed of two components: a; is the mean distance between protein ¢ and
all the other proteins annotated with its same Pfam domain C;
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where |C;| is the number of proteins annotated with domain C;. Then b; is
the smallest mean distance of protein i to all the other proteins annotated
with different domains
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In both equations, d is the distance between protein ¢ and protein j. The
best value of the silhouette coefficient is +1 (well-separated clustering)
and its worst value is —1 (invalid clustering). Values near 0 indicate
overlapping clusters.
The predictive performance of the methods studied here are measured

with standard recall or sensitivity (s*) and Fy evaluation metrics,

st = Ly (4)

TP+ FN
[N £ S— 5)
2TP+ FP+ FN
where TP, TN, FP and FN are the number of true positives, true negatives,
false positives and false negatives, respectively. In the context of this
review, TP is the set of GO terms/Pfam domains associated with the
protein to be measured; while FP and FN are the number of false positives
and false negatives GO terms/PFam domains, respectively, predicted by
a classification method. The recall measures how good a classification
method is for recognizing the TPs of the task. It is also important to take
into account the number of GO terms/Pfam domain families predicted
but not related to the protein of interest, that is FP. Therefore, I} is
used as a global comparative measure among methods. Friedman test
and critical difference (CD) diagram with posthoc Nemenyi test [13] were
used to assess the statistical significance of differences in the average F
achieved by each model when predicting over each protein in each test
fold. In some experiments, the clustering coefficient of groups of proteins
was also calculated to assess results.
In order to measure the similarity between protein embeddings, the

cosine similarity was used, which is defined as

<a,b>
Scos = ! ) (6)
llallllol]

where a and b are embedding vectors, the numerator is the dot product
between the two vectors and || - || is the Euclidean norm. This similarity
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varies between -1 (total dissimilarity) and +1 (total similarity). For some
experiments, we also used the cosine distance which is defined as 1 — S¢os-

To measure the degree of correlation between sequence and cosine
similarities obtained from pairs of protein sequences we calculated the
Spearman correlation coefficient as

_ cov(r(X),r(Y)) G
Or(X)0r(Y)

where X and Y are the BLAST for proteins (BLASTp) [2] similarities and
cosine similarities, respectively; cov is the covariance between them, and
o are the standard deviations calculated separately for each set. Given a
set as input, the function r(-) ranks the values within the set returning
the positions that each value occupies when sorting them from the lowest
to the highest. This formula measures how monotonically correlated the
sets X and Y are, and varies between -1 (negative correlation) and +1
(positive correlation) with 0 indicating no correlation.

3.3 Experimental setup

In order to capture a higher order relationship between the embeddings
and the GO terms/Pfam domains we used two machine learning (ML)
methods widely used for classification tasks: k-nearest neighbor (ENN)
[18], with a range between k = 1 and k£ = 10 and using the cosine similar-
ity between embeddings for determining the neighborhoods; and a multi-
layer perceptron (MLP) neural network [7] with 3 hidden layers of size
1,024, 512 and 512, respectively, and an output layer of problem-specific
size: 3,872 for Pfam domains; and 1,203 for CC, 3,159 for MF and 9,634
for BP sub-ontologies, respectively. The model architecture used for both
Pfam and GO predictions is depicted in the Supplementary Figure S1.
The MLP has ReLU [40] activation function for each layer, except the
last layer which has a sigmoid activation to produce an output vector
with normalized components. The MLP model was fed with the em-
bedded proteins and used to predict the corresponding GO terms/PFam
domains, encoded as binary vectors. To make predictions, the predicted
vectors were transformed into binary vectors using a threshold of 0.3.
This threshold was determined based on preliminary experiments aimed
to study the impact of this value on predictions.

Model evaluation was performed as a typical 10-fold cross-validation
experiment. The performance measurement is defined as the average s+
and Fi calculated from the test predictions for all folds. To address data
redundancy, proteins with at least 80% sequence identity were forced to
share the same partition. Additionally, a more restricted experiment was
also performed with test data having less than 20%, 40% and 60% per-
centage pairwise sequence identity (PIDE) to the train set, which can be
found in Supplementary Figure S2, where the overall behavior and differ-
ences among methods remain but the Fi score is reduced since protein
annotations that are representative in the test set are absent in the train-
ing set because of the strict partitioning. The model was trained for 1,000
epochs employing binary cross entropy [6] as the loss function; and the
Adam optimizer [24] for weight optimization with mini-batches.
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4 Results

4.1 Embedding space visualization

A protein embedding useful for downstream tasks is expected to repre-
sent crucial molecular features of proteins, such as their physicochemical
properties as well as structural aspects. Protein embeddings encoding
similar molecular features should, then, share a common region in the
multidimensional embedding space. To have a very preliminary insight
into this, a visual and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>