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Abstract

The challenge of establishing the relationship between protein sequences
and their function cannot yet be considered completely solved. State-of-
the-art annotation of Pfam domains is based on hidden Markov models
(HMMs) built from hand-crafted sequence alignments. However, while
this approach has been highly successful during the last decades since its
proposal, there is yet a very large number of proteins that remain unanno-
tated because there is no possible alignment to already known and func-
tionally characterized sequences, or HMM fails to discriminate between
similar domains. Adding structural information using deep and graph
neural networks (GNNs) presents an opportunity to build upon existing
models in those more challenging cases. GNNs excel at capturing com-
plex relationships in data and can learn a model that shares information
across all existing families, thus being able to generalize Pfam domain pre-
dictions to novel sequences. In this protocol we propose GNN2Pfam, an
end-to-end GNN-based method for Pfam family domain annotation. Our
strategy allows one single model to be trained for all species and families.
This novel proposal uses the protein 3D structure together with a sequence
representation obtained from a large pre-trained model. The GNN2Pfam
method is based on a graph derived from amino acid interactions in the
3D structure, learning both sequential and structural features from this
representation. Experiments show that the proposed GNN-based model
can clearly outperform the HMM state-of-the-art predictive performance
in Pfam domains annotations. These results suggest that GNN models
can be the key component of future protein annotation tools. Data and
source code are available at https://github.com/efenoy/GNN2Pfam.
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Proteins are building blocks of life, playing many crucial roles within organ-
isms, such as catalyzing chemical reactions, coordinating signal pathways and
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providing structural support to cells [33]. In order to elucidate the mechanism
of life, it is important to identify protein functions, which are closely related
to their domains. Domains are distinct functional and/or structural units in a
protein [I7]. Usually they are responsible for a particular function or interac-
tion, contributing to the overall role of a protein. Often each individual domain
has a specific function, such as for example binding a particular molecule or
catalysing a given reaction. Proteins are assigned to families according to the
domain(s) they contain. A protein family is a group of proteins that share a
common evolutionary origin, reflected by their related functions and similarities
in sequence or structure.

The Pfam database is a comprehensive collection of protein domains and
families used for protein structure and function analysis [22]. Automated Pfam
family prediction of proteins is a large-scale multi-label classification problem.
Nowadays this task is performed through multiple sequence alignments and pro-
file Hidden Markov Models (HMMs). Each Pfam family has a seed alignment
containing a representative set of sequences, from which a profile HMM is gener-
ated. This HMM is then used to search against a database containing sequences
from the UniProtKB reference proteomes using the HMMER software [T1]. Se-
quence regions that meet a family-specific curated threshold are aligned to the
profile HMM to create a full alignment and the corresponding Pfam family an-
notation. This approach has some limitations: alignment based methods are
not accurate enough; a single HMM model must be trained for each family,
separately and independently; and HMMs are not fast enough to handle large
numbers of protein sequences from numerous genomes. Thus, it is a current
challenge to develop a powerful automatic annotation method for the proteins
deposited in Pfam capable of overcoming these limitations.

In the last decade, deep learning (DL) has led to unprecedented improve-
ments in a broad spectrum of problems, ranging from learning protein sequence
embeddings to predicting protein structure [32, [14] and function [16, 18]. In
recent years DL methods for modeling Pfam protein families appeared [25] 2],
using only sequence information and with the capability of learning from a com-
plete dataset, thus being able to discover inner patterns across several families
at the same time. Models can be fit from scratch [16, 2] 4] or fine-tuned from
a model pretrained on unlabeled protein sequences [27) [T9] [37] since the amino
acid sequence largely specifies a protein structure and function [I].

Recent work has shown that DL models for protein Pfam functional predic-
tions together with transfer learning and representations obtained from a protein
language model (pLM) can effectively outperform traditional techniques [31]. A
pLM trained on a large database of protein sequences, such as UniProt, can
be used for encoding the sequence composition, jointly with evolutionary fea-
tures, into a so-called pLM embedding. A pLM embedding can capture some
aspects of the language that was used to write the protein primary sequences
[34]. The large language models that first appear in natural language process-
ing masked out a few words in a sentence during training and then learned
how to predict them from the context. In a pLM, words are replaced by the
residues, training the model for the task of predicting masked segments of each
input sequence, which is called pre-training. The pLM has several deep layers
that provide internal representations of sequences. The information learned by
the pLM is stored in the neuron weights of those hidden layers that learn to
predict the masked segments from the context of all the other residues in the
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protein. Once pre-trained, the output of a pLM hidden layer can be used to
obtain a compact representation as a numerical vector, the embedding. It serves
as an information-dense representation of each residue of the protein, which can
be used for downstream tasks such as the prediction of its structure or func-
tion. Several pre-trained pLMs have appeared in the last five years [36} [7], 28]
that take advantage of the vast quantity of unannotated protein sequence data
available. A review [10] where several protein sequence representation learning
methods were experimentally benchmarked, indicated Evolutionary Scale Mod-
eling (ESM) [24] as the best method for the tasks evaluated, which included
Pfam family prediction.

Most sequence-based protein function prediction methods use multiple 1D
convolutional neural network layers (CNNs) that search for spatial patterns
within a given sequence and convert them into complex features using multiple
convolutional layers. In contrast, graph neural networks (GNNs) have gained in
popularity recently [3] [I3] for structural protein function prediction since those
can overcome these limitations by generalizing convolutional operations on more
efficient graph-like representations [13, 29] and because those can learn trans-
formed representations of interacting pairs of elements within a sequence via
graph relationships. Precisely in the case of proteins and their domains, where
3D structure is of utmost importance for defining function [I2], a GNN model
can allow integrating not only sequential but also, and more important, struc-
tural information. GNNs are powerful deep-learning-based methods for learning
rich context-informed representations of nodes in graphs by propagating and ag-
gregating different types of input information (such as semantic and structural
data representations) from a node and its local neighborhood [6]. The trans-
formed representations (embeddings) can be used then for several downstream
tasks, such as Pfam domain classification. These methods have demonstrated
large success in many biology and healthcare-related tasks [38], 35} 23].

In this protocol we propose GNN2Pfam, an end-to-end GNN-based method
for Pfam family domain annotation. This novel proposal uses the protein 3D
structure together with a sequence representation obtained from a large pre-
trained model. The method is based on a graph derived from amino acid inter-
actions in the 3D structure, learning both sequential and structural features from
this representation. A last layer based on Conditional Random Fields (CRF)
provides the output probabilities for each Pfam family along the sequence of
amino acids. Our strategy allows one single model to be trained for all species
and families. Experiments with Pfam datasets show that the proposed GNN-
based approach clearly outperforms the HMM state-of-the-art method.

GNN2Pfam: novel GNN for Pfam family anno-
tation

We introduce a protocol that leverages graph-based representations by incor-
porating several GNN layers, which extract structural and relational features
from the protein sequence and its structure. Figure 1 shows the pipeline of the
GNN2Pfam problem solving protocol, a GNN model for Pfam family annota-
tion. For each input protein, its corresponding 3D structure is retrieved from
the AlphaFold2 database (Fig. 1.I). Then, per-aminoacid embeddings are ob-
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Figure 1: GNN2Pfam: novel pipeline for Pfam family annotation with a GNN
model.

tained from a pLM, and its corresponding 3D structure is used to build a graph
derived from amino acid interactions in the structure (Fig. 1.II). Each node in
the graph is the pLM embedding of an amino acid, and each edge has a 4x4
matrix of backbone atom distances. After that, the graph obtained feeds two
GNN layers and a CRF layer that can take context into account and predict a
family label, considering neighbouring samples as well (Fig. 1.III). Finally, at
the output of the pipeline (Fig. 1.IV) the class scores are predicted for each
amino acid in the sequence, obtaining a curve of scores for the final Pfam family
prediction. The plot on the top of Fig. 1.IV shows the curve of scores for the
winner predicted Pfam family (green line) and the no domain curve (red line);
the corresponding 3D structure of the predicted domain is highlighted below.

Step I: Structure acquisition First, for each raw protein sequence its cor-
responding 3D structure is obtained from the AlphaFold2 (AF2) database in
PDB format. Proteins absent from the database are dismissed. This procedure
is performed in order to assure that every structure is complete and that all
structures are consistent between them, thus avoiding possible errors or omis-
sions from crystallographic measurements.

Step II: Graph creation For each amino acid in the input protein sequence,
an embedding is obtained from a pLM; and at the same time its corresponding
3D structure of the protein (obtained in Step I) goes through the graph creation
step. A graph is a data structure that models a set of relations (edges) between
a set of entities (nodes); formally, G = (V, E), where V is the set of nodes and
E is the set of edges. A bipartite graph is a graph composed of two disjoint
sets of nodes, V7 and V3, such that every edge in the graph connects a node in
V1 with a node in V, , formally B = (V4, Va; E). A protein 3D structure can be
naturally represented as a graph GG, where each amino acid residue is a node,
thus the full sequence is V. Edges that connect nodes are the edge features
E, here defined according to the spatial proximity of amino acids in the 3D
structure: two residues are connected if the distance between them falls below a
specified threshold. In our model, each node is assigned a vector corresponding



(=R
.mB
Lm..
[99)
A&
g
2x
-3
.
&2
Q
w 9
o .
3¢
g 3
+~
2
>
=%
>
= A
|SRnp]
RN
53
o
- °E oy
/t aN
" =
rmpo
/. -0sT A]n.C
W, 8 g
///r - 00T mMD
i S
il = -
.vf/ . oS mnuvue
==
...xf mxu4
] ] 0 a Fasn
R 2 S o @ﬂu)
o o <
=29
232
M << =

'9Z0z ‘8T-T "dd ‘ABojoig fen1onuis Jo feunor
L Uo172i0uUUe UeWwop Wejd J0} SyJomsu feinau ydelb Ly1im ainionuis pue aousnbas upiold BuireiBeiu| weldzNNoD.,, ‘eAewbals "9 ®auo|iN ‘H ' ‘9end 'S ‘@RMNA Y ‘uoubng 'V "7 ‘Aous4 3
(1enpajun-ous) sousBifeiu| feuoireINdWOoD pue SWRISAS ‘Sfeubis Joy aimisu| Yyosessay (1)ous



E. Fenoy, L. A. Bugnon, R. Vitale, S. Duarte, D. H. Milone & G. Stegmayer; "GNN2Pfam: Integrating protein sequence and structure with graph neural networks for Pfam domain annotation”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
Journal of Structural Biology, pp. 1-18, 2026.

to a pLLM embedding of the amino acid it represents, also capturing contextual
information from the primary sequence.

Edge features are calculated for each connection between nodes and consist
of a 4 x 4 matrix of the pairwise distances between the carbon, oxygen, nitro-
gen, and sulfur (CONS) atoms of the connected residues (see Figure 1, step II,
below). Three different strategies were explored to define connections in the ad-
jacency based on inter-residue distance: i) 10ACB: when the distance between
beta carbon (Cj) atoms is less than 10 A; ii) 4ACe: when distance between
residue centroids is less than 4 A; and iii) 5ACONS: when the minimum dis-
tance between any pair of CONS atoms is less than 5 A. The choice of threshold
and reference atoms significantly affects graph density and neighborhood com-
position, which in turn impacts the information flow in the GNN layers. These
different strategies resulted in graphs with varying connectivity patterns, as il-
lustrated in Figure 2. Panel A) shows the protein AOAOA6P4U3_ 9GAMM and
its corresponding AlphaFold2 structure El Figure 2, panel B) shows the connec-
tivity map of the protein using the 10ACS criteria. The large radius used for this
metric allows further amino acids to be considered as interacting pairs, which
produces a densely connected graph. Figure 2, panel C) shows the connectivity
using the more restrictive 4ACe criteria, where this shorter cutoff, combined
with measuring from the amino acid’s center of mass, limits interactions to only
very close residues, producing a sparse network. Figure 2, panel D) presents the
5ACONS metric, this being a middle point between the previous two criteria.
It captures local residue environments effectively while minimizing the inclusion
of spurious interactions. Among the tested approaches, the 5ACONS yielded
the best performance in preliminary experiments with a small subset for do-
main prediction. This strategy likely provides a more detailed and functionally
relevant view of residue interactions by capturing close-range physical contacts,
regardless of backbone position or side chain type. Consequently, it was selected
as the default adjacency criterion for the final GNN model.

Step III: GNN2Pfam model training At the next step of the pipeline, the
GNN2Pfam model learns features hierarchically by iteratively aggregating infor-
mation from the local neighborhood of each node. The GNN architecture has 2
Graph Attention Network (GAT) layers [30], which operate on graph-structured
data, using masked self-attentional layers to improve the shortcomings of con-
volutions layers that can only represent grid-like structures. The model also in-
cludes a layer of rectified linear unit (ReLU) activation functions and a dropout
layer. ReLLU functions introduce nonlinearities into the deep model, multiplying
the input by 1 where the input is positive and 0 elsewhere. It is one of the most
popular activation functions in deep learning, as it solves the problem of vanish-
ing gradients in backpropagation [21], 20]. The dropout mitigates overfitting by
randomly disabling neurons during training. This technique prevents the model
from becoming dependent on certain nodes, learning more generalized features
that can help the model to perform better on new data [26]. A GAT layer
has the capability of specifying different weights to different nodes in a neigh-
borhood, this way each node is able to attend to their neighborhood features
without requiring costly matrix operations. To enhance sequence modeling and
enforce structured predictions, the final layer of the model is a CRF layer [5],

Lhttps://www.uniprot.org/uniprotkb/A0A0A6P4U3 /entry
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Table 1: Ablation study on the elements of the GNN2Pfam model.

error 2 GNN 1 GNN+CRF 2 GNN+CRF
Maximum score 0.245 0.073 0.056
Coverage score 0.222 0.072 0.061
Area score 0.218 0.075 0.063

which is generally used for structured prediction. CRF can take context into
account and predict a label for a single sample considering neighbouring sam-
ples as well. The predictions are then modelled as a graphical model, which
represents the presence of dependencies between the predictions. This CRF
layer captures dependencies between output labels, improving the consistency
of predictions by considering contextual relationships rather than making in-
dependent predictions for each node. The model is trained using the Adam
optimizer [I5]. A dropout layer is used during training to mitigate overfitting.
The training objective is to minimize the cross-entropy loss between predicted
and true Pfam domain labels.

Step IV: Pfam family prediction at the output At the output of the
model, for each amino acid in the input protein sequence, a score is predicted
for each Pfam family. It is important to highlight that at the output there is
also an extra class named “no domain”, which models the cases where there
is no reported Pfam family. That is, the output classes are all the possible
Pfam families and the no domain class. The final predicted Pfam family can
be calculated in three different ways: by maximum score, by coverage score, or
by the area score. The maximum score is obtained by simply considering the
highest score at the output along the protein, that is, the output class with the
highest value along all the amino acids that belong to the test domain will be
the predicted class. The coverage score considers how many times each class
was the winner along all the amino acids of the protein sequence. Then the
class with the largest coverage is considered the predicted class. Finally, the
area score considers that all the scores of a class along the full sequence length
constitute a curve and the area under that curve of scores is considered as the
prediction score for the class. The output class with the largest area under the
curve of scores is considered as the predicted one.

Materials and experimental setup

The sequences and Pfam annotations dataset used for training and testing this
proposal is a subset from the data used in [2]. Seed sequences from Pfam v.32.0
were split by clustering based on sequence identity. In order to assure remote
homology (low similarity between training and testing sequences), single-linkage
clustering at 25% identity within each family was used to build a clustered split.
This provides a more realistic testing scenario, close to a real-world annotation
problem, where testing sequences are not similar to the training ones. In our
experiments we used the full proteins, not just the Pfam seed domain. For
full protein representation, ESM2 was used, which provides embeddings of size
1,280. ESM is a general-purpose transformer-based pLM, which was trained to
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predict the identity of randomly selected amino acids in a sequence by observ-
ing their context. ESM2 was mainly trained with UniRef5(EL and to increase
the amount and diversity of data during training, sequences were also sampled
from UniRef90. This allowed ESM2 to be trained on over 60 million protein
sequences. The final ESM2 model has 15 billion parameters [24].

The original dataset presented a high level of imbalance between partitions
having, for example, families with all members in the test set, that is, with no
representative members in the training set. In order to assure the quality of the
data, the balance between training and testing sequences per family was spe-
cially considered, limiting the homology between testing and training partitions
for a rigorous evaluation of the generalization capability. Therefore, the dataset
has 6,169 proteins for training and 1,122 proteins for testing, belonging to 58
Pfam families. The 3D structures of these proteins were obtained from the AF2
database EL obtaining a final dataset of 7,291 proteins.

For the GNN model architecture, the following hyperparameters were ex-
plored (final model architecture values indicated in bold): representation layer
size = 256, 512, 1,204, 2,048, edge embedding size = 16, number of layers =
2, 4, 8, dropout = 0.1, and learning rates = 1le-04, 1e-05, 1e-06. We compared
our proposed GNN2Pfam model with the HMM strategy currently used at Pfam
for family annotation. To ensure a fair comparison, we trained the HMMs from
scratch. We created custom Multiple Sequence Alignments (MSAs) using the
sequences from the training set only, aligned with Muscle 3.8.31 [9]. Therefore,
training proteins were aligned to find similar regions, revealing common ancestry
and homology. Using the MSAs generated we then employed HMMER 3.4 [§]
to build the HMMs for each family domain and to make the predictions over the
test set sequences. In order to analyse the model performance in a more chal-
lenging dataset, the benchmark was further divided to focus on families where
at least one method had errors, either because it failed completely or because
it confused the correct family with another one. The recall of the methods is
calculated as r = Tﬁ%, where TP is true positives, and FN is false negatives.
The prediction error rate is calculated based on the recall as e = 1 —r, by using
the maximum score, the coverage score or the area score criteria.

Results

First, we performed an ablation study on the GNN2Pfam prediction model
components. The ablation study investigates the performance of a DL model
by removing certain components to understand its individual contribution to the
overall performance. This is systematically done with the main blocks or criti-
cal components of a DL model, and the corresponding performance is reported.
Table 1 shows the results on the ablation of the GNN and CRF component
of the GNN2Pfam model proposed. The first column shows the mean errors
(maximum, coverage and area) of the model when the CRF component is ab-
lated. The second column shows the performance of the GNN when it has one
GNN and one CRF layer. The last column shows the performance of the GNN
when it has two GNNs and one CRF layer. The best (lowest) error results are
obtained, in all cases, with the full model of 2 GNN+CRF layers. When the

2https://www.uniprot.org/help/uniref
3https://alphafold.ebi.ac.uk/
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Figure 3: Violin plots of median recall distribution on the test partition of
the proposed GNN2Pfam model (blue) versus the state-of-the-art HMM models
(orange) used for Pfam families prediction. Panel A: full test partition. Panel
B: Comparison of performance on the hardest testing cases: families of the test
partition where at least one of the models commits an error. (*) 0.015 (**)
0.007 Mann-Whitney U test.

CRF component is ablated, performance is clearly affected, the errors achieved
at the test partition are almost doubled.

Pfam family prediction performance

Figure 3, Panel A) shows a violin plot with the median recall distribution on the
full test partition of the proposed GNN2Pfam model versus the state-of-the-art
HMM models used for Pfam families prediction, where the GNN2Pfam model
clearly achieves the highest recall. For the GNN2Pfam and the HMM models
in this test set, the median average recall is 1.0. However the median recall is
0.944 for GNN2Pfam while it is 0.815 for the HMMs. Figure 3, Panel B) depicts
the detail of the recall for the families of the test partition where at least one of
the models committed an error. That is, the set of Pfam families that were the
hardest one to predict, for both, the state-of-the-art HMM models traditionally
used by the Pfam database and also for GNN2Pfam. It can be seen here again
that the GNN2Pfam model achieves the highest recall (1.0), that is, in spite
of committing an error the GNN2Pfam recall is better than the HMMs models
(0.75). Moreover, there is a statistically significant difference between these
results according to a Mann-Whitney U test.

Figure 4 shows the details of the individual recall for the families of the test
partition where at least one of the models has committed an error. This figure
presents a more detailed analysis of results in Panel B in Figure 3. It can be
seen that the GNN2Pfam model (blue) has the maximum recall, r = 1.0, in 56%
of the cases, while providing a r > 0.50 in 90% of these hard test cases. The
HMMs (orange), instead, have lower recall and commit errors in most of the
test cases. It is remarkable that in this hardest test the proposed GNN2Pfam
model demonstrates better robustness. Notably, in the cases of the families that
have very low recall according to the HMMs (PF03061 and PF01590), those are
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Figure 4: Detail on the per-family recall on the hardest cases of the test partition
for GNN2Pfam (blue) versus the state-of-the-art HMM models(orange) used for
Pfam families prediction. This figure shows the recall only for the families of
the test partition where at least one of the models committed an error.

correctly predicted by the proposed GNN2Pfam model and with high recall.
In order to show the GNN2Pfam performance when using experimental PDB
structures instead of AF2 predicted structures, a subset of proteins with exper-
imental structures were collected to be used as input in Step I. The GNN2Pfam
model trained with the full dataset of AF2 structures was tested with the cu-
rated PDB structures, achieving a prediction error of 0.04. In this case, all
the Pfam families were correctly predicted, except for one of them. If the
GNN2Pfam model trained with all AF2 structures is tested with AF2 struc-
tures, all cases are predicted correctly, as expected since the model was trained
with AF2 structures (see Supplementary Material, Section S2). GNN2Pfam was
also trained only with the PDB structures collected, testing this model with 58
AF2 structures of other proteins belonging to the same Pfam families used in
training. In this case the error was 0.33, mainly because there was not enough
training data. Another GNN2Pfam model was trained with the AF2 structures
predicted for the proteins of the collected PDB subset, testing this model with
the same 58 AF2 structures of the previous experiment. In this case the error
of the model was 0.24, lower than the previous one because of the matching be-
tween training and testing sources, but higher than when the complete dataset
is used for training. Finally, for each curated protein with PDB structure, its

10
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corresponding AF2 global predicted local distance difference test (pLDDT) was
calculated. The pLDDT is a per-residue measure of local confidence of the AF2
model, scaled from 0 to 100, with higher scores indicating higher confidence
in the local structure and more accurate prediction. It is an estimation of how
well the prediction would agree with an experimental structure. For the curated
proteins with PDB structure, the average pLDTT were mostly higher than 90
(see Supplementary Material, Section S1), indicating that both the backbone
and side chains are predicted with high accuracy. The root mean squared er-
ror (RMSE) between each AF2 predicted structure and its corresponding PDB
experimental structure was also calculated for the subset of curated proteins.
The difference between the predicted and the measured 3D structures is very
small in all cases, being 1.252 in average for all the proteins, that is, could be
considered equivalent. These results suggest that the GNN2Pfam performance
does not change significantly when using AF2 predicted or PDB experimental
structures as inputs.

Pfam family prediction: some cases of study

In several cases, the GNN2Pfam model predicted the presence of a Pfam domain
in a region of a protein where no domain annotation was present in the version
of the Pfam database used for training (v32.0). Initially, these predictions were
flagged as false positives. However, upon consulting the most recent release of
Pfam, we found that in a number of these cases the domain predicted by the
GNN2Pfam model is now annotated, suggesting that the model was able to
anticipate correct annotations ahead of time.

For example, Figure 5 shows the GNN2Pfam output for the BQJSF3_AGRVS
protein. The x-axis indicates amino acid coordinates and the y-axis shows pre-
diction scores. The gray shadow box marks the domain reported for this protein
at Pfamv32.0 (PF03472), the green line shows the GNN2Pfam prediction for the
output class PF03472, and the red line shows the “No domain” prediction along
this protein. At the bottom, a heatmap presents the pLDDT (per-residue score
of local confidence) value of each residue as reported by AlphaFold2, ranging
from low confidence (yellow) to high confidence (blue). It can be seen that in
this case the GNN2Pfam prediction has a perfect match with the beginning and
ending parts labeled of the domain at the reference. This happens precisely at
the intersection points of the GNN2Pfam model prediction curve (green) and
the No domain curve (red). The pLDDT values corresponding to this protein
show that the corresponding 3D structure in the domain region has a high con-
fidence, and also show low confidences precisely at the domain borders. All this
information has been captured by the GNN2Pfam features, which have certainly
helped the model to make a correct prediction.

Figure 6 shows another very interesting behavior of the GNN2Pfam model,
where a “prediction error” according to the annotations in Pfam v32.0 was after-
wards rectified in later versions of the database, in coincide with the GNN2Pfam
model prediction. The figure shows in shaded gray, the Pfam v32.0 annotation
for this protein (PF03364) from positions 9 to 138. However, the recent version
of the annotation at Pfam v35.0 corrected it to be the domain PF10604 (light
green box) between residues 4 and 149 for this protein. And it can be clearly
seen that the GNN2Pfam model has actually predicted the PF10604 (green line)
for this protein. This means that the GNN2Pfam model here had the capability
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Figure 5: Example of GNN2Pfam output for the B9JSF3_AGRVS protein:
GNN2Pfam prediction (green), No domain prediction (red), labeled domain at
Pfamv32 (gray shadow box). Bottom: pLDDT value of each residue as reported
by AlphaFold2.

of recognizing the pattern of the correct domain PF10604, in spite that this
protein belonging to the test set was incorrectly annotated to another domain
in the training set. It is also very interesting to note the AlphaFold2 annotation
for PF10604 domain in this protein: where there is low confidence (yellow zone
between positions 115 and 125), the GNN model had a drop in its scores that
perfectly matches the low AlphaFold2 structural prediction confidence.

Figure 7 shows an example of a GNN prediction for the protein Q8YT62-
NOSSI that has labeled the family PF13579 (gray box) according to Pfam
v32.0. The proposed GNN2Pfam model predicts both the family PF13579:
Glycosyl transferase 4-like domain (green line) and also the family PF13439:
Glycosyltransferase Family 4 (blue dotted line) with high scores. A deeper
analysis reveals that both families are actually the same one. In fact, those
have been integrated now at InterPRO with the code IPR028098 and both have
the same description: MshA belongs to the GT-B structural family of glyco-
syltransferases whose members have a two-domain structure with both domains
exhibiting a Rossman-type fold. This entry represents the N-terminal domain
found in MshA and the subfamily 4 of glycosyltransferases family 1.” Interest-
ingly, the No domain signal (red line) crosses at the green and dotted lines
indicating beginning and ending domain coordinates.

Figure 8 illustrates a case of structural instability detection by the GNN2-
Pfam model. In several proteins, AlphaFold2-predicted structures are of low
quality, which can negatively affect the models. This figure shows that regions
where the prediction scores fall are aligned with the loss of AlphaFold2 confi-
dence in the structure. That is, when there is low pLDDT AlphaFold2 confi-
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Figure 6: Example of a GNN2Pfam prediction for the protein QQCBF7_MYCLE
with the domain PF03364 labeled at Pfamv32.0 (gray box), but then corrected
at the posterior version of Pfamv35.0 as domain PF10604 (light green box).
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Figure 7: Example of a GNN2Pfam prediction for the protein Q8YT62_NOSS1
that, while Pfam v32.0 reports the family PF13579 as the correct label for the
domain location (gray box), the GNN model predicts both the family PF13579
(green line) and also the family PF13449 (blue dotted line).
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Figure 8: Example of low quality AlphaFold2-predicted structures that are de-
tected by the GNN2Pfam model.

dence (yellow and orange regions, at the bottom), the GNN2Pfam output scores
are low (around positions 50, 12, 170 and 260 in the sequence). At the correct
domain location (gray box) with high AlphaFold2 score (blue), the GNN2Pfam
scores for the PF01062 domain are high (green line) and intersect with the No
domain curve at the beginning and ending points of the labeled domain. It is
important to highlight that this result could not be achieved by simply having
a threshold above a certain value (e.g. 0.5) for the No domain class. It is also
very interesting to see here that the No domain signal, at the coordinates of no
domain annotations (350 and up to the end of the sequence), shows a higher
score than all the other classes that are incorrect, clearly indicating the No
domain region.

Finally, Figure 9 illustrates the most interesting application of the model
for Pfam annotations: knowledge discovery of new locations of a domain. In
Pfam v32.0 the protein D1B7T5_-THEAS has only the PF13185 seed (GAF_2
domain) labeled between positions 175 and 313 (gray box). The output of the
GNN2Pfam (green line) that crosses the No domain curve (red line) also shows
two other locations of domains up and downstream of this protein sequence.
Exactly in the same coordinates, GNN2Pfam also predicts the domain PF01590
(GAF domain). In the same version of Pfam v32.0 the downstream domain
was annotated with the PF13185 domain by the HMMs as the GNN2Pfam
model has effectively predicted. The domain located to the N terminal of the
sequence remains yet unannotated by Pfam, but it is effectively identified by
the InterPro database nowadays as TPR003018, which integrates both Pfam
domains annotations PF13185 and PF01590. Thus, the knowledge discovered
by the GNN2Pfam model has been effectively confirmed in a posterior version
of the databases.
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Figure 9: Example of knowledge discovery with the GNN2Pfam model and the
protein D1B7T5_THEAS.

Conclusions

In this work we have proposed GNN2Pfam, a novel approach for Pfam family do-
main annotation with a graph neural network that integrates both sequence and
3D structure information into a novel architecture. Our proposal GNN2Pfam is
the first domain prediction model integrating protein 3D structure together with
sequence representation obtained from a pre-trained large language model. The
results obtained indicate that the GNN2Pfam approach has largely overcome
the state-of-the-art HMM used nowadays at Pfam, showing significantly better
recall and lower error. It is very interesting to highlight also the potential of this
model for knowledge discovered in yet annotated proteins, since in many cases
the GNN2Pfam model predictions have been effectively confirmed in posterior
versions of the Pfam database. These results suggest that GNN models, using
both sequence embeddings from protein language models and 3D structure pre-
dictions, can be a key component for boosting future protein annotation tools.
Future work involves extending the experimental setup with a larger database
and newer versions of Pfam, as well as the automatic segmentation of domains,
providing marks for beginning and end.
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